Probabilistic Language Inclusion Problems

Tobias Winkler

IMDEA Software Institute, Madrid — 19.09.2023
Probabilistic Language Inclusion Problems
Tobias Winkler
Language Inclusion
Is $L \subseteq M$ true?
Robot on a Grid
Robot on a Grid

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
Robot on a Grid

• $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$

• $L = \text{all possible walks of } \overline{\text{robot}} \text{ on the grid}$
Robot on a Grid

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
- $L = \text{all possible walks of } \text{Robot on the grid}$
- $M = "\text{before } \text{Diamond}"$
Robot on a Grid

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
- $L =$ all possible walks of Robot on the grid
- $M =$ "before"
- $L \subseteq M$ is false
Robot on a Grid

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
- $L = \text{all possible walks of } \text{Robot} \text{ on the grid}$
- $M = "\text{before } \text{Diamond}"$
- $L \subseteq M$ is false
Probabilistic Language Inclusion
How true is $L \subseteq M$?
Probabilistic Language Inclusion

How true is $L \subseteq M$?

0.95

0.1
Probabilistic Language Inclusion

Problem Definition

\[P(L \subseteq M) = 0.95 \]

\[P(L \subseteq M) = 0.1 \]
Probabilistic Language Inclusion
Problem Definition

- Given: probability measure L on Σ^ω, $M \subseteq \Sigma^\omega$ measurable
Probabilistic Language Inclusion

Problem Definition

• Given: probability measure L on Σ^ω, $M \subseteq \Sigma^\omega$ measurable
• Question: What is $Pr_{w \sim L}(w \in M) = L(M)$
Probabilistic Language Inclusion
Problem Definition

- Given: probability measure L on Σ^ω, $M \subseteq \Sigma^\omega$ measurable
- Question: What is $Pr_{w \sim L}(w \in M) = L(M)$
- Variant: Is $Pr_{w \sim L}(w \in M) = 1$? “almost-sure inclusion”
Robot on a Grid (probabilistic)

- $\Sigma = \{(x, y) | 0 \leq x, y < 5\}$
- $L = \text{random walks of } \square \text{ on the grid}$
- $M = "\text{before} \quad \text{"}$
Robot on a Grid (probabilistic)

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
- $L =$ random walks of \bullet on the grid
- $M =$ "\text{ before } $"]$

$Pr_{w \sim L}(w \in M) = \frac{7050}{12113} \approx 0.58$
Robot on a Grid (probabilistic)

- $\Sigma = \{(x, y) \mid 0 \leq x, y < 5\}$
- $L = \text{random walks of } \boxed{\text{Robot}} \text{ on the grid}$
- $M = "\boxed{\text{Green}} \text{ before } \boxed{\text{Diamond}}"$

- $Pr_{w \sim L}(w \in M) = \frac{7050}{12113} \approx 0.58$
How to define L?
How to define L?
How to define L?

- $L = \{ \frac{1}{3} : ba^\omega, \frac{2}{3} : ab^\omega \}$ (discrete, finite support)
How to define L?

- $L = \left\{ \frac{1}{3} : ba^\omega, \frac{2}{3} : ab^\omega \right\}$ (discrete, finite support)

- $\mathcal{A}_L =$ “Generative” probabilistic automaton with trivial Büchi acceptance
 = finite Markov chain with labeled transitions
How to define L?
How to define L?

- $L = \text{uniform probability measure on } \{a, b\}^\omega$ (continuous!)
How to define L?

- $L = \text{uniform probability measure on } \{a, b\}^\omega$ (continuous!)
- Each individual word $w \in \{a, b\}^\omega$ occurs with probability 0
Example

\[\mathcal{A}_L \]

\[\frac{1}{2}, a \quad \frac{1}{2}, b \]

\[\mathcal{A}_M \]

\[b \quad a \quad a, b \]
Example

\[A_L \]

\[\frac{1}{2}, a \quad \frac{1}{2}, b \]

\[A_M \]

\[b \quad a \quad a, b \]

- \(L = \) uniform probability measure on \(\{a, b\}^\omega \) (continuous)
Example

- $L = \text{uniform probability measure on } \{a, b\}^\omega$ (continuous)
- $M = \mathbb{b}^* \mathbb{a}(a + b)^\omega = \text{“eventually a occurs”}$
Example

\(A_L \)

\[\frac{1}{2}, a \rightarrow \frac{1}{2}, b \]

\(A_M \)

\[b \rightarrow a \rightarrow a, b \]

