i Software Modeling

‘ Bl and Verification Chair

Seminar
Trends in Model Checking

SS24 — Introduction
l~” @ = @

https://moves.rwth-aachen.de/teaching/ss-24/seminar-trends-in-model-checking/

Tim Quatmann

https://moves.rwth-aachen.de/teaching/ss-24/seminar-trends-in-model-checking/

Software Systems
are everywhere!

SN TR -
Elisenbrunnen H, 2®
Abfahrten in Richtung; ¢
BT

24 - 4353
csnmesunfspnp'ksﬁ's

Software Systems
are everywhere!

- ORO |
| M'lllm‘

; V ‘Fﬁ'—:‘
. »_ v .

Software Failures
are everywhere!

stunning. Breakthrough. Entertaining.

P TouchSmart PC and Microsoft Windows Vista deliver you a PC
“xpenence designed to fit wherever life happens,

-ymmhu‘nhm., m ‘ m

. g - iy N -
it oen _
N ‘ '.mmm
- -

r :
. r ‘.:'n’-' ‘,?‘..».- Teen v my 100 wege
“ . ‘ '
e, " Mo .
: J Lid
‘ .
- -ty n.&m.
¥ '.

' : LAY .
R

Evening Run

Distance Pace

308,569.20 mi 0Os /mi

This activity is christopher's longest
4 runon Strava!

Software Failures
are everywhere!

Loading..

How to prevent such failures?

System Model System Property

IR - 1T V- s e
q N BRAE o & by
& R - 7
. /4
PS L. . - N
* ‘ B, -
" h

N
o ®

Model Checking ¢§

System Model System Property

A AR e)
q =0T b
, P < 5 -
Ro, oW
® 2 iy -

N
o ®

Model Checking ¢§

Scalabl Algorithms
* Graph Theory,
* Automata Theory,

* Logics,

Model Checking - Example

* Model: Two processes with a shared semaphore y
» Each process 1 performs either noncritical
actions n;, waits w;, or performs critical actions c;

Model Checking - Example

* Model: Two processes with a shared semaphore y
» Each process 1 performs either noncritical
actions n;, waits w;, or performs critical actions c;

* Properties:

+ aQ(c; A cy)

"do not each a state in which both
processes are in their critical section

Model Checking - Example

* Model: Two processes with a shared semaphore y
» Each process 1 performs either noncritical
actions n;, waits w;, or performs critical actions c;

* Properties:

.« ey A cy) ‘

"do not each a state in which both
processes are in their critical section

Model Checking - Example

* Model: Two processes with a shared semaphore y
» Each process 1 performs either noncritical
actions n;, waits w;, or performs critical actions c;

* Properties:

.« ey A cy) ‘

"do not each a state in which both
processes are in their critical section

"if process 1 waits infinitely often,
it infinitely often enters its
critical section”

Model Checking - Example

* Model: Two processes with a shared semaphore y
» Each process 1 performs either noncritical
actions n;, waits w;, or performs critical actions c;

* Properties:

.« ey A cy) ‘

"do not each a state in which both
processes are in their critical section

"if process 1 waits infinitely often,

it infinitely often enters its
critical section”

Objectives of this Seminar

* Independent understanding of a scientific research article
» Describe the problem(s) considered in the article and the necessary background
* EXxplain relevant research results using an adequate level of detail

* Acquire, read, and understand related literature

Write a report and give an oral presentation covering the above points

* Assume fellow students as target audience

Requirements on Report

* |Independent writing of a report of 12 - 15 pages
* Font size: 12pt with "standard” page layout (LaTeX template on website)
* Do not stretch the content, e.g., with overly sized figures

* First milestone: detailed outline + one page of content
* Provide overview of structure (section headers, main definitions/theorems)
* Be specific — "71. Introduction / 2. Main part/ 3. Conclusions" is not enough!
* Also write one page of actual content (in a main part of the report)

« Complete and correctly cited set of references to all consulted literature
* Plagiarism: taking text blocks (from literature or web) without source indication
causes immediate exclusion from this seminar

* Correct spelling and grammar is required; use german or english
* More than 10 errors per page lead to abortion of correction

Requirements on Talk

* Total duration: 30 minutes (25 minutes presentation time + 5 minutes for Q&A)
* Finish in time — Overtime is bad

