
Tobias Winkler
UnRAVeL Spring WS 2025

Who Verifies the Verifier?
Certificates for Probabilistic Model Checking

Parts of this presentation are based on a TACAS ’25 paper with Krishnendu Chatterjee,
Tim Quatmann, Maximilian Schäffeler, Maximilian Weininger, and Daniel Zilken.

/61

Part I: Certifying Algorithms

2

The Implementation Problem

 specification or abstract algorithm.f : X → Y

3

The Implementation Problem

 specification or abstract algorithm.f : X → Y

3

Program for fx y

You or some other
programmer(s)

provides

The Implementation Problem

 specification or abstract algorithm.f : X → Y

3

Trust me, the program actually
implements 😉f

Program for fx y

You or some other
programmer(s)

provides

Reasons Not to Trust Your Code
(Or Someone Else’s)

4

Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

4

Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

4

Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

4

Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

• Unsound 3rd party software (e.g. LP solver, compiler, …)

4

Reasons Not to Trust Your Code
(Or Someone Else’s)

• Bugs (wrong implementation of a right idea)

• Right implementation of a wrong idea

• Errors due to inexact floating point arithmetic

• Unsound 3rd party software (e.g. LP solver, compiler, …)

• Testing can only cover small number of instances and is costly.

4

Certificates

5

Idea: is an easy-to-check proof that .w y = f(x)

Certifying
program for f

x
y

w

Certificate
checker c

x
y
w

True/
False

Certificates

6

Certifying
program for f

x
y

w

Certificate
checker c

x
y
w

True/
False

Certificates

6

Certifying
program for f

x
y

w

Requirements: ∀x, y :

Certificate
checker c

x
y
w

True/
False

Certificates

6

Certifying
program for f

x
y

w

Requirements: ∀x, y :

• (soundness)(∃w : c(x, y, w) = True) ⟹ f(x) = y

Certificate
checker c

x
y
w

True/
False

Certificates

6

Certifying
program for f

x
y

w

Requirements: ∀x, y :

• (soundness)(∃w : c(x, y, w) = True) ⟹ f(x) = y

• (completeness)(∃w : c(x, y, w) = True) ⟸ f(x) = y

Certificate
checker c

x
y
w

True/
False

Certificates

6

Certifying
program for f

x
y

w

Requirements: ∀x, y :

• (soundness)(∃w : c(x, y, w) = True) ⟹ f(x) = y

• (completeness)(∃w : c(x, y, w) = True) ⟸ f(x) = y

• is “small” and is “trivial/easy to implement” (informal requirements)w c

Certificate
checker c

x
y
w

True/
False

Example: Certificates for Shortest Paths

• Input: Directed graph with two special vertices .

• Output: Length of shortest path from to , or if no such path exists.

(V, E) s, t ∈ V

d(s, t) s t ∞

7

s t d(s, t) = 2

Example: Certificates for Shortest Paths

• Input: Directed graph with two special vertices .

• Output: Length of shortest path from to , or if no such path exists.

(V, E) s, t ∈ V

d(s, t) s t ∞

8

• Certificate:

❖ Data: For every a number

✓Verification condition: Check that and for all

v ∈ V d(v, t)

d(t, t) = 0 v ∈ V∖{t}

d(v, t) = 1 + min
(v,v′￼)∈E

d(v′￼, t)

Example: Certificates for Shortest Paths

9

s t
∞ 2 0

1

1
• Certificate:

❖ Data: For every a number

✓Verification condition: Check that and for all

v ∈ V d(v, t)

d(t, t) = 0 v ∈ V∖{t}

d(v, t) = 1 + min
(v,v′￼)∈E

d(v′￼, t)

Exercise: Certificates for Bipartite Graphs

10

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

10

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output: if is bipartite, otherwise .True G False

10

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output: if is bipartite, otherwise .True G False

• Hint: is bipartite does not have an odd-length cycle.G ⟺ G

10

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output: if is bipartite, otherwise .True G False

• Hint: is bipartite does not have an odd-length cycle.G ⟺ G

10

• Certificate:

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output: if is bipartite, otherwise .True G False

• Hint: is bipartite does not have an odd-length cycle.G ⟺ G

10

• Certificate:

❖ Data: For output a vertex color assignment ,
 for output a vertex sequence .

True κ : V → {r, b}
False v1…vn

Exercise: Certificates for Bipartite Graphs

• Input: Undirected graph G = (V, E)

• Output: if is bipartite, otherwise .True G False

• Hint: is bipartite does not have an odd-length cycle.G ⟺ G

10

• Certificate:

❖ Data: For output a vertex color assignment ,
 for output a vertex sequence .

True κ : V → {r, b}
False v1…vn

✓ Verification condition: If output check is valid 2-coloring,
 if output check is an odd-length cycle.

True κ
False v1…vn

Applications of Certifying Algorithms

11

Applications of Certifying Algorithms

• Enable automated testing.

11

Applications of Certifying Algorithms

• Enable automated testing.

• Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, …) to customers.

11

Applications of Certifying Algorithms

• Enable automated testing.

• Prove correctness of closed-source commercial software (SAT-solvers, model
checkers, …) to customers.

• Provide reference results for standardized benchmark sets.

