On Certificates, Expected Runtimes, and Termination in Probabilistic Pushdown Automata

Tobias Winkler, Joost-Pieter Katoen
\square E $\begin{aligned} & \text { Research Training Group } \\ & 2236\end{aligned}$

European Research Council

Probabilistic Pushdown Automata (pPDA)

[Esparza, Kucera, Mayr LICS '04, Etessami \& Yannakakis STACS '05]

$(1 / 2, Z, \varepsilon)$

Probabilistic Pushdown Automata (pPDA)

[Esparza, Kucera, Mayr LICS '04, Etessami \& Yannakakis STACS '05]

Probabilistic Pushdown Automata (pPDA)

[Esparza, Kucera, Mayr LICS '04, Etessami \& Yannakakis STACS '05]

Probabilistic Pushdown Automata (pPDA)

[Esparza, Kucera, Mayr LICS '04, Etessami \& Yannakakis STACS '05]

Termination in pPDA

Termination in pPDA

- Termination = reach empty stack

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination $(A S T)=$ all configurations terminate with probability 1

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) $=$ expected runtime is finite $(\Longrightarrow$ AST)

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) $=$ expected runtime is finite $(\Longrightarrow$ AST $)$

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) $=$ expected runtime is finite $(\Longrightarrow$ AST $)$

AST and PAST

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) $=$ expected runtime is finite $(\Longrightarrow$ AST $)$

AST and PAST

AST, but not PAST

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) = expected runtime is finite $(\Longrightarrow$ AST)

AST and PAST

AST, but not PAST

not AST

Termination in pPDA

- Termination = reach empty stack
- almost-sure termination (AST) = all configurations terminate with probability 1
- positive almost-sure termination (PAST) $=$ expected runtime is finite $(\Longrightarrow$ AST $)$

AST and PAST

AST, but not PAST

not AST

All decidable in PSPACE by reduction to $\exists \mathbb{R}$ [Esparza et al. LICS '04 + '05]

Do you trust your verification tool?

Do you trust your verification tool?

Do you trust your verification tool?

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)
there exist rational vectors $\vec{u} \in \mathbb{Q}_{\geq 0}^{n}, \vec{r} \in \mathbb{Q}_{\geq 0}^{m}$ such that
(1) $\vec{f}_{\Delta}(\vec{u}) \leq \vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1} \leq \vec{r}$
where $\vec{f}_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ and $M_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{m \times m}$ can be constructed in polynomial time in the size of Δ.

Certifying PAST - Concrete Example

Certifying PAST - Concrete Example

Read off from Δ :

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Certifying PAST - Concrete Example

Read off from Δ :

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Certifying PAST - Concrete Example

Read off from Δ :

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Certifying PAST - Concrete Example

Read off from Δ :

$$
\text { Certificate: } \vec{u}=\binom{\frac{3}{5}}{\frac{1}{2}}, \vec{r}=\binom{\frac{45}{14}}{1}
$$

Check:

$$
\text { (1) } \vec{f}_{\Delta}(\vec{u})=\binom{\frac{1}{4} \cdot\left(\frac{3}{5}\right)^{2}+\frac{1}{2}}{\frac{1}{4} \cdot \frac{3}{5} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{4}}=\binom{\frac{59}{100}}{\frac{9}{20}} \leq\binom{\frac{3}{5}}{\frac{1}{2}}=\vec{u}
$$

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Certifying PAST - Concrete Example

$$
\text { Certificate: } \vec{u}=\binom{\frac{3}{5}}{\frac{1}{2}}, \vec{r}=\binom{\frac{45}{14}}{1}
$$

Read off from Δ :

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Check:
(1) $\vec{f}_{\Delta}(\vec{u})=\binom{\frac{1}{4} \cdot\left(\frac{3}{5}\right)^{2}+\frac{1}{2}}{\frac{1}{4} \cdot \frac{3}{5} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{4}}=\binom{\frac{59}{100}}{\frac{9}{20}} \leq\binom{\frac{3}{5}}{\frac{1}{2}}=\vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1}=\left(\begin{array}{cc}\frac{1}{4}+\frac{3}{5} & \frac{1}{4}+\frac{1}{2} \\ 0 & 0\end{array}\right)\binom{\frac{45}{14}}{1}+\binom{1}{1}=\binom{\frac{251}{56}}{1} \leq \vec{r}$

Certifying PAST - Concrete Example

$$
\text { Certificate: } \vec{u}=\binom{\frac{3}{5}}{\frac{1}{2}}, \vec{r}=\binom{\frac{45}{14}}{1}
$$

