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boolean f(boolean x) { 
  if(x) { 
    pchoice { 
      0.5: return true; 
      0.25: return false; 
      0.25: return f(f(x)); 
    } 
  } else { 
    return false; 
  } 
}
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boolean f(boolean x) { 
  if(x) { 
    pchoice { 
      0.5: return true; 
      0.25: return false; 
      0.25: return f(f(x)); 
    } 
  } else { 
    return false; 
  } 
}

f(true) returns true with probability 2 − 2
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• Termination = reach empty stack

• almost-sure termination (AST) = all configurations terminate with probability 1
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All decidable in PSPACE by reduction to  [Esparza et al. LICS ’04 + ’05]∃ℝ
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This proves PAST (soundness). 
For every PAST pPDA we can find 
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Thank you! Questions?