- \(L = \) uniform probability measure on \(\{a, b\}^\omega \) (continuous)
- \(M = b^*a(a + b)^\omega = \) “eventually \(a \) occurs”
- \(Pr_{w \sim L}(w \in M) = ? \)
Basic Approach

probabilistic automaton \mathcal{A}_L

non-deterministic automaton \mathcal{A}_M

determinization

deterministic automaton \mathcal{A}_M

product $\mathcal{A}_L \times \mathcal{A}_M$

numerical analysis
Basic Approach

probabilistic automaton A_L

non-deterministic automaton A_M

determinization

deterministic automaton A_M

product $A_L \times A_M$

numerical analysis

often high complexity, loss of expressive power
Example cont’d
The Product Construction

A_L

$\frac{1}{2}, a \xrightarrow{} \frac{1}{2}, b$

A_M

$b \xrightarrow{a} a, b$
Example cont’d
The Product Construction

\[A_L \]
\[
\frac{1}{2}, a \quad \rightarrow \quad \frac{1}{2}, b
\]

\[A_M \]
\[
b \quad \rightarrow \quad a \quad \rightarrow \quad a, b
\]

already deterministic 😊
Example cont’d
The Product Construction

\(\mathcal{A}_L \)

\(\frac{1}{2}, a \)

\(\frac{1}{2}, b \)

\(\mathcal{A}_M \)

\(b \)

\(a \)

\(a, b \)

\(\mathcal{A}_L \times \mathcal{A}_M \)

\(\frac{1}{2}, b \)

\(\frac{1}{2}, a \)

\(\frac{1}{2}, a \)

\(\frac{1}{2}, b \)
Example cont’d
Meaning of the Product

\[\mathcal{A}_L \times \mathcal{A}_M \]
Example cont’d

Meaning of the Product

\[\mathcal{A}_L \times \mathcal{A}_M \]

- \(\mathcal{A}_L \times \mathcal{A}_M \) = probabilistic automaton with non-trivial Büchi condition
Example cont’d
Meaning of the Product

\(A_L \times A_M \)

- \(A_L \times A_M = \) probabilistic automaton with non-trivial Büchi condition
- Defines sub-probability measure on words
Example cont’d
Meaning of the Product

$\mathcal{A}_L \times \mathcal{A}_M$

- $\mathcal{A}_L \times \mathcal{A}_M =$ probabilistic automaton with non-trivial Büchi condition
- Defines sub-probability measure on words
- $Pr_{w \sim L}(w \in M) =$ mass of that sub-probability measure
 = probability $\mathcal{A}_L \times \mathcal{A}_M$ generates a run it accepts
Example cont’d
Computing the Acceptance Probability

Dropping a, b from $\mathcal{A}_L \times \mathcal{A}_M$ yields finite Markov chain:
Example cont’d
Computing the Acceptance Probability

Dropping a, b from $\mathcal{A}_L \times \mathcal{A}_M$ yields finite Markov chain:

• Two facts:
Example cont’d
Computing the Acceptance Probability

Dropping a, b from $\mathcal{A}_L \times \mathcal{A}_M$ yields finite Markov chain:

• Two facts:
 ▸ A finite Markov chain reaches a **bottom strongly-connected component (BSCC)** with probability 1
Example cont’d
Computing the Acceptance Probability

Dropping a, b from $\mathcal{A}_L \times \mathcal{A}_M$ yields finite Markov chain:

- Two facts:
 - A finite Markov chain reaches a **bottom strongly-connected component (BSCC)** with probability 1
Example cont’d
Computing the Acceptance Probability

Dropping a, b from $A_L \times A_M$ yields finite Markov chain:

• Two facts:
 ▪ A finite Markov chain reaches a bottom strongly-connected component (BSCC) with probability 1
 ▪ If BSCC B is reached, then all states in B are visited ∞-often with probability 1
Two facts:

- A finite Markov chain reaches a bottom strongly-connected component (BSCC) with probability 1.
- If BSCC B is reached, then all states in B are visited infinitely often with probability 1.