Read off from Δ :

$$
\begin{aligned}
& \vec{f}_{\Delta}=\binom{\frac{1}{4} x_{0}^{2}+\frac{1}{2}}{\frac{1}{4} x_{0} x_{1}+\frac{1}{4} x_{1}+\frac{1}{4}} \\
& M_{\Delta}=\left(\begin{array}{cc}
\frac{1}{4}+x_{0} & \frac{1}{4}+x_{1} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Check:
(1) $\vec{f}_{\Delta}(\vec{u})=\binom{\frac{1}{4} \cdot\left(\frac{3}{5}\right)^{2}+\frac{1}{2}}{\frac{1}{4} \cdot \frac{3}{5} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{4}}=\binom{\frac{59}{100}}{\frac{9}{20}} \leq\binom{\frac{3}{5}}{\frac{1}{2}}=\vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1}=\left(\begin{array}{cc}\frac{1}{4}+\frac{3}{5} & \frac{1}{4}+\frac{1}{2} \\ 0 & 0\end{array}\right)\binom{\frac{45}{14}}{1}+\binom{1}{1}=\binom{\frac{251}{56}}{1} \leq \vec{r}$

This proves PAST (soundness). For every PAST pPDA we can find such a certificate (completeness).

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)
\Longleftarrow (soundness)
there exist rational vectors $\vec{u} \in \mathbb{Q}_{\geq 0}^{n}, \vec{r} \in \mathbb{Q}_{\geq 0}^{m}$ such that
(1) $\vec{f}_{\Delta}(\vec{u}) \leq \vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1} \leq \vec{r}$
where $\vec{f}_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ and $M_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{m \times m}$ can be constructed in polynomial time in the size of Δ.

Characterizing the Expected Runtime (ert)

$\operatorname{ert}[p Z]=E\left[\operatorname{len}\left(\frac{\forall}{(D)} \sim \square_{0}^{\forall}\right)\right]$

Characterizing the Expected Runtime (ert)

$\operatorname{ert}[p Z]=1+\sum_{p Z \xrightarrow{a} r Y} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \xrightarrow{a} r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)$

Characterizing the Expected Runtime (ert)

$\operatorname{ert}[p Z]=1+\sum_{p Z \xrightarrow{a} r Y} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \xrightarrow{a} r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)$

Characterizing the Expected Runtime (ert)

$$
\operatorname{ert}[p Z]=1+\sum_{p Z \rightarrow{ }_{a}^{a} r} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \rightarrow r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)
$$

Characterizing the Expected Runtime

Theorem

The linear equation system
$\forall p, Z \quad \operatorname{ert}[p Z]=1+\sum_{p Z \rightarrow r Y} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \rightarrow r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)$
has a solution in $\mathbb{R}_{\geq 0}$ iff the pPDA is PAST.

Characterizing the Expected Runtime

Theorem

The linear equation system
$\forall p, Z \quad \operatorname{ert}[p Z]=1+\sum_{p Z \rightarrow r Y} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \rightarrow r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)$
has a solution in $\mathbb{R}_{\geq 0}$ iff the pPDA is PAST.

$$
[r Y t]=\operatorname{Pr}[\stackrel{\forall}{\stackrel{-}{Y}} \underset{r}{ } \sim \stackrel{\square}{\square}]
$$

Characterizing the Expected Runtime

Matrix $M_{\Delta}(\vec{x})$ from certificate condition

Theorem

The linear equation system
$\forall p, Z \quad \operatorname{ert}[p Z]=1+\sum_{p Z \xrightarrow{a} r Y} a \cdot \operatorname{ert}[r Y]+\sum_{p Z \xrightarrow{a} r Y X} a \cdot\left(\operatorname{ert}[r Y]+\sum_{t}[r Y t] \cdot \operatorname{ert}[t X]\right)$
has a solution in $\mathbb{R}_{\geq 0}$ iff the pPDA is PAST.

$$
[r Y t]=\operatorname{Pr}[\stackrel{\forall}{\stackrel{\forall}{Y}} \underset{r}{\square} \sim \overbrace{t}^{\square}]
$$

pPDA \rightarrow Polynomial Equations

Probabilities $[p Z q]$ are least solution ≥ 0 of

$$
[p Z q]=\sum_{p Z \rightarrow q Y} a \cdot[r Y q]+\sum_{p Z \rightarrow r X Y} \sum_{t \in Q} a \cdot[r Y t] \cdot[t X q]+\sum_{p Z \rightarrow q \in} a
$$

pPDA \rightarrow Polynomial Equations

Probabilities $[p Z q]$ are least solution ≥ 0 of

$$
[p Z q]=\sum_{p Z \rightarrow a} a \cdot[r Y q]+\sum_{p Z \rightarrow}^{a} \sum_{i X Y} a \cdot[r Y t] \cdot[t X q]+\sum_{p Z \xrightarrow{a} q \epsilon} a
$$

Polynomials \vec{f}_{Δ} from
certificate condition

Certificates for Upper Bounds on [pZq]

