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Abstract

Whenever the architecture of a system allows untrusted application programs
to access sensitive information, a technique must be provided to prevent such in-
formation from being “leaked” and becoming available to unauthorised entities.
As a result, information flow control mechanisms are introduced, which allow to
check the design of programs for security leaks and illegal influences of critical
computations based on the system description. However, many information flow
control mechanisms are either imprecise, which results in many false alarms, or
are unable to handle cryptographic operations.

Therefore, in this thesis a method for information flow control based on slic-
ing is introduced for system descriptions that are specified in a MILS (Multiple
Independent Levels of Security) variant of the Abstract Analysis and Design
Language (AADL). The introduction itself is split into two parts: First, a slicing
method for system descriptions without any cryptographic operations is intro-
duced. Secondly, this basic method is extended such that cryptographically-
masked flows can be analysed by taking the “declassifying” effect of cryptogra-
phy into account.





v

Erklärung
Ich versichere hiermit, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht in gleicher oder ähnlicher Form zu Prüfungszwecken vorgelegt habe. Alle ver-
wendeten Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate
wurden als solche gekennzeichnet.

Louis Wachtmeister
Aachen, den 22. August 2016





Contents
1. Introduction 1

2. Preliminaries 3
2.1. Information Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Non-Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Principles of Program Analysis . . . . . . . . . . . . . . . . . . . . . . 6
2.5. Security Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6. An Overview on Related Works . . . . . . . . . . . . . . . . . . . . . . 9

3. The MILS-AADL Language 11
3.1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Slicing AADL Specifications and Non-Interference 17
4.1. Slicing MILS-AADL Specifications . . . . . . . . . . . . . . . . . . . . 17
4.2. The Slicing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3. Non-Interference and Slicing . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4. Security Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Analysing Cryptographically-Masked Flows 37
5.1. Declassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2. Security Levels for Cryptographically-Masked Flows . . . . . . . . . . 39
5.3. Slicing for Cryptographically-Masked Flows . . . . . . . . . . . . . . . 41
5.4. Confidentiality Checking for Cryptographically-Masked Flows . . . . . 43
5.5. Possibilistic Non-Interference . . . . . . . . . . . . . . . . . . . . . . . 45

6. Case Studies 49
6.1. Crypto Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2. Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3. The Limits of this Approach . . . . . . . . . . . . . . . . . . . . . . . . 53

7. Conclusion 55
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A. Additional Examples 59
A.1. Extended Security-Level Computation . . . . . . . . . . . . . . . . . . 59
A.2. System Description for Secure Communication . . . . . . . . . . . . . 59
A.3. Cryptocontroller with Split . . . . . . . . . . . . . . . . . . . . . . . . 61

B. Computation Tables 63
B.1. Leak Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii Contents

B.2. Crypto Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.3. Cryptocontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.4. Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.5. Cryptocontroller with Split . . . . . . . . . . . . . . . . . . . . . . . . 67



1. Introduction
Whenever the architecture of a computer system allows untrusted applications to
access sensitive information, techniques are needed to prevent this information from
being “leaked” and becoming available to unauthorised entities. These techniques are
discussed under the term of computer security and are used to detect covert chan-
nels that expose information that should be kept secret. Eliminating such channels
requires that the information flows between system components of a system archi-
tecture are analysed and illegal flows are detected. Many different approaches in this
area rely on a notion called non-interference, which was first defined by Goguen and
Meseguer in [9]. Non-interference demands that changing secret input parameters
of a system must not effect the public output of this system. Although this notion
of standard non-interference provides satisfactory results for many applications, it is
violated in the presence of cryptographic operations. The main challenge in applica-
tions using cryptography is to distinguish between legitimate “violations” caused by
using (sufficiently strong) encryption mechanisms and unintended information leaks
that expose information that should be kept secret.
One possible solutions was presented by Askarov, Hedin and Sabelfeld who sug-

gested to relax the requirement of non-interference and introduced a form of pos-
sibilistic non-interference for cryptographic operations [2]. In contrast to standard
non-interference, possibilistic non-interference regards the sets of possible outputs of
a system instead of the actual ones. Therefore, non-interference can be recovered
for cryptographic operations, if the possible output sequence is unchanged, and the
encrypted messages are indistinguishable for any attacker without access to the de-
cryption key. Based on the notion of possibilistic non-interference, type systems have
been developed, that can be used to ensure a secure information flow [24]. However,
they suffer from some weaknesses such as an insufficient consideration of encryption
key distributions and insensitivity to control flow.
Therefore, an alternative approach based on slicing is followed in this thesis. In

