6 Homework for Introduction to Category Theory (week 6)

6.1 Powerset monad

We consider the category Set. Recall the powerset of a set X:

$$\mathcal{P}(X) = \{ U \mid U \subseteq X \}.$$

- 1. Show that this extends to a functor $\mathcal{P}: \mathbb{Set} \to \mathbb{Set}$.
- 2. Show that is also extends to a contravariant functor $\mathcal{P}': \operatorname{Set}^{\operatorname{op}} \to \operatorname{Set}$.

We will be using the covariant functor in the remainder of the exercise. You will show that \mathcal{P} can be given a monad structure.

3. For each set *X*, guess sensible functions of the following type:

$$\begin{split} \eta_X &: X \to \mathcal{P}(X) \\ \mu_X &: \mathcal{P}(\mathcal{P}(X)) \to \mathcal{P}(X) \end{split}$$

4. Show that (\mathcal{P}, η, μ) is a monad.

Hint: There are two ways to prove this. You can show that η and μ are natural transformations and that the associativity $(\mu \circ \mathcal{P}(\mu) = \mu \circ \mu_{\mathcal{D}})$ and unitality $(\mu \circ \eta_{\mathcal{D}} = \mathrm{id}_{\mathcal{D}} \text{ and } \mu \circ \mathcal{P}(\eta) = \mathrm{id}_{\mathcal{D}})$ laws hold. Alternatively, you can show that \mathcal{P} arises from an adjunction $F \dashv G$ to some other category. The alternative way requires a bit of creativity.

- 5. Try to describe the Kleisli category $\mathcal{K}l(\mathcal{P})$. More specifically, if we interpret statements of some programming language as arrows in $\mathcal{K}l(\mathcal{P})$, then what type of computation does it describe?
- Show that Kl(𝒫) ≅ ℝel. (Recall that ℝel is the category of sets and relations between sets.)

6.2 Arrows between monads

In this exercise we will relate the powerset monad (\mathcal{P}, η, μ) as defined above with the distribution monad (\mathcal{D}, η, μ) as defined in the lecture. By abuse of notation we denote the units and multiplications of both monads by η and μ . (This should not be confusing as long as we draw the relevant diagrams.)

- 1. For each set *X*, define a function $\phi_X : \mathcal{D}(X) \to \mathcal{P}(X)$ which gives all elements with positive probability.
- 2. Show that this defines a natural transformation $\phi: \mathcal{D} \implies \mathcal{P}$.
- 3. Show that the following diagram (of natural transformations) commutes. Hint: It suffices to show that the diagram commutes for each set *X*.

$$\begin{array}{ccc} \mathcal{D}^2 & \xrightarrow{\phi_{\mathcal{D}}} & \mathcal{D}\mathcal{D} \\ \\ \mathcal{D}(\phi) & & & \downarrow^{\mathcal{D}}(\phi) \\ \\ \mathcal{D}\mathcal{D} & \xrightarrow{\phi_{\mathcal{D}}} & \mathcal{D}^2 \end{array}$$

This defines a natural transformation $\phi^2: \mathcal{D}^2 \implies \mathcal{P}^2$ (by either going down-right, or right-down in the diagram).

4. Show that the following two diagrams commute.

What this shows is that ϕ "behaves well" with the monad structures of \mathcal{D} and \mathcal{P} . Such a natural transformations can be considered as arrows between monads, written as

$$\phi: (\mathcal{D}, \eta, \mu) \implies (\mathcal{P}, \eta, \mu).$$

5. Show that ϕ induces a functor

$$\Phi: \mathcal{K}l(\mathcal{D}) \to \mathcal{K}l(\mathcal{P}).$$

Hint: Use the previous results to show that Φ preserves identities and compositions (as is required for a functor).

This last result means something for program semantics. If we are given a probabilistic program, where statements are interpreted by arrows in $\mathcal{K}l(\mathcal{D})$, then we automatically get a nondeterministic semantics via Φ (i.e., by forgetting the precise probabilities). It also shows that this abstract semantics is compositional (functoriality means that composition is preserved).