$\vec{f} \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ is a monotonic function $\vec{f}: \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}_{\geq 0}^{n}$

Certificates for Upper Bounds on [pZq]

$\vec{f} \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ is a monotonic function $\vec{f}: \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}_{\geq 0}^{n}$

Lemma
For all $\vec{u} \in \mathbb{R}_{\geq 0}^{n}: \quad \vec{f}(\vec{u}) \leq \vec{u} \Longrightarrow$ Ifp $\vec{f} \leq \vec{u}$
Proof:
Knaster-Tarski fixed point theorem

Certificates for Upper Bounds on [pZq]

$\vec{f} \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ is a monotonic function $\vec{f}: \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}_{\geq 0}^{n}$

$$
\text { least solution } \geq 0 \text { of } \vec{x}=\vec{f}(\vec{x})
$$

Lemma

For all $\vec{u} \in \mathbb{R}_{\geq 0}^{n}: \quad \vec{f}(\vec{u}) \leq \vec{u} \Longrightarrow \operatorname{Ifp} \vec{f} \leq \vec{u}$
Proof:
Knaster-Tarski fixed point theorem

Certificates for Upper Bounds on [pZq]

$\vec{f} \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ is a monotonic function $\vec{f}: \mathbb{R}_{\geq 0}^{n} \rightarrow \mathbb{R}_{\geq 0}^{n}$
"inductive upper bound"

$$
\text { least solution } \geq 0 \text { of } \vec{x}=\vec{f}(\vec{x})
$$

Lemma
For all $\vec{u} \in \mathbb{R}_{\geq 0}^{n}: \quad \vec{f}(\vec{u}) \leq \vec{u} \Longrightarrow \operatorname{Ifp} \vec{f} \leq \vec{u}$
Proof:
Knaster-Tarski fixed point theorem

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)

there exist rational vectors $\vec{u} \in \mathbb{Q}_{\geq 0}^{n}, \vec{r} \in \mathbb{Q}_{\geq 0}^{m}$ such that
(1) $\vec{f}_{\Delta}(\vec{u}) \leq \vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1} \leq \vec{r}$
where $\vec{f}_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ and $M_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{m \times m}$ can be constructed in polynomial time in the size of Δ.

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)
\Longrightarrow (completeness)
there exist rational vectors $\vec{u} \in \mathbb{Q}_{\geq 0}^{n}, \vec{r} \in \mathbb{Q}_{\geq 0}^{m}$ such that
(1) $\vec{f}_{\Delta}(\vec{u}) \leq \vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1} \leq \vec{r}$
where $\vec{f}_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ and $M_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{m \times m}$ can be constructed in polynomial time in the size of Δ.

Main Result: Certificates for PAST

A pPDA Δ terminates with probability 1 in finite expected runtime (PAST)

$$
\Longrightarrow \text { (completeness) }
$$

there exist rational vectors $\vec{u} \in \mathbb{Q}_{\geq 0}^{n}, \vec{r} \in \mathbb{Q}_{\geq 0}^{m}$ such that
(1) $\vec{f}_{\Delta}(\vec{u}) \leq \vec{u}$
(2) $M_{\Delta}(\vec{u}) \vec{r}+\overrightarrow{1} \leq \vec{r}$
where $\vec{f}_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$ and $M_{\Delta} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{m \times m}$ can be constructed in polynomial time in the size of Δ.

Summary

Summary

- Sound + complete certificates ("proof rule") for PAST based on inductive upper bounds on Ifp of polynomial system $f \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$

Summary

- Sound + complete certificates ("proof rule") for PAST based on inductive upper bounds on Ifp of polynomial system $f \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$
- Algorithm to compute such bounds in [W. \& Katoen, TACAS '23]

Summary

- Sound + complete certificates ("proof rule") for PAST based on inductive upper bounds on Ifp of polynomial system $f \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$
- Algorithm to compute such bounds in [W. \& Katoen, TACAS '23]
- In paper: Certificates for lower bounds on [pZq], bounds on certificate size

Summary

- Sound + complete certificates ("proof rule") for PAST based on inductive upper bounds on Ifp of polynomial system $f \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$
- Algorithm to compute such bounds in [W. \& Katoen, TACAS '23]
- In paper: Certificates for lower bounds on [pZq], bounds on certificate size
- Future work: Prove NP membership for restricted versions of pPDA

Summary

- Sound + complete certificates ("proof rule") for PAST based on inductive upper bounds on Ifp of polynomial system $f \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]^{n}$
- Algorithm to compute such bounds in [W. \& Katoen, TACAS '23]
- In paper: Certificates for lower bounds on [pZq], bounds on certificate size
- Future work: Prove NP membership for restricted versions of pPDA

Thank you! Questions?

