Who Verifies the Verifier?
Certificates for Probabilistic Model Checking

Tobias Winkler
UnRAVeL Spring WS 2025

Research Training Group
2236

: Software Modeling D F

Bl and Verification Chair

Parts of this presentation are based on a TACAS “25 paper with Krishnendu Chatterjee,
TIim Quatmann, Maximilian Schiffeler, Maximilian Weininger, and Daniel Zilken.

1/6

Part I: Certifying Algorithms

The Implementation Problem

f: X — Y specification or abstract algorithm.

The Implementation Problem

You or some other
programmer(s)

f: X — Y specification or abstract algorithm.

X Program for f >)

The Implementation Problem

You or some other
programmer(s)

f: X — Y specification or abstract algorithm.

X Program for f

Trust me, the program actually

implements f &

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)

e Right implementation of a wrong idea

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)
e Right implementation of a wrong idea

e Errors due to inexact floating point arithmetic

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)
e Right implementation of a wrong idea
e Errors due to inexact floating point arithmetic

e Unsound 3rd party software (e.g. LP solver, compiler, ...)

Reasons Not to Trust Your Code

(Or Someone Else’s)

B 5

e Bugs (wrong implementation of a right idea)

e Right implementation of a wrong idea

e Errors due to inexact floating point arithmetic

e Unsound 3rd party software (e.g. LP solver, compiler, ...)

® Testing can only cover small number of instances and is costly.

Certificates

Certificate X True/
checker ¢ False

Certitying

program for f

Idea: w is an easy-to-check proof that y = f(x).

Certificates

Certificate X True/
checker ¢ False

Certitying

program for f

Certificates

Certificate X True/
checker ¢ False

Certitying

program for f

Requirements: Vx, y:

Certificates

Certificate i True/
checker ¢ False

Certitying

program for f

Requirements: Vx, y:

o (dw: c(x,y,w) =True) = f(x) =y (soundness)

Certificates

. Certifying v Certificate ~ True/
program for f o o checker c False

Requirements: Vx, y:

o (dw: c(x,y,w) =True) = f(x) =y (soundness)

o (dw: c(x,y,w) =True) < f(x) =y (completeness)

Certificates

. Certifying v Certificate X True/
program for f o o checker c False

Requirements: Vx, y:

o (dw: c(x,y,w) =True) = f(x) =y (soundness)

o (dw: c(x,y,w) =True) < f(x) =y (completeness)

e wis “small” and c is “trivial / easy to implement” (informal requirements)

6

Example: Certificates for Shortest Paths

e Input: Directed graph (V, E) with two special vertices s, € V.

e Output: Length d(s, 1) of shortest path from s to ¢, or oo if no such path exists.

Q d(s,t) =2

Example: Certificates for Shortest Paths

e Input: Directed graph (V, E) with two special vertices s, € V.
e Output: Length d(s, 1) of shortest path from s to ¢, or oo if no such path exists.
o Certificate:

< Data: For every v € V a number d(v, 1)

v Verification condition: Check that d(7, 1) = 0 and for all v € V\{t}

dv,t) =14+ min d(/, 1)
(v,v)EE

Example: Certificates for Shortest Paths

0

|
. (-
O—C
o Certificate: ‘
|

« Data: For every v € V a number d(v, 1)

v Verification condition: Check that d(7, 1) = 0 and for all v € V\{t}

dv,t) =14+ min d(/,1)
(v,v)H)eE

Exercise: Certificates for Bipartite Graphs

i%f:
oo

Exercise: Certificates for Bipartite Graphs

O O

e Input: Undirected graph G = (V, E)

[OOK}

Exercise: Certificates for Bipartite Graphs

e Input: Undirected graph G = (V, E)

e Output: True if G is bipartite, otherwise False.

10

r

O O

90){?

Exercise: Certificates for Bipartite Graphs

e Input: Undirected graph G = (V, E)
e Output: True if G is bipartite, otherwise False.

e Hint: G is bipartite <= G does not have an odd-length cycle.

10

r

O O

90){?

Exercise: Certificates for Bipartite Graphs

e Input: Undirected graph G = (V, E)

e Output: True if G is bipartite, otherwise False.

e Hint: G is bipartite <= G does not have an odd-length cycle.

e Certificate:

10

r

O O

90){?

Exercise: Certificates for Bipartite Graphs

e Input: Undirected graph G = (V, E)

e Output: True if G is bipartite, otherwise False.

e Hint: G is bipartite <= G does not have an odd-length cycle.

e Certificate:

r

O O

90){?

< Data: For output True a vertex color assignment k: V — {r, b},

for output False a vertex sequence v;...v, .