11

Part II: Certificates for
Probabilistic Model Checking

12

Markov Decision Processes (MDPs)

13

Markov Decision Processes (MDPs)
• MDP transition system + probabilities≈

13

Markov Decision Processes (MDPs)
• MDP transition system + probabilities≈

• Example: Writing a PhD thesis with pages:p = 100

13

Markov Decision Processes (MDPs)
• MDP transition system + probabilities≈

• Example: Writing a PhD thesis with pages:p = 100

13

p = 100p = 0 p = 1
Work

0.4995

0.4995

0.001

p = 2
Work

0.4995

0.4995

0.001

Slack off

…

Slack off

Markov Decision Processes (MDPs)
• MDP transition system + probabilities≈

• Example: Writing a PhD thesis with pages:p = 100

13

90479214711370904203221460623995034780048841633346992927620463857278648659296768765144
22937530754221634708275437759103587724836326644009455603811669774213679307190700254932
87934646681492648403959754575431541487824089366478208362425806884425205853497846463239

410463810703487931177116401063304949900001/1105115697720767968379105237118840189434898
80034804761399533933125281767746506874935886262993478031380723721663764349204459257355
48040048966663358848044213084823904946621097463753769994351539581591165709856316366968
35504701623952249236779212557214018909026097423555474352303052927691441386704950100001

, trust me 😉

Prmax[◊(p = 100)] =

≈ 0.819

p = 100p = 0 p = 1
Work

0.4995

0.4995

0.001

p = 2
Work

0.4995

0.4995

0.001

Slack off

…

Slack off

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

❖ Data: For every the probability & shortest distance s ∈ S Prmax
s (◊t) d(s, t)

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

❖ Data: For every the probability & shortest distance s ∈ S Prmax
s (◊t) d(s, t)

✓Verification condition: Check that and for all Prmax
t (◊t) = 1 s ∈ S ∖{t}

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

❖ Data: For every the probability & shortest distance s ∈ S Prmax
s (◊t) d(s, t)

✓Verification condition: Check that and for all Prmax
t (◊t) = 1 s ∈ S ∖{t}

Prmax
s (◊t) = max

α ∑
s′￼∈Succ(s,α)

p(s, α, s′￼) ⋅ Prmax
s′￼

(◊t)

Certifying Maximal Reachability Probabilities

14

• Input: MDP with states , initial state , target state

• Output: , the maximal probability to reach from

S s0 ∈ S t ∈ S

Prmax
s0

(◊t) t s0

• Certificate:

❖ Data: For every the probability & shortest distance s ∈ S Prmax
s (◊t) d(s, t)

✓Verification condition: Check that and for all Prmax
t (◊t) = 1 s ∈ S ∖{t}

Prmax
s (◊t) = max

α ∑
s′￼∈Succ(s,α)

p(s, α, s′￼) ⋅ Prmax
s′￼

(◊t)

and Prmax
s (◊t) > 0 ⟹ d(s, t) < ∞

Extensions
Check out our TACAS ’25 paper!

• Approximate probabilities

• Expected rewards

• Both minimization and maximization

• Qualitative properties (e.g. certify)Prmax
s0

(◊t) < 1

15

Two Objections

16

Two Objections

• “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

16

Two Objections

• “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

• “What if there is a bug in the certificate checker
implementation?”

16

Two Objections

• “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

• “What if there is a bug in the certificate checker
implementation?”

➡We have formalized all the theory in Isabelle/HOL.
Based on that, we have generated a formally verified
certificate checker.

16

Two Objections

• “What if there is an error in the theory and validity of the
verification conditions does not actually imply
correctness of the result?”

• “What if there is a bug in the certificate checker
implementation?”

➡We have formalized all the theory in Isabelle/HOL.
Based on that, we have generated a formally verified
certificate checker.

16

Empirical Evaluation
Benchmarks

17

Empirical Evaluation
Benchmarks

• 450 MDPs from the literature≈

17

Empirical Evaluation
Benchmarks

• 450 MDPs from the literature≈

• Most instances have 1K - 10M states.

17

Empirical Evaluation
Benchmarks

• 450 MDPs from the literature≈

• Most instances have 1K - 10M states.

• Most benchmarks model practically relevant problems (communication
protocols, scheduling problems, …).

17

Empirical Evaluation
Benchmarks

• 450 MDPs from the literature≈

• Most instances have 1K - 10M states.

• Most benchmarks model practically relevant problems (communication
protocols, scheduling problems, …).

• For each instance we certify a reachability probability or an expected reward.

17

Empirical Evaluation
Overhead of certificate generation?

18

Compute result
without certificate

Compute result
+ certificate

Empirical Evaluation
Overhead of certificate generation?

• Runtime overhead often within factor 2

18

Compute result
without certificate

Compute result
+ certificate

Empirical Evaluation
Overhead of certificate generation?

• Runtime overhead often within factor 2

18

Compute result
without certificate

Compute result
+ certificate

Empirical Evaluation
Overhead of certificate generation?

• Runtime overhead often within factor 2

• Generated certificates for 350/450 benchmarks within 900s time limit≈
18

Compute result
without certificate

Compute result
+ certificate

Empirical Evaluation
Scalability of the formally verified certificate checker?

• Reasonable performance up
to 1M states

• Parsing the input MDP and
the certificate is currently a
bottleneck.

≈

19

Empirical Evaluation
What is the total overhead of certified MDP verification?

20

Compute result
+ certificate

+ check certificate

Compute result
without certificate

• Often within factor times slower, but some additional timeouts≈ 4

Lessons Learned and Takeaways

• Trustworthiness is a spectrum; reaching 100% is
extremely difficult.

- But uncertainties remain: Bugs in formalization,
compilers, hardware, etc.

• Consider certificates for your next algorithm.

- If infeasible, consider certifying individual
modules, subroutines, etc.

21

nothing testing certificates

Lessons Learned and Takeaways

• Trustworthiness is a spectrum; reaching 100% is
extremely difficult.

- But uncertainties remain: Bugs in formalization,
compilers, hardware, etc.

• Consider certificates for your next algorithm.

- If infeasible, consider certifying individual
modules, subroutines, etc.

21

Thanks for listening!

nothing testing certificates

