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Part I: Certifying Algorithms
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Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)

e Right implementation of a wrong idea

e Errors due to inexact floating point arithmetic

e Unsound 3rd party software (e.g. LP solver, compiler, ...)

® Testing can only cover small number of instances and is costly.
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Certificates

. Certifying v Certificate X True/
program for f o o checker c False

Requirements: Vx, y:

o (dw: c(x,y,w) =True) = f(x) =y (soundness)

o (dw: c(x,y,w) =True) < f(x) =y (completeness)

e wis “small” and c is “trivial / easy to implement” (informal requirements)
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Example: Certificates for Shortest Paths

e Input: Directed graph (V, E) with two special vertices s, € V.

e Output: Length d(s, 1) of shortest path from s to ¢, or oo if no such path exists.
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r
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< Data: For output True a vertex color assignment k: V — {r, b},

for output False a vertex sequence v;...v, .

10




Exercise: Certificates for Bipartite Graphs

r
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e Input: Undirected graph G = (V, E)

e Output: True if G is bipartite, otherwise False.

90){?

e Hint: G is bipartite <= G does not have an odd-length cycle.

e Certificate:

< Data: For output True a vertex color assignment k: V — {r, b},
for output False a vertex sequence v;...v, .

v Verification condition: If output True check k is valid 2-coloring,
if output False check v,...v, is an odd-length cycle.
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® Enable automated testing.

® Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, ...) to customers.
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Applications of Certifying Algorithms

® Enable automated testing.

® Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, ...) to customers.

® Provide reference results for standardized benchmark sets.
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Part II: Certificates for
Probabilistic Model Checking
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0.4995 0.4995
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Markov Decision Processes (MDPs)

e MDP = transition system + probabilities

e Example: Writing a PhD thesis with p = 100 pages:

Slack off ‘ Slack off ‘
Work Work

0.4995 0.4995 e @ gl\,) Storm
. o ’
0.4995 www.stormchecker.org

0.4995

Pr™[Q(p = 100)] =

0 ‘ 00 1 90479214711370904203221460623995034780048841633346992927620463857278648659296768765144
22937530754221634708275437759103587724836326644009455603811669774213679307190700254932
87934646681492648403959754575431541487824089366478208362425806884425205853497846463239

. = . 410463810703487931177116401063304949900001/1105115697720767968379105237118840189434898

80034804761399533933125281767746506874935886262993478031380723721663764349204459257355
48040048966663358848044213084823904946621097463753769994351539581591165709856316366968
35504701623952249236779212557214018909026097423555474352303052927691441386704950100001

~ 0.819, trust me @&
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Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,
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Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

* Certificate:
% Data: For every s € S the probability Pri"**({)r) & shortest distance d(s, 1)

v Verification condition: Check that Pr"™*({)r) = 1 and for all s € S \ {r}

Pri"™({t) = max 2 p(s, a, s") - Pri‘*(r)

s'€Succ(s,a)

and Pr;naX(Qt) >0 = d(s, 1) < o©
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Abstract. The possibility of errors in human-engineered formal verifi-

cation software, such as model checkers, poses a serious threat to the

purpose of these tools. An established approach to mitigate this prob-

‘ x e C e re i 4 J ar S lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking

of Markov decision processes (MDPs) with quantitative reachability and

expected reward properties. Qur approach is conceptually simple and re-

lies almost exclusively on elementary fixed point theory. Our certificates

work for arbitrary finite MDPs and can be readily computed with lit-

o o o o ° (] ° tle overhead using standard algorithms. We formalize the soundness of

. B Ot m l n Z m lza tZO n and maX]_le atlon our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic

model checker Storm with the ability to produce certificates and demon-

strate practical applicability by conducting the first formal certification
of the reference results in the Quantitative Verification Benchmark Set.

Keywords: Probabilistic model checking - Markov decision processes -

e Qualitative properties (e.g. certify PrglaX(Qt) <1)

1 Introduction

Markov decision processes (MDPs) [48,7,5] are ¢
cision making in probabilistic environments. The
frequently require computing reachability probabili
system state, as well as the exzpected rewards (or
ing so. MDP model checking amounts to computi

* This project has received funding from the ERC
the Austrian Science Fund (FWF) 10.55776 /COEL
Ministerium fiir Kultur und Wissenschaft NRW, th
VeY), the EU’s Horizon 2020 research and innovatio
Sklodowska-Curie grant agreement Nos. 101034413
(MISSION), and the DFG RTG 2236 (UnRAVeL). E»
computing resources granted by RWTH Aachen Uni
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correctness of the result?”
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Empirical Evaluation

Benchmarks

e ~ 450 MDPs from the literature
e Most instances have 1K - 10M states.

® Most benchmarks model practically relevant problems (communication
protocols, scheduling problems, ...).

e For each instance we certify a reachability probability or an expected reward.
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Empirical Evaluation

Overhead of certificate generation?
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e Runtime overhead often within factor 2

e Generated certificates for ~ 350/450 benchmarks within 900s time limit

18



Empirical Evaluation

Scalability of the formally verified certificate checker?
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® Reasonable performance up
to ~ 1M states

® Parsing the input MDP and
the certificate is currently a
bottleneck.



Empirical Evaluation
What is the total overhead of certified MDP verification?

reach. prob * exp. reward

n/a sk 3K
Compute result inval |
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e Often within factor ~ 4 times slower, but some additional timeouts
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Lessons Learned and Takeaways

Fixed Point Certificates for Reachability and

e Trustworthiness is a spectrum; reaching 100% is
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. Abstract. The ibility of errors in I i d formal verifi-

cation software, such as model checkers, poses a serious threat to the
purpose of these tools. An established approach to mitigate this prob-
lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking
of Markov decision processes (MDPs) with quantitative reachability and
expected reward properties. Our approach is conceptually simple and re-
lies almost exclusively on elementary fixed point theory. Our certificates
work for arbitrary finite MDPs and can be readily computed with lit-
tle overhead using standard algorithms. We formalize the soundness of
our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic
model checker Storm with the ability to produce certificates and demon-
strate practical applicability by conducting the first formal certification

of the reference results in the Quantitative Verification Benchmark Set.
Keywords: Probabilistic model checking - Markov decision processes -
Certificates - Reachability - Expected rewards - Proof assistant

1 Introduction

Markov decision processes (MDPs) [48,7,5] are the mo
cision making in probabilistic environments. Their man
frequently require computing reachability probabilities to
system state, as well as the ezpected rewards (or costs) .
ing so. MDP model checking amounts to computing (app

* This project has received funding from the ERC CoG
the Austrian Science Fund (FWF) 10.55776/COEL2, a KI
Ministerium fiir Kultur und Wissenschaft NRW, the DFG
VeY), the EU’s Horizon 2020 research and innovation progr
Sklodowska-Curie grant agreement Nos. 101034413 (IST-B!

- But uncertainties remain: Bugs in formalization,
ompilers, hardware, etc.

e Consider certificates for your next algorithm.

- If infeasible, consider certifying individual
modules, subroutines, etc.
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— BUt unce I‘t aintie S I‘em ain: B u g S in f Orm ali 7 ation}
ompilers, hardware, etc.

e Consider certificates for your next algorithm.

- If infeasible, consider certifying individual -
modules, subroutines, etc. T'hanks for listening!
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