10

Exercise: Certificates for Bipartite Graphs

r

O O

e Input: Undirected graph G = (V, E)

e Output: True if G is bipartite, otherwise False.

90){?

e Hint: G is bipartite <= G does not have an odd-length cycle.

e Certificate:

< Data: For output True a vertex color assignment k: V — {r, b},
for output False a vertex sequence v;...v, .

v Verification condition: If output True check k is valid 2-coloring,
if output False check v,...v, is an odd-length cycle.

10

Applications of Certifying Algorithms

Applications of Certifying Algorithms

e Enable automated testing.

Applications of Certifying Algorithms

® Enable automated testing.

® Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, ...) to customers.

11

Applications of Certifying Algorithms

® Enable automated testing.

® Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, ...) to customers.

® Provide reference results for standardized benchmark sets.

11

Part II: Certificates for
Probabilistic Model Checking

Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs)

e MDP = transition system + probabilities

13

Markov Decision Processes (MDPs)

e MDP = transition system + probabilities

e Example: Writing a PhD thesis with p = 100 pages:

13

Markov Decision Processes (MDPs)

e MDP = transition system + probabilities

e Example: Writing a PhD thesis with p = 100 pages:

Slack off ‘ Slack off ‘
Work Work
oo o [
0.4995 0.4995

0.001

13

Markov Decision Processes (MDPs)

e MDP = transition system + probabilities

e Example: Writing a PhD thesis with p = 100 pages:

Slack off ‘ Slack off ‘
Work Work

0.4995 0.4995 e @ gl\,) Storm
. o ’
0.4995 www.stormchecker.org

0.4995

Pr™[Q(p = 100)] =

0 ‘ 00 1 90479214711370904203221460623995034780048841633346992927620463857278648659296768765144
22937530754221634708275437759103587724836326644009455603811669774213679307190700254932
87934646681492648403959754575431541487824089366478208362425806884425205853497846463239

. = . 410463810703487931177116401063304949900001/1105115697720767968379105237118840189434898

80034804761399533933125281767746506874935886262993478031380723721663764349204459257355
48040048966663358848044213084823904946621097463753769994351539581591165709856316366968
35504701623952249236779212557214018909026097423555474352303052927691441386704950100001

~ 0.819, trust me @&

13

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

14

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

e (Certificate:

14

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

e (Certificate:

% Data: For every s € S the probability Pri"**({)r) & shortest distance d(s, 1)

14

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

* Certificate:
% Data: For every s € S the probability Pri"**({)r) & shortest distance d(s, 1)

v Verification condition: Check that Pr"™*({)r) = 1 and for all s € S \ {r}

14

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

* Certificate:
% Data: For every s € S the probability Pri"**({)r) & shortest distance d(s, 1)

v Verification condition: Check that Pr"™*({)r) = 1 and for all s € S \ {r}

Pri"™({t) = max 2 p(s, a, s") - Pri‘*(r)

s'€Succ(s,a)

14

Certifying Maximal Reachability Probabilities

e Input: MDP with states S, initial state s, € §, target stater € S

e Output: PrgaX(Qt), the maximal probability to reach 7 from s,

* Certificate:
% Data: For every s € S the probability Pri"**({)r) & shortest distance d(s, 1)

v Verification condition: Check that Pr"™*({)r) = 1 and for all s € S \ {r}

Pri"™({t) = max 2 p(s, a, s") - Pri‘*(r)

s'€Succ(s,a)

and Pr;naX(Qt) >0 = d(s, 1) < o©

14

Extensions
CheCk Out Our TACAS ’25 Pap er! Fixed Point Certificates for Reachability and

Expected Rewards in MDPs*

Krishnendu Chatterjee! ¥, Tim Quatmann®®, Maximilian Schiffeler ©
Maximilian Weininger! | Tobias Winkler? “, and Daniel Zilken!+?®

! Institute of Science and Technology Austria, Klosterneuburg, Austria -
{Krishnendu.Chatterjee, Maximilian.Weininger}@ist.ac.at

o ° ° °
’ 2 RWTH Aachen, Germany -
pp rox l m a e p rO a 1 1 1e S {tim.quatmann, tobias.winkler, daniel.zilken}@cs.rwth-aachen.de

3 Technical University of Munich, Germany - maximilian.schaeffeler@tum.de

Abstract. The possibility of errors in human-engineered formal verifi-

cation software, such as model checkers, poses a serious threat to the

purpose of these tools. An established approach to mitigate this prob-

‘ x e C e re i 4 J ar S lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking

of Markov decision processes (MDPs) with quantitative reachability and

expected reward properties. Qur approach is conceptually simple and re-

lies almost exclusively on elementary fixed point theory. Our certificates

work for arbitrary finite MDPs and can be readily computed with lit-

o o o o ° (] ° tle overhead using standard algorithms. We formalize the soundness of

. B Ot m l n Z m lza tZO n and maX]_le atlon our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic

model checker Storm with the ability to produce certificates and demon-

strate practical applicability by conducting the first formal certification
of the reference results in the Quantitative Verification Benchmark Set.