$Pr_{w \sim L}(w \in M) = Pr(\text{reach a BSCC containing an accepting state}) = 1$
Some Known Results

(Büchi Acceptance)

<table>
<thead>
<tr>
<th>A_L</th>
<th>A_M</th>
<th>$Pr_{w \sim L}(w \in M) = 1$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilistic FA (Markov chain)</td>
<td>DFA</td>
<td>PTIME</td>
</tr>
<tr>
<td></td>
<td>unambiguous FA</td>
<td>PTIME [Baier et al.]</td>
</tr>
<tr>
<td></td>
<td>NFA</td>
<td>PSPACE [Courcoubetis & Yannakakis]</td>
</tr>
<tr>
<td>probabilistic PDA</td>
<td>NFA</td>
<td>EXPTIME [Etessami & Yannakakis]</td>
</tr>
<tr>
<td></td>
<td>non-deterministic PDA</td>
<td>undecidable [Dubslaff et al.]</td>
</tr>
<tr>
<td>probabilistic visibly PDA</td>
<td>deterministic visibly PDA</td>
<td>in PSPACE [W. et al.]</td>
</tr>
<tr>
<td></td>
<td>unambiguous visibly PDA</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>non-deterministic visibly PDA</td>
<td>EXPTIME [W. et al.]</td>
</tr>
</tbody>
</table>

- Many other versions by varying type of L, M, acceptance condition, etc.
Part II
Probabilistic Visibly Pushdown Language Inclusion

Based on a FoSSaCS’22 paper with Christina Gehnen and Joost-Pieter Katoen
Visibly Pushdown Automata (VPA)
[Alur & Madhusudan ’04]

Stack alphabet \(\Gamma = \{Z_0, Z\} \)

- \(Z_0 \) initially on stack
- \(Z_0 \) cannot be popped nor pushed
Visibly Pushdown Automata (VPA)
[Alur & Madhusudan ’04]

Stack alphabet \(\Gamma = \{Z_0, Z\} \)

- \(Z_0 \) initially on stack
- \(Z_0 \) cannot be popped nor pushed
Visibly Pushdown Automata (VPA)

[Alur & Madhusudan ’04]

Stack alphabet $\Gamma = \{Z_0, Z\}$

- Z_0 initially on stack
- Z_0 cannot be popped nor pushed
Visibly Pushdown Automata (VPA)
[Alur & Madhusudan ’04]

Stack alphabet $\Gamma = \{Z_0, Z\}$

- Z_0 initially on stack
- Z_0 cannot be popped nor pushed
Visibly Pushdown Automata (VPA)
[Alur & Madhusudan ’04]

- Reading must trigger a push
- Reading must trigger a pop
- (Reading symbol from Σ_{int} must not change stack height)

$$\Sigma = \Sigma_{push} \cup \Sigma_{pop} \cup \Sigma_{int} = \{a\} \cup \{b\} \cup \emptyset$$

- a, $\star / \star Z$
- b, \star / ε

Stack alphabet $\Gamma = \{Z_0, Z\}$
- Z_0 initially on stack
- Z_0 cannot be popped nor pushed
ω-Visibly Pushdown Languages (ωVPL)

L is an ω-visibly pushdown language if $L = L(\mathcal{A})$ for a Büchi VPA \mathcal{A}.
Probabilistic Visibly Pushdown Automata (pVPA)

- “Generative” probabilistic pushdown automaton \mathcal{A}_L with trivial Büchi acceptance

\[
\frac{2}{3}, a, \star / \star Z \quad \quad \quad \frac{1}{3}, b, \star / \varepsilon
\]
Probabilistic ωVPL Inclusion

- pVPA \mathcal{A}_L
- non-deterministic Büchi VPA \mathcal{A}_M
- determinization
- deterministic automaton for \mathcal{A}_M
- product $\mathcal{A}_L \times \mathcal{A}_M$
- numerical analysis
Probabilistic ωVPL Inclusion

- pVPA A_L
- non-deterministic Büchi VPA A_M
- deterministic automaton for A_M
- product $A_L \times A_M$
- determinization
- numerical analysis
Determinizing VPA

[Löding, Madhusudan, Serre ‘04]

Every VPA \mathcal{A} with Büchi acceptance can be transformed into an equivalent deterministic VPA \mathcal{D} with $|\mathcal{D}| \in O(2^{|\mathcal{A}|^2})$. \mathcal{D} has a stair-parity acceptance condition.
Stair-Parity Acceptance
Stair-Parity Acceptance

- Priority function $\Omega : States \rightarrow \mathbb{N}$ (like standard parity)
Stair-Parity Acceptance

• Priority function \(\Omega : States \rightarrow \mathbb{N} \) (like standard parity)

• Position \(i \) is a step of an \(\omega \)-run of a PDA \(\iff \forall j \geq i : stackHeight(j) \geq stackHeight(i) \)
Stair-Parity Acceptance

- Priority function $\Omega : \text{States} \rightarrow \mathbb{N}$ (like standard parity)
- Position i is a step of an ω-run of a PDA $\iff \forall j \geq i : \text{stackHeight}(j) \geq \text{stackHeight}(i)$
Stair-Parity Acceptance