general, slicing describes a form of static analysis that can be used to determine
(potential) dependencies between the inputs and outputs of system components. As
a result, slicing can be used for various applications, e. g. to analyse information flows
[11] or for improving the efficiency of model checking [18].
To develop this slicing based approach for cryptographically-masked flows, in this

thesis a variant of the AADL (Architecture Analysis & Design Language) called MILS-
AADL [6] is used as system description mechanism. To maintain a reasonable effort,
the MILS-AADL descriptions are restricted to a core subset that is presented in
[24]. Starting from this system description, a static analysis based on slicing is intro-
duced in order to determine which (public) output depends on which (secret) input,
in order to indicate information leaks. After introducing a general approach with-
out cryptographic operations, this analysis is extended such that the declassifying
effect of cryptography and the restoring of dependencies by decryption is taken into
account. This is done by analysing which encryption keys are accessible in which
system component, and which data can possibly be encrypted.
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To discuss these points, the thesis is structured as follows. First of all, the neces-
sary background information is provided. Therefore, Chapter 2 introduces important
principles regarding computer security and explains the already mentioned concepts,
information flow analysis and control, type systems and non-interference in a more
detailed way.
Thereafter, in Chapter 3 a core subset of the MILS-AADL language is introduced

and modified such that it meets the needs of this thesis. In detail, the abstract syntax
and the semantics of this core subset is presented and visualised by introducing a
system description of a cryptographic controller.
After discussing the abstract syntax and semantics of the system description mech-

anism, in Chapter 4 a slicing mechanism for MILS-AADL descriptions is presented
and a connection with a modified notion of non-interference is drawn. Based on this
result, a method to describe and propagate security levels of the input and output
ports is introduced. Finally, Chapter 5 is concluded by a confidentiality checking algo-
rithm for systems without cryptographic operations, which allows to analyse whether
a leak can occur or not using the slicing algorithm.
In Chapter 5 the results for security levels and confidentiality checking are extended

such that the declassifying effect of cryptography and the restoring of dependencies
by decryption is taken into account. Additionally, the concept of declassification is
discussed in the context of possibilistic non-interference.
To visualise the concepts developed in this thesis, in Chapter 6 the algorithm for

confidentiality checking is applied to some case studies. Finally, Chapter 7 concludes
this thesis.



2. Preliminaries

Since a static analysis based on slicing is developed in this thesis, a short overview
on the necessary background information is provided in this section. To analyse and
control the information flow in a security critical system, the concept of information
flow control, mathematical lattices in the function of flow-policy descriptions and the
main principles to program analysis are introduced.

2.1. Information Flow Control

Handling and transmitting sensitive data in software systems demands a mechanism
to ensure that involved system components maintain the confidentiality of the data.
To maintain confidentiality, this mechanism must guarantee that confidential data
cannot leak to public output ports. The standard idea is to protect sensitive data
by restricting the data access to trustworthy components [20]. Unfortunately, it is
unrealistic to assume that every component in a large software system is trustworthy
and will never leak information to other components by error or malicious behaviour.
Consequently, techniques to verify the trustworthiness of a component become es-
sential to prevent unintended information leaks, even under consideration of implicit
information flows, that are not covered in a classical access control.
One of the common techniques to specify end-to-end confidentiality requirements

is to analyse the (possible) information flow, in order to detect illegal flows. During
this analysis information flow-policies are used to express the allowed information
flow between objects. Usually, this is done by introducing security classes, to which
objects are bound by a binding method, and flow relations, which defines the al-
lowed information flow [7, 8, 20]. The information flow-policies are then enforced
by information flow controls, which detect information flows to locations, where the
information flow-policy is violated.
A different task information flow control can follow is to guarantee integrity. In-

tegrity in this case means that critical computations should not be manipulated from
public accessible input ports [11]. While maintaining confidentiality requires that
information is prevented from flowing to inappropriate destinations or outputs, main-
taining integrity requires that information is prevented from flowing from inappro-
priate sources or inputs. It is possible to treat integrity dual to confidentiality and
therefore enforce it by controlling information flows [4, 20].
In this thesis the focus lies on a method for a language-based information flow

control. This means that a textual description of a system, in this case a system
description in a system description language, is analysed to detect information leaks,
while physical side channels are not considered.



