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Who Verifies the Verifier?
Certificates for Probabilistic Model Checking

Parts of this presentation are based on a TACAS ’25 paper with Krishnendu Chatterjee, 
Tim Quatmann, Maximilian Schäffeler, Maximilian Weininger, and Daniel Zilken.

/61



Part I: Certifying Algorithms

2



The Implementation Problem

  specification or abstract algorithm.f : X → Y

3



The Implementation Problem

  specification or abstract algorithm.f : X → Y

3

Program for fx y

You or some other 
programmer(s)

provides



The Implementation Problem

  specification or abstract algorithm.f : X → Y

3

Trust me, the program actually 
implements   😉f

Program for fx y

You or some other 
programmer(s)

provides



Reasons Not to Trust Your Code
(Or Someone Else’s)

4



Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

4



Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

4



Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

4



Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

• Unsound 3rd party software (e.g. LP solver, compiler, …)

4



Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

• Unsound 3rd party software (e.g. LP solver, compiler, …)

• Testing can only cover small number of instances and is costly.
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Certifying  
program for f

x
y

w

Requirements: ∀x, y :

•                                    (soundness)(∃w : c(x, y, w) = True) ⟹ f(x) = y

•                                    (completeness)(∃w : c(x, y, w) = True) ⟸ f(x) = y

•  is “small” and  is “trivial/easy to implement”              (informal requirements)w c

Certificate 
checker c

x
y
w

True/ 
False



Example: Certificates for Shortest Paths

• Input: Directed graph  with two special vertices .
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7

s t d(s, t) = 2



Example: Certificates for Shortest Paths

• Input: Directed graph  with two special vertices .

• Output: Length  of shortest path from  to , or  if no such path exists.

(V, E) s, t ∈ V

d(s, t) s t ∞

8

• Certificate:

❖ Data: For every  a number 

✓Verification condition: Check that  and for all 

 

v ∈ V d(v, t)

d(t, t) = 0 v ∈ V∖{t}

d(v, t) = 1 + min
(v,v′￼)∈E

d(v′￼, t)



Example: Certificates for Shortest Paths

9

s t
∞ 2 0

1

1
• Certificate:

❖ Data: For every  a number 

✓Verification condition: Check that  and for all 

 

v ∈ V d(v, t)

d(t, t) = 0 v ∈ V∖{t}

d(v, t) = 1 + min
(v,v′￼)∈E

d(v′￼, t)



Exercise: Certificates for Bipartite Graphs

10



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

10



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output:  if  is bipartite, otherwise .True G False

10



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output:  if  is bipartite, otherwise .True G False

• Hint:  is bipartite   does not have an odd-length cycle.G ⟺ G

10



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output:  if  is bipartite, otherwise .True G False

• Hint:  is bipartite   does not have an odd-length cycle.G ⟺ G

10

• Certificate:



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output:  if  is bipartite, otherwise .True G False

• Hint:  is bipartite   does not have an odd-length cycle.G ⟺ G

10

• Certificate:

❖ Data:  For output  a vertex color assignment  , 
            for output  a vertex sequence .

True κ : V → {r, b}
False v1…vn



Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output:  if  is bipartite, otherwise .True G False

• Hint:  is bipartite   does not have an odd-length cycle.G ⟺ G
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• Certificate:

❖ Data:  For output  a vertex color assignment  , 
            for output  a vertex sequence .

True κ : V → {r, b}
False v1…vn

✓ Verification condition:  If output  check  is valid 2-coloring, 
                                         if output  check  is an odd-length cycle.

True κ
False v1…vn
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Applications of Certifying Algorithms

• Enable automated testing.

• Prove correctness of closed-source commercial software (SAT-solvers, model 
checkers, …) to customers.

• Provide reference results for standardized benchmark sets.
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• Input: MDP with states , initial state , target state 

• Output: , the maximal probability to reach  from 

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

❖ Data: For every  the probability  & shortest distance s ∈ S Prmax
s (◊t) d(s, t)

✓Verification condition: Check that  and for all Prmax
t (◊t) = 1 s ∈ S ∖{t}

Prmax
s (◊t) = max

α ∑
s′￼∈Succ(s,α)

p(s, α, s′￼) ⋅ Prmax
s′￼

(◊t)

and                      Prmax
s (◊t) > 0 ⟹ d(s, t) < ∞



Extensions
Check out our TACAS ’25 paper!

• Approximate probabilities

• Expected rewards

• Both minimization and maximization

• Qualitative properties (e.g. certify )Prmax
s0

(◊t) < 1
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Empirical Evaluation
Benchmarks

•  450 MDPs from the literature≈

• Most instances have 1K - 10M states.

• Most benchmarks model practically relevant problems (communication 
protocols, scheduling problems, …).

• For each instance we certify a reachability probability or an expected reward.
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Empirical Evaluation
Overhead of certificate generation?

• Runtime overhead often within factor 2

• Generated certificates for  350/450 benchmarks within 900s time limit≈
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Empirical Evaluation
Scalability of the formally verified certificate checker?

• Reasonable performance up 
to  1M states

• Parsing the input MDP and 
the certificate is currently a 
bottleneck.

≈
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Empirical Evaluation
What is the total overhead of certified MDP verification?

20

Compute result 
+ certificate 

+ check certificate

Compute result 
without certificate

• Often within factor  times slower, but some additional timeouts≈ 4



Lessons Learned and Takeaways

• Trustworthiness is a spectrum; reaching 100% is 
extremely difficult.

- But uncertainties remain: Bugs in formalization, 
compilers, hardware, etc.

• Consider certificates for your next algorithm.

- If infeasible, consider certifying individual 
modules, subroutines, etc.
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Thanks for listening!

nothing testing certificates