- Priority function $\Omega : States \to \mathbb{N}$ (like standard parity)

- Position i is a step of an ω-run of a PDA $\iff \forall j \geq i : stackHeight(j) \geq stackHeight(i)$

- Stair-parity = standard parity evaluated on sequence of steps
 $(\omega$-run is accepting iff the minimum priority seen ∞-often at steps is even)
Example

\[A_L \]

\[\frac{2}{3}, a, \star / \star Z \]

\[\frac{1}{3}, b, \star / \varepsilon \]

\[A_M \]

\[b, \star / \varepsilon \]

\[a, \star / \star Z \]

\[b, \star / \varepsilon \]

\[1 \rightarrow 2 \]

already deterministic 😎
Example

\[\mathcal{A}_L \]

\[\frac{2}{3}, a, \star / \star Z \]

\[\mathcal{A}_M \]

\[\frac{1}{3}, b, \star / \varepsilon \]

already deterministic 😃

\[\mathcal{A}_L \times \mathcal{A}_M \]

\[\frac{2}{3}, a, \star / \star Z \]

\[\frac{1}{3}, b, \star / \varepsilon \]

\[\frac{1}{3}, b, \star / \varepsilon \]

\[\frac{2}{3}, a, \star / \star Z \]
Example cont’d

\(A_L \times A_M \)

\(\frac{2}{3}, \star \rightarrow \star Z \)

\(\frac{1}{3}, \star / \varepsilon \)

1

\(\frac{2}{3}, \star / \star Z \)

2

\(\frac{1}{3}, \star / \varepsilon \)
Example cont’d

- Probability that $\mathcal{A}_L \times \mathcal{A}_M$ generates a run it accepts (with stair-parity)?

$\mathcal{A}_L \times \mathcal{A}_M$

\[
\begin{align*}
0.7, \star / \star Z & \quad 0.3, \star / \varepsilon \\
1 & \quad 2
\end{align*}
\]
Remember: Stair-Parity Acceptance

- Stair-parity = standard parity evaluated on sequence of steps

 (ω)-run is accepting iff the minimum priority seen ∞-often at steps is even
Remember: Stair-Parity Acceptance

- Stair-parity = standard parity evaluated on sequence of steps

 (ω-run is accepting iff the minimum priority seen infinitely often at steps is even)
The Markov Chain of Steps: Easy Example

[Esparza, Kucera, Mayr ’04]
The Markov Chain of Steps: Easy Example

[Esparza, Kucera, Mayr ’04]
The Markov Chain of Steps: Easy Example

[Esparza, Kucera, Mayr ’04]

Transition probs of step Markov chain may be irrational, but are expressible in \mathbb{R}.
General Formulas for Step Markov Chain

Don’t read this

<table>
<thead>
<tr>
<th>$q \rightarrow r$</th>
<th>$q \perp \rightarrow r$</th>
<th>$q \perp \rightarrow r \perp$</th>
<th>$q \rightarrow r \perp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q \in Q_{\text{call}}$</td>
<td>[\left[\begin{array}{c} [r^\uparrow] \ [q^\uparrow] \end{array} \right] \left(\sum_{r', Z} P_{\text{call}}(q, r'Z) [r'Z \downarrow r] + \sum_{Z} P_{\text{call}}(q, rZ) \right) \sum_{Z} P_{\text{call}}(q, rZ) [r^\uparrow] + \sum_{r', Z} P_{\text{call}}(q, r'Z) [r'Z \downarrow r] \right) = 0]</td>
<td>[\left[\begin{array}{c} [r^\uparrow] \ [q^\uparrow] \end{array} \right] P_{\text{call}}(q, r) = 0]</td>
<td>[P_{\text{int}}(q, r) = 0]</td>
</tr>
<tr>
<td>$q \in Q_{\text{int}}$</td>
<td>[\left[\begin{array}{c} [r^\uparrow] \ [q^\uparrow] \end{array} \right] P_{\text{int}}(q, r) = 0]</td>
<td>[P_{\text{int}}(q, r) = 0]</td>
<td>[P_{\text{ret}}(q \perp, r) = 0]</td>
</tr>
<tr>
<td>$q \in Q_{\text{ret}}$</td>
<td>undef.</td>
<td>0</td>
<td>undef.</td>
</tr>
</tbody>
</table>
Example cont’d

\[\mathcal{A}_L \times \mathcal{A}_M \]

\[\frac{2}{3}, \star \leftrightarrow \star Z \]

\[\frac{1}{3}, \star \leftrightarrow \epsilon \]

\[\frac{2}{3}, \star \leftrightarrow \star Z \]

\[\frac{1}{3}, \star \leftrightarrow \epsilon \]
Example cont’d

\[A_L \times A_M \]

\[\frac{2}{3}, \star / \star Z \]

\[\frac{1}{3}, \star / \varepsilon \]