4 Chapter 2. Preliminaries

2.2. Lattices
To model security levels and the allowed information flows Dorothy Denning intro-
duced in [7] a lattice model for secure information flow. This model allows to define
relations between different security classes in order to express the allowed information
flow. The underlying mathematical model is the universally bounded lattice, which
can be defined as follows.
First of all, the general lattice is defined, which can be extended to a universally

bounded lattice in a second step.

Definition 2.2.1 (Lattice). An algebraic structure (L,t,u), consisting of a non-
empty set L and two binary operations t,u : L × L → L is called a lattice, if the
following properties are fulfilled for all a, b, c ∈ L

- Commutative property: a t b = b t a and a u b = b u a

- Associative property: (a t b) t c = a t (b t c) and (a u b) u c = a t (b u c)

- Absorption law: (a t b) u a = a and (a u b) t a = a

The operations t and u are called least upper bound and greatest lower bound. There-
fore, every structure guaranteeing that every subset has a least upper bound and a
greatest lower bound can be called a lattice. Using this definition, it is possible to
connect every lattice structure (L,t,u) with a reflexive, antisymmetric and transitive
order relation v on L as follows. For each element a, b ∈ L

- a v b⇔ at b = b, because b is the least upper bound of a and b in this relation.

- a v b ⇔ a u b = a, because a is the greatest lower bound of a and b in this
relation.

Using this connection, a universally bounded lattice can be defined.

Definition 2.2.2 (Universally Bounded Lattice). A structure L = (L,v,t,u,⊥,>)
is called a universally bounded lattice, if it consists of the following elements

- A finite partially ordered set L, with the partial ordering v,

- A least upper bound operator t

- A greatest lower bound operator u

- A minimal element ⊥

- A maximal element >

Note that in some definitions of universally bounded lattices the minimal element
⊥ and the maximal element > are omitted, because their existence follows from the
finiteness of L. However, to simplify the definition for the following chapters, it is
assumed that the maximal and minimal element are defined in the considered lattices.
A flow-policy as defined in [7] is represented as 〈SC,v〉, where SC is a (finite)

set of security classes and v is a flow relation expressing the allowed information
flow between the security classes. Dorothy Denning proved that a flow-policy forms
a lattice, if the flow relation is defined as a reflexive, antisymmetric and transitive
relation and t is a least upper bound operator [7]. Therefore, information flow-policies
can be specified by a lattice L = (L,v,t,u,⊥,>) consisting of the security levels L.
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Example 2.2.1. One of the simplest lattices to imagine is the lattice L = ({L,H},v
,t,u,⊥,>) that consists of only two points. These points represent for instance the
security classes low (L) and high (H) with L v H. The only allowed information flow
is from the lower security class L to the higher security class H, which is represented
as L v H in the flow model. In this lattice L is the minimal element L = ⊥ and H
is the maximal element H = >. Therefore, we get:

- L tH ≡ H

- L uH ≡ L

This example lattice is the basic lattice description of the security levels used in the
following examples of this thesis. The notion of low and high is here just exemplary
for any lattice used as security policy with a lower class low (L) or a higher class high
(H). Therefore, by referring public and private, unclassified and classified or public
and confidential this lattice is meant, but the explicit name of the security classes has
been changed. Principally, it is possible to express more complex lattices. For example
the universal lattice for a simple while language developed by Hunt and Sands allows
to express the program dependencies by taking the powerset of all program variables
as a lattice description [12].

2.3. Non-Interference
A common notion in security related information flow analysis is the notion of non-
interference. Non-interference was first introduced by Goguen and Meseguer in [9]
and focusses on observable behaviour instead of the source code or description of a
computer system. The notion of non-interference requires that changes in confidential
data must not affect the observable behaviour of system elements that can be accessed
by users or objects without the necessary security clearance. In case of data flows
this notion means that confidential data should be prevented from flowing to places
where the defined security policy is violated [20]. In the context of the security
policy defined in Example 2.2.1 this means that a system is secure if it guarantees
that changes of high classified variables or system ports must not cause an publicly
observable behaviour of the system. Typically non-interference is formalised by low-
equivalence relations ∼L that have to be preserved if high-values are changed. For
the two levels low and high this can be defined as