Keywords: Probabilistic model checking - Markov decision processes -

e Qualitative properties (e.g. certify PrglaX(Qt) <1)

1 Introduction

Markov decision processes (MDPs) [48,7,5] are ¢
cision making in probabilistic environments. The
frequently require computing reachability probabili
system state, as well as the exzpected rewards (or
ing so. MDP model checking amounts to computi

* This project has received funding from the ERC
the Austrian Science Fund (FWF) 10.55776 /COEL
Ministerium fiir Kultur und Wissenschaft NRW, th
VeY), the EU’s Horizon 2020 research and innovatio
Sklodowska-Curie grant agreement Nos. 101034413
(MISSION), and the DFG RTG 2236 (UnRAVeL). E»
computing resources granted by RWTH Aachen Uni

15

Two Objections

Two Objections

e “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

16

Two Objections

e “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

o “What if there is a bug in the certificate checker
implementation?”

16

Two Objections

e “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

o “What if there is a bug in the certificate checker
implementation?”

= We have formalized all the theory in Isabelle/ HOL.
Based on that, we have generated a formally verified
certificate checker.

16

Two Objections

e “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

e “What if there is a bug in the certificate checker
implementation?”

= We have formalized all the theory in Isabelle/ HOL.

Based on that, we have generated a formally verified
certificate checker.

16

Empirical Evaluation

Benchmarks

17

Empirical Evaluation

Benchmarks

e ~ 450 MDPs from the literature

17

Empirical Evaluation

Benchmarks

e ~ 450 MDPs from the literature

e Most instances have 1K - 10M states.

17

Empirical Evaluation

Benchmarks

e ~ 450 MDPs from the literature
e Most instances have 1K - 10M states.

® Most benchmarks model practically relevant problems (communication
protocols, scheduling problems, ...).

17

Empirical Evaluation

Benchmarks

e ~ 450 MDPs from the literature
e Most instances have 1K - 10M states.

® Most benchmarks model practically relevant problems (communication
protocols, scheduling problems, ...).

e For each instance we certify a reachability probability or an expected reward.

17

Empirical Evaluation

Overhead of certificate generation?

Compute result
without certificate

reach. prob x exp. reward

"2 4816 64
PI*

Compute result

% + certificate

18

Empirical Evaluation

Overhead of certificate generation?

reach. prob x exp. reward

Compute result 2 _.
without certificate | + 128 e

Compute result

% + certificate

" AN >
2 4 816 64 |

PI*

e Runtime overhead often within factor 2

18

Empirical Evaluation

Overhead of certificate generation?

reach. prob x exp. reward

-
~
Q
€
vy
$

Compute result =360 x ..
without certificate | + 128 g

% & * j
24 8316 64 |

PI*

—>

|
-

~
o

09€ <<
[eAur

Compute result

% + certificate

e Runtime overhead often within factor 2

18

generation tim
00
|

rnd
A
n/a-t X KRR

inval X3¢ X% 0K 3%
>360 | X < *

K
©128 T %

AR (7]

@)
AN

32

number of states

Empirical Evaluation

Overhead of certificate generation?

reach. prob x exp. reward rnd

N/
P78

inval X XX

>360 |

Compute result
without certificate

€

o
A\
Qo

@)
AN

32
Compute result

% + certificate

—>

generation tim
00

52
<
Q

number of states

e Runtime overhead often within factor 2

e Generated certificates for ~ 350/450 benchmarks within 900s time limit

18

Empirical Evaluation

Scalability of the formally verified certificate checker?

+1incl. parsing x excl. parsing

n/a- X
inval
>360 |
3128 |
s
= 64
= 32 4
e 16 T 4 T
3 8 T
O +
< 4 I
5 2 i
o<1

10° 10° 107
number of states

*

19

® Reasonable performance up
to ~ 1M states

® Parsing the input MDP and
the certificate is currently a
bottleneck.

Empirical Evaluation
What is the total overhead of certified MDP verification?

reach. prob * exp. reward

n/a sk 3K
Compute result inval |
: . >360 % e
without certificate < %

3K 3¢

~ 2

>¢
v .