Markov chain of steps:
Example cont’d

$$\mathcal{A}_L \times \mathcal{A}_M$$

Markov chain of steps:

the only BSCC violates standard parity

$$\implies Pr_{w \sim L}(w \in M) = 0$$
Two Birds, One Stone

With the step Markov chain construction we

• … got rid of the stack

• … reduced stair-parity to standard parity
Two Birds, One Stone

With the step Markov chain construction we

• ... got rid of the stack
• ... reduced stair-parity to standard parity

It follows: For a pVPA \mathcal{A}_L and a Büchi VPA \mathcal{A}_M
Two Birds, One Stone

With the step Markov chain construction we

- ... got rid of the stack
- ... reduced stair-parity to standard parity

It follows: For a pVPA \mathcal{A}_L and a Büchi VPA \mathcal{A}_M

- ... deciding $Pr_{w \sim L}(w \in M) = 1$ is \textsc{EXPTIME}-complete
Two Birds, One Stone

With the step Markov chain construction we

• … got rid of the stack
• … reduced stair-parity to standard parity

It follows: For a pVPA \mathcal{A}_L and a Büchi VPA \mathcal{A}_M

• … deciding $\Pr_{w \sim L}(w \in M) = 1$ is EXPTIME-complete
• … deciding $\Pr_{w \sim L}(w \in M) \geq \lambda$ is in EXPSPACE
Summary & Outlook

- probabilistic automaton A_L
- non-deterministic automaton A_M
- deterministic automaton for A_M
- product $A_L \times A_M$
- numerical analysis
- determinization
Summary & Outlook

• **In this talk:** General approach for probabilistic language inclusion + concrete case of ωVPL
Summary & Outlook

• In this talk: General approach for probabilistic language inclusion + concrete case of ωVPL

• Main technique: Reduce problems to limiting behaviour of finite Markov chains
Summary & Outlook

• **In this talk:** General approach for probabilistic language inclusion + concrete case of ωVPL

• **Main technique:** Reduce problems to limiting behaviour of finite Markov chains

• **Complexity bottleneck:** Determinization
Summary & Outlook

• **In this talk:** General approach for probabilistic language inclusion + concrete case of ωVPL

• **Main technique:** Reduce problems to limiting behaviour of finite Markov chains

• **Complexity bottleneck:** Determinization

• **What’s next?** Unambiguous instead of deterministic, probabilistic automaton for \mathcal{A}_M
Summary & Outlook

• **In this talk:** General approach for probabilistic language inclusion + concrete case of ωVPL

• **Main technique:** Reduce problems to limiting behaviour of **finite** Markov chains

• **Complexity bottleneck:** Determinization

• **What’s next?** Unambiguous instead of deterministic, probabilistic automaton for A_M

Thank you for listening!
Code for probabilistic robot

dtmc

const int N = 4;

module probot
 x : [0..N] init 2;
 y : [0..N] init 2;

 [] x=0 & y=0 -> 0.5 : (x'=x+1) + 0.5 : (y'=y+1);
 [] x=0 & y=N -> 0.5 : (x'=x+1) + 0.5 : (y'=y-1);
 [] x=N & y=0 -> 0.5 : (x'=x-1) + 0.5 : (y'=y+1);
 [] x=N & y=N -> 0.5 : (x'=x-1) + 0.5 : (y'=y-1);

 [] x=0 & y>0 & y<N -> 1/3: (x'=x+1) + 1/3 : (y'=y-1) + 1/3 : (y'=y+1);
 [] x=N & y>0 & y<N -> 1/3: (x'=x-1) + 1/3 : (y'=y-1) + 1/3 : (y'=y+1);
 [] y=0 & x>0 & x<N -> 1/3: (y'=y+1) + 1/3 : (x'=x-1) + 1/3 : (x'=x+1);
 [] y=N & x>0 & x<N -> 1/3: (y'=y-1) + 1/3 : (x'=x-1) + 1/3 : (x'=x+1);

 [] x>0 & x<N & y>0 & y<N -> 0.25 : (x'=x+1) + 0.25 : (x'=x-1) + 0.25 : (y'=y+1) + 0.25 : (y'=y-1);

endmodule

label "treasure" = x=4 & y=1;
label "safe" = !(x=0 & y=N);