s1 ∼L s2 ⇒ s′1 ∼L s′2

where s1, s2 are two initial system states and s′1, s′2 are two final states after an input
value changed or an event changing the state occured. And the low equivalence of the
resulting states s′1 and s′2 means that all variables classified as L must coincide with
their definition in the initial state. As a result, variations in the high input variables
have no effect on low output variables, because they have to be low equivalent after
the high input variables (or events) are changed. Therefore, a system providing non-
interference assures confidentiality. Additionally, Goguen and Meseguer provided in
[10] an unwinding theorem, which allow a simplified proof of non-interference by
reducing non-interference to several conditions.
Apart from the notion of standard or Goguen-Meseguer non-interference, many dif-

ferent variations have been developed that either extend the notion of non-interference
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or introducing forms of non-interference based on PER relations [21]. For example a
transitive non-interference policy is described in [14], [19] to introduce transitive in-
terference and non-interference relations that describe which data elements of which
security domains are allowed to interfere. To extend them for cryptographic oper-
ations this notion was extended in the same works in order to describe intransitive
interference and non-interference relations that are suitable to describe security do-
mains that may influence each other and places where this policy is allowed to be
broken by intransitivity. This transitive notion of non-interference is used in [11] to
connect sliced program dependency graphs with Goguen-Meseguer non-interference.
A different approach are possibilistic non-interference definitions. Two common

notions are generalized non-interference [17] and restrictiveness or hook-up security
[16, 17]. Both notions were originally introduced for non-deterministic systems, in
which not only a single output for a single input is possible but also a set of possible
outputs for single inputs can be given. In this context, generalized non-interference
implies that the input of a system may not alter the possible outputs of a system,
while restrictiveness implies that the system should respond the same to an input
independently of changes to higher classified inputs that are changed immediately
before [17]. In addition to these advantages concerning non-deterministic systems, a
possibilistic non-interference definition allows a refined argumentation when it comes
to the discussion of cryptographically-masked flows [2]. As for Goguen-Meseguer
non-interference, unwinding theorems are provided for various forms of possibilistic
non-interference definitions in [13] but are not discussed in this thesis.
Based on this general overview, different forms of non-interference are discussed in

the context of slicing and cryptographically-masked flows in Chapter 4.3 and Chapter
5.5. However, this thesis mainly focusses on the general aspects and ideas of non-
interference, while detailed proofs based on unwinding theorems are not provided.

2.4. Principles of Program Analysis
In the literature on Language-Based Information-Flow Security [20] and Flow-Sensi-
tive, Context-Sensitive and Object-Sensitive Information Flow Control [11] the fol-
lowing principles and properties are used to describe the information flow control and
program analysis methods. Any program analysis is subject to several conflicting
requirements:

- Correctness is an essential property of any information flow control analysis. It
describes that the analysis must be able to find any potential security leak that
is present in the system description.

- Precision means that there are as few false alarms as possible. From this prop-
erty follows that the most of the programs condemned by the information flow
control analysis must be insecure.

- Scalability demands that the analysis is able to handle realistic programs with
a reasonable effort.

- Practicability demands that the analysis must be usable with a reasonable ef-
fort. It implies that descriptions for the result of an analysis are provided and
understandable. Additionally, using the analysis must not require a high effort
from the user.
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Unfortunately, achieving all properties at the same time is impossible, because total
precision cannot be achieved while maintaining correctness [11]. Additionally, a higher
precision influences the scalability in a negative way, which leads to the problem that a
precise analysis requires a higher effort while a fast analysis leads to many false alarms
[11]. As a result, it is necessary to follow a conservative approximation, where a few
false alarms are allowed but all security leaks are detected, to achieve correctness. In
addition, it is important to find a good trade-off between scalability and practicability
by developing fast algorithms that allow only a few false alarms.

2.4.1. Sensitivity
As a method to choose between the effort and precision of an analysis, the analysis
is often characterised by the following properties [11]:

- Flow-Sensitivity describes that the order of statement execution is taken into
account. Consequently, the analysis of single statements might lead to a different
result than the analysis of the complete system, because insecure sub-statements
become secure e. g. by changing the output variable to non-sensitive content by
another statement. On the other hand, a flow-insensitive analysis does not take
the order of execution into account. This means that every sub-statement must
be secure, which might result in false alarms.

- Context-Sensitivity means that the procedure calling context is taken into ac-
count. This results in a computation of separate information for different calls
of the same procedure. In contrast to the context-sensitive analysis in a context-
insensitive analysis all call sides of a procedure are merged.

- Object-Sensitivity describes that different objects for the same field (attribute)
of an object are taken into account, whereas in an object-insensitive analysis the
information for a field over all objects is merged to one class.