* Focus your talk on the audience, abstract away from detalils as necessary
* Descriptive slides (LaTeX template on website, can also use other software)
< 15 lines of text per slide,
* use (base) colours in a useful manner
 number your slides

* Correct spelling! (German or English)

* Prepare for expected questions, e.g., with backup slides

Soft Requirements and Hints

* (Get an understanding of the practical and theoretical(!) aspects of the article
 Reminder: this is a seminar in theoretical computer science

* Find the right level of detalil
* Your report and talk should be self-contained and understandable by people not
familiar with the original article
* Focus on core ideas, omit too specific details (e.g., related work or optimisations)
* Provide more extensive explanations, examples

* Discuss contents / ideas / problems with your supervisor
* Contact them on time, prepare the meetings

 Take your time
* Seminar yields 4 credit points
» Officially, this translates to around 4 * 30 = 120 hours of work
* Do not expect to write the report / prepare the talk in a single day ... 10

Literature

 See references in research article
* For general background:

 Baler & Katoen:
Principles of Model Checking

* Model Checking Lecture
(approach me if you want Moodle access)

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

11

Important Dates

15.04.2024, 10:30: Topic preferences due (Monday); see last slide
06.05.2024: Detailed outline and one page of content due
10.06.2024: Full report due

08.07.2024: Presentation slides due

15.07. to 19.07.2024: Seminar talks (precise date will be announced soon)

12

Withdrawal

* You have up to three weeks to refrain from participating in this seminar

» Later cancellation (by you or by us) causes a not passed for this seminar and
reduces your (three) tries by one.

Missing a deadline causes immediate exclusion from the seminar

Please notify us if you decide to quit

13

Topics

Model Checking Strategies from Synthesis over Finite Traces

Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y., Wells, A. (2023).

Abstract. The innovations in reactive synthesis from Linear Temporal
Logics over finite traces (LTLf) will be amplified by the ability to verify
the correctness of the strategies generated by LTLf synthesis tools. This
motivates our work on LTLf model checking. LTLf model checking, how-
ever, is not straightforward. The strategies generated by LTLf synthesis
may be represented using terminating transducers or non-terminating
transducers where executions are of finite-but-unbounded length or infi-
nite length, respectively. For synthesis, there is no evidence that one type
of transducer is better than the other since they both demonstrate the
same complexity and similar algorithms.

In this work, we show that for model checking, the two types of
transducers are fundamentally different. Our central result is that LTLf
model checking of non-terminating transducers is exponentially harder
than that of terminating transducers. We show that the problems are
EXPSPACE-complete and PSPACE-complete, respectively. Hence, consid-
ering the feasibility of verification, LTLf synthesis tools should synthesize
terminating transducers. This is, to the best of our knowledge, the first
evidence to use one transducer over the other in LTLf synthesis.

 Considers LTLf: LTL over finite traces

@ :=true | false | a € Prop | = | 01 A o | X | 01 Uwps

* Automata & Complexity Theory

LTL

LTLf

Non-deterministic Automata

(NBA) Exponential

(NFA) Exponential

Satisfiability

PSPACE-complete [28]

PSPACE-complete [14]

Synthesis

2EXPTIME-complete

25

2EXPTIME-complete [13]

Model Checking (NT)

PSPACE-complete [33]

EXPSPACE-complete (New!)

Model Checking (T)

Undefined

PSPACE-complete (New!)

15

Algorithms for Model Checking HyperLTL and HyperCTL

Finkbeiner, B., Rabe, M.N., Sanchez, C. (2015).

* HyperLTL/HyperCTL allow to specify
Abstract. We present an automata-based algorithm for checking finite re|atIOnS over eXGCUtIOnS Of the

state systems for hyperproperties specified in HyperLTL and HyperCTL~*.
For the alternation-free fragments of HyperLTL and HyperCTL™ the SyStem
automaton construction allows us to leverage existing model checking
technology. Along several case studies, we demonstrate that the approach
enables the verification of real hardware designs for properties that could
not be checked before. We study information flow properties of an I12C
bus master, the symmetric access to a shared resource in a mutual exclu-
sion protocol, and the functional correctness of encoders and decoders for
error resistant codes.