£ 16 By ! Compute result
< 8L AR + certificate
Ay AX LW T + check certificate
<1 SelRbk >
2 4 816 64 Ve P
X S5 e
PI*™ +cert o-

e Often within factor ~ 4 times slower, but some additional timeouts

20

Lessons Learned and Takeaways

Fixed Point Certificates for Reachability and

e Trustworthiness is a spectrum; reaching 100% is

Maximilian Weininger! ©, Tobias Winkler? ®, and Daniel Zilken':?

! Institute of Science and Technology Austria, Klosterneuburg, Austria -
{Krishnendu.Chatterjee, Maximilian.Weininger}@ist.ac.at
2 RWTH Aachen, Germany -
{tim.quatmann, tobias.winkler, daniel.zilken}@cs.rwth-aachen.de

[J [J
e X tr e m e 1 Cu t o
. Abstract. The ibility of errors in I i d formal verifi-

cation software, such as model checkers, poses a serious threat to the
purpose of these tools. An established approach to mitigate this prob-
lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking
of Markov decision processes (MDPs) with quantitative reachability and
expected reward properties. Our approach is conceptually simple and re-
lies almost exclusively on elementary fixed point theory. Our certificates
work for arbitrary finite MDPs and can be readily computed with lit-
tle overhead using standard algorithms. We formalize the soundness of
our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic
model checker Storm with the ability to produce certificates and demon-
strate practical applicability by conducting the first formal certification

of the reference results in the Quantitative Verification Benchmark Set.
Keywords: Probabilistic model checking - Markov decision processes -
Certificates - Reachability - Expected rewards - Proof assistant

1 Introduction

Markov decision processes (MDPs) [48,7,5] are the mo
cision making in probabilistic environments. Their man
frequently require computing reachability probabilities to
system state, as well as the ezpected rewards (or costs) .
ing so. MDP model checking amounts to computing (app

* This project has received funding from the ERC CoG
the Austrian Science Fund (FWF) 10.55776/COEL2, a KI
Ministerium fiir Kultur und Wissenschaft NRW, the DFG
VeY), the EU’s Horizon 2020 research and innovation progr
Sklodowska-Curie grant agreement Nos. 101034413 (IST-B!

- But uncertainties remain: Bugs in formalization,
ompilers, hardware, etc.

e Consider certificates for your next algorithm.

- If infeasible, consider certifying individual
modules, subroutines, etc.

21

Lessons Learned and Takeaways

Fixed Point Certificates for Reachability and

e Trustworthiness is a spectrum; reaching 100% is

Maximilian Weininger! ©, Tobias Winkler? ®, and Daniel Zilken':?

! Institute of Science and Technology Austria, Klosterneuburg, Austria -
{Krishnendu.Chatterjee, Maximilian.Weininger}@ist.ac.at
2 RWTH Aachen, Germany -
{tim.quatmann, tobias.winkler, daniel.zilken}Qcs.rwth-aachen.de

[J [J
e X tr e m e 1 Cu t o
. Abstract. The bility of errors in h i d formal verifi-

cation software, such as model checkers, poses a serious threat to the
purpose of these tools. An established approach to mitigate this prob-
lem are certificates—lightweight, easy-to-check proofs of the verification
results. In this paper, we develop novel certificates for model checking
of Markov decision processes (MDPs) with quantitative reachability and
expected reward properties. Our approach is conceptually simple and re-
lies almost exclusively on elementary fixed point theory. Our certificates
work for arbitrary finite MDPs and can be readily computed with lit-
tle overhead using standard algorithms. We formalize the soundness of
our certificates in Isabelle/HOL and provide a formally verified certificate
checker. Moreover, we augment existing algorithms in the probabilistic
model checker Storm with the ability to produce certificates and demon-
strate practical applicability by conducting the first formal certification

of the reference results in the Quantitative Verification Benchmark Set.
Keywords: Probabilistic model checking - Markov decision processes -
Certificates - Reachability - Expected rewards - Proof assistant

1 Introduction

Markov decision processes (MDPs) [48,7,5] are the mo
cision making in probabilistic environments. Their man
frequently require computing reachability probabilities to
system state, as well as the ezpected rewards (or costs) .
ing so. MDP model checking amounts to computing (app

* This project has received funding from the ERC CoG
the Austrian Science Fund (FWF) 10.55776/COEL2, a KI
Ministerium fiir Kultur und Wissenschaft NRW, the DFG
VeY), the EU’s Horizon 2020 research and innovation progr
Sklodowska-Curie grant agreement Nos. 101034413 (IST-B!

— BUt unce I‘t aintie S I‘em ain: B u g S in f Orm ali 7 ation}
ompilers, hardware, etc.

e Consider certificates for your next algorithm.

- If infeasible, consider certifying individual -
modules, subroutines, etc. T'hanks for listening!

21