In general, sensitive analyses are more precise than insensitive ones. However, the
scalability of the process is influenced in a negative way, because sensitive analyses are
more expensive than insensitive ones. As this thesis focusses on system descriptions
and not on object oriented programming languages, the main focus in this thesis lies
on flow-(in)sensitivity.

2.4.2. Covert Channels
Channels are mechanisms used to signal information through a computer system.
Information that is signalled through a channel from the output of one system com-
ponent to another system component’s input causes explicit information flows. In-
formation leakage caused by these explicit flows are easy to imagine, because here
information is transferred directly through channels that are meant to signal informa-
tion. More complicated are information transfers caused by mechanisms that are not
meant for information transfer, called covert channels. In [20] Sebelfeld and Myers
categorise them as follows:

- Implicit flows signal information through the control structure of a program.
E. g. conditions might indicate characteristics of objects through different return
values.
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- Termination channels signal information through the termination behaviour of
a system. For example, an attacker might follow from the non-termination of a
system which loop condition or execution path was chosen.

- Timing channels signal information through the time it takes until an action
(e. g. program termination) occurs. Different program execution paths may
cause different computation times. Therefore, it might be possible for an at-
tacker to guess which program path was executed and therefore access sensitive
information, for example by guessing whether a condition is fulfilled or not or
he might guess whether an entry is part of a database or not by comparing
different search times.

- Probabilistic channels signal information by influencing the probability distribu-
tion of observable outputs. Repeatedly running a computation while observing
the stochastic properties might result in information leaks.

- Resource exhaustion channels signal information by the consumption of shared
resource, such as memory space or CPU usage.

- Power channels signal information through the power consumption of compo-
nents used for the computation.

Which covert channel is problematic for the security of a system highly depends on
the information an attacker can access. For example, power channels and resource
exhaustion channels can only leak information to attackers that have access to in-
formation that reveals the power consumption or the consumption of finite shared
resources. Attackers without access to this information cannot hope to use one of
these covert channels to get sensitive information.
In this thesis the main focus lies on analysing the data flows between system com-

ponents based on the architecture of the system. Therefore, the consideration of
implicit flows caused by the control structure of a system is the most important and
therefore the main focus lies on this channel. Additionally, we claim that attackers
have no hardware access and therefore no access to power or resource consumption
indicators.

2.5. Security Type Systems
Security type systems can be used to enforce information flow-policies [20]. This is
done by attaching security levels to objects, in order to relate them to classes of the
information flow-policy. Introducing type rules allows to enforce confidentiality by
propagating the security levels through the statements, while guaranteeing to catch
illegal information flows [11]. The security levels are either bound statically, which
results in a constant type for each object, or bound dynamically, which allows the
security level of an object to vary depending on its content. The binding method
(static binding or dynamic binding) influences the flow-sensitivity of the analysis,
hence statically bound security types result in a flow-insensitive analysis, whereas
dynamically bound security types may allow a flow-sensitive analysis depending on
the used type rules [12]. The type rules are derivation rules of the form pc ` C,
which means that the program C is typeable in the security context pc. Additionally,
derivation rules of the form pc ` exp : τ are introduced to mean that an expression
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exp has type τ under consideration of the security context pc. The idea behind this
security context pc is to rule out implicit information flows by using it as a program
counter level, which tracks the dependencies of a program counter to ensure that only
variables greater than this program counter are changed by the program C.
Type systems have many advantages: The type based information flow control

is relatively efficient and the structure of type rules aids in a rigorous proof of its
correctness [12]. However, they can be rather imprecise, as many of them are nei-
ther flow-sensitive, context-sensitive nor object-sensitive, such as the type system for
cryptographically-masked information flows used for security type checking in MILS-
AADL specifications presented in [24]. There are type systems that are flow-sensitive
like the type system by Hunt and Sands [12], but most of them are only suited for
simple while-languages.