» Example: If paths 7 and 7’ only differ
HyperLTL and HyperCTL* extend the standard temporal logics LTL and In h, they have the sSdme OUtpUt O at

CTL* by quantification over path variables. Their formulas are generated by the

following grammar, where a € AP and 7 ranges over path variables: a” tl Mes / : :
V. .Vr'. (/\ b = zwz) =

p u=true | axr | ¢ | Ve | pAp

i€I\h
| O¢ | U | R | Im. ¢ | Vr. o

16

Correct Probabilistic Model Checking with Floating-Point Arithmetic

Hartmanns, A. (2022)

Abstract. Probabilistic model checking computes probabilities and ex-
pected values related to designated behaviours of interest in Markov
models. As a formal verification approach, it is applied to critical sys-
tems; thus we trust that probabilistic model checkers deliver correct re-
sults. To achieve scalability and performance, however, these tools use
finite-precision floating-point numbers to represent and calculate prob-
abilities and other values. As a consequence, their results are affected
by rounding errors that may accumulate and interact in hard-to-predict
ways. In this paper, we show how to implement fast and correct prob-
abilistic model checking by exploiting the ability of current hardware
to control the direction of rounding in floating-point calculations. We
outline the complications in achieving correct rounding from higher-
level programming languages, describe our implementation as part of
the MODEST T OOLSET’s mcsta model checker, and exemplify the trade-
offs between performance and correctness in an extensive experimental
evaluation across different operating systems and CPU architectures.

 Compute reachability probabilities

* Fixed point theory
* Numerics

17

Jakobsen, A.B., Jargensen, R.S.M., van de Pol, J., Pavlogiannis, A. (2024)

Abstract. The computation of bottom strongly connected components
(BSCCs) is a fundamental task in model checking, as well as in character-
izing the attractors of dynamical systems. As such, symbolic algorithms
for BSCCs have received special attention, and are based on the idea
that the computation of an SCC can be stopped early, as soon as it is
deemed to be non-bottom.

In this paper we introduce PENDANT, a new symbolic algorithm for com-
puting BSCCs which runs in linear symbolic time. In contrast to the stan-
dard approach of escaping non-bottom SCCs, PENDANT aims to start the
computation from nodes that are likely to belong to BSCCs, and thus is
more effective in sidestepping SCCs that are non-bottom. Moreover, we
employ a simple yet powerful deadlock-detection technique, that quickly
identifies singleton BSCCs before the main algorithm is run. Our exper-
imental evaluation on three diverse datasets of 553 models demonstrates
the efficacy of our two methods: PENDANT is decisively faster than the
standard existing algorithm for BSCC computation, while deadlock de-
tection improves the performance of each algorithm significantly.

Fast Symbolic Computation of Bottom SCCs

Compute Bottom Strongly
Connected Components

SCC
50.25
sO D= (s2) BSCC
0i5 0.z§5
BSCC BSCC

Graph theory
Symbolic (BDD) based computations

18

Towards Safe Autonomous Driving: Model Checking a Behavior Planner during
Development

Kénig, L. et al. (2024)

* Practical application of

Abstract. Automated driving functions are among the most critical MOdel CheCk|ng

software components to develop. Before deployment in series vehicles, it

has to be shown that the functions drive safely and in compliance with

traffic rules. Despite the coverage that can be reached with very large _~f_ _

amounts of test drives, corner cases remain possible. Furthermore, the ° Uses State Of the art tOOIS

development is subject to time-to-delivery constraints due to the highly

competitive market, and potential logical errors must be found as early

as possible. We describe an approach to improve the development of an

actual industrial behavior planner for the Automated Driving Alliance “
between Bosch and Cariad. The original process landscape for verifica- |
tion and validation is extended with model checking techniques. The idea o

is to integrate automated extraction mechanisms that, starting from the

C++ code of the planner, generate a higher-level model of the underlying 1206b3 e b2 & lane b3 T
logic. This model, composed in closed loop with expressive environment I cs0 e

descriptions, can be exhaustively analyzed with model checking. This -60 1-40 1-20 0 120 ... distance to ego (m)
results, in case of violations, in traces that can be re-executed in system

simulators to guide the search for errors. The approach was exemplarily

deployed in series development, and successfully found relevant issues in
intermediate versions of the planner at development time.

driving
ﬁl direction _)

19

Linear parallel algorithms to compute strong and branching bisimilarity

Martens, J. et al. (2023)

Abstract

We present the first parallel algorithms that decide strong and branching bisimilarity in linear time. More precisely, if a
transition system has » states, m transitions and |Act| action labels, we introduce an algorithm that decides strong bisimilarity
in O(n + |Act|) time on max(n, m) processors and an algorithm that decides branching bisimilarity in O(n + |Act|) time
using up to max(n?, m, |Act|n) processors.

B,

f ol
 |dentify "equivalent” states m/@

» Graph theory, parallel computing

\

i
o

20

Hitching a Ride to a Lasso: Massively Parallel On-The-Fly LTL Model Checking

Osama, M., Wijs, A. (2024)

Abstract. The need for massively parallel algorithms, suitable to ex-
ploit the computational power of hardware such as graphics processing
units, is ever increasing. In this paper, we propose a new algorithm for
the on-the-fly verification of Linear-Time Temporal Logic (LTL) formu-
lae [45] that is aimed at running on such devices. We prove its correctness
and termination guarantee, and experimentally compare a GPU imple-
mentation with state-of-the-art LTL model checkers. Our new GPU LTL-
checking algorithm is up to 150 x faster on proving the correctness of a
system than LTSMIN running on a 32-core high-end CPU, and is more
economic in using the available memory.

* How to implement LTL Model
Checking w/ GPUs

GPU

CPU
Generic
>[Spot (Iti2tgba) } CUDA code
¢ (Hitchhiking)
LTL Il Model-specific
formula CUDA code (next-
\/\ state functions)

State Space Exploration with on-the-fly Hitchhiking
Thread block Thread block
D0000000000000 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000
0000000000000a |---| 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000
[Shared memory (work tile) J Shared memory (work tile)
A
b $
Global memory (state hash table)

21

Limit-Deterministic Buchi Automata for Linear Temporal Logic

Sickert, S., Esparza, J., Jaax, S., Kretinsky, J. (2016).

Vvv‘

Abstract. Limit-deterministic Biichi automata can replace determinis-
tic Rabin automata in probabilistic model checking algorithms, and can
be significantly smaller. We present a direct construction from an LTL
formula ¢ to a limit-deterministic Biichi automaton. The automaton is
the combination of a non-deterministic component, guessing the set of
eventually true G-subformulas of ¢, and a deterministic component ver-
ifying this guess and using this information to decide on acceptance.
Contrary to the indirect approach of constructing a non-deterministic
automaton for ¢ and then applying a semi-determinisation algorithm,
our translation is compositional and has a clear logical structure. More-
over, due to its special structure, the resulting automaton can be used
not only for qualitative, but also for quantitative verification of MDPs,
using the same model checking algorithm as for deterministic automata.
This allows one to reuse existing efficient implementations of this algo-
rithm without any modification. Our construction yields much smaller
automata for formulas with deep nesting of modal operators and per-
forms at least as well as the existing approaches on general formulas.

e (GGet Buchi Automata from LTL
formulae that are "almost"
deterministic

laB > b
s e 9) ab [0
l ab

[pz . (Fb, (Fb, Fb))] [ps . (tt, (Fb, Fb)>j

U U

b b

22

Fast Dynamic Fault Tree Analysis by Model Checking Techniques

Volk, M., Junges, S., Katoen, J.-P. (2017).

» Create (small) models for dynamic

Abstract—This paper presents a new state-space gener- fault trees
ation approach for dynamic fault trees (DFTs) that exploits SE
several successful reduction techniques from the field of
model checking. The key idea is to aggressively exploit
the DFT structure—detecting symmetries, spurious non-
determinism, and don’t cares. Benchmarks show a gain
of more than two orders of magnitude in terms of state- FW BW
space generation and analysis time. This fast, scalable ap-
proach is complemented by an approximative technique
that determines bounds on DFT measures by a partial state-
space generation. This is shown to yield another order of
magnitude gain while guaranteeing tight error bounds.

_>
d) @ / | 7N T
(b) (¢) (d) (e) (f)

(a) (2) (h) (1)

Selecting your Topic

* Enter the poll in the link you received via emaill
* https://terminplanerd.dfn.de/.........
* Do this until Monday 15.04.2024, 10:30

* We do our best to find a good topic-student assignment
* |t helps when you indicate multiple topics

* Jopic assignment will be announced on Monday

We wish you success and look forward to an enjoyable and high-quality seminar!

24