2.6. An Overview on Related Works
One of the first information flow control mechanisms is the static program analysis
developed by Denning and Denning [8]. This analysis is used to determine, whether
the information flow properties of a specific program satisfy a confidentiality police
or not. Later, Volpano et. al. extended this analysis to a type system and showed
that programs typeable in their type system are secure according to the notion of
non-interference [25]. Non-interference demands that changing secret input param-
eters must not effect the value of the public output parameters of a system [9]. A
general overview on type systems and other language based approaches is given in
[20]. Based on the flow-insensitive type system by Volpano et. al. Hunt and Sands
developed a flow-sensitive approach [12], which is dual to the analysis of program
variable independence by Amtoft and Banerjee who use a Hoare-like logic [1]. How-
ever, these approaches are not suited for a practical use or a system analysis, because
they are based on simple while languages. Therefore, Hammer et. al. introduced
a flow-sensitive, context-sensitive an object-sensitive information flow control mecha-
nism based on program dependency graphs (for Java Bytecode) [11]. The results on
slicing and declassification are summarised in Chapter 5. Despite of the differences
between the flow-sensitive type system developed by Hunt and Sands and the slicing
approach developed by Hammer et. al., Heiko Mantel and Henning Sudbrock showed
in [15] that type based and slicing based information flow analyses must not differ in
their precision.
However, these approaches all suffer from the weakness that encrypted informa-

tion flows or data that is released after statistical anonymisation cannot be handled,
because the non-interference criterion is to strong. To solve these problems differ-
ent approaches for declassification were introduced, which allow data elements to be
released under specific conditions. A general overview on the dimensions and prin-
ciples for declassification are given in [22] and summarised in this thesis in Chapter
5.1. To handle cryptographic operations Askarov, Hedin and Sabelfeld introduced a
method to analyse cryptographically-masked flows, using the notion of possibilistic
non-interference [2]. This was extended to a type system for MILS-AADL Specifica-
tions in [24].
The approach developed in this thesis is related to the type system developed in

[24], as the thesis aims to introduce a flow-sensitive information flow control based on
slicing. The main ideas of the slicing approach are inspired by [11] and based on the
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slicing approach introduced in [18].



3. The MILS-AADL Language
Since determining, whether (public) output ports of a given system description depend
on (secret) input ports, is one of the main tasks of the analysis developed in this
thesis, a suitable system description formalism is needed. Therefore, a MILS (Multiple
Independent Levels of Security) variant of the AADL language, called MILS-AADL
[6], is used to describe these systems. This specification language has been developed
within the D-MILS (Distributed-MILS) project and is intended to present the model-
based design of D-MILS systems to the user. It has the following key features:

- Considered systems are hierarchically organized into components.

- The component architecture and its interaction is expressed by connections
between data and event ports.

- The internal behaviour is described.

- Security-related mechanism such as encryption and authentication are provided.

3.1. Syntax
Instead of the full MILS-AADL language, which is presented in [6], in this thesis a
simplified version of the language is used. The syntax and semantics of this language
are based on the core subset of MILS-AADL Kevin van der Pol and Thomas Noll
used in [24] as system description mechanism for a type system based analysis for
cryptographically-masked information flows. The general syntax of this core subset
of MILS-AADL can be found in Table 3.1. The main difference to the core subset
presented in [24] is in the additional consideration of data flows and a different method
for introducing keys and their distribution. In Table 3.1 n is a numerical value, x is
a variable name, k a named key pair, pe an event port, pd a data port, s the name of
a system and m a mode name.
One of the advantages of MILS-AADL is the combination of the architecture de-

scription and the behavioural description of a system. The architecture of the system
is described by specifying hierarchies of (sub)systems and connections between their
input and output ports. The hierarchical description of different system components
is recursive, which means that each of the described subsystems may also contain
hierarchically ordered subsystems, connected by input and output ports. To define
a starting point, the outermost or highest system in this hierarchy is called the root
system. The allowed communication of system components is described by event ports
and data ports. Event ports are able to trigger changes in the behaviour of a system,
whereas data ports are used to transmit or receive data values to or from the environ-
ment. Connections between ports can be distinguished into event port connections
and data flows. Event port connections describe connections between event ports,
whereas connections between data ports are called data flows. A connection between
event and data ports is not intended and therefore not provided.



12 Chapter 3. The MILS-AADL Language

Case Grammar
Type τ ::= int | bool | enc τ | (τ, . . . , τ)
Key Pair κ ::= kp : key pair
Key K ::= k : key pub(kp)|key priv(kp)|
Expression e ::= n | x | e⊕ e | (e, . . . , e) | e[n]
System S ::= system s(S∗ P ∗ C∗ V ∗ M∗ T ∗)
Event Port PE ::= pe : (in | out)(event)
Data Port PD ::= pd : (in | out)(data τ e)
Port P ::= PE |PD

Event Port Connection C ::= connection([s.]pe, [s.]pe)
Variable V ::= x : τ e
Data Flow F ::= flow([s.]pd->[s.]pd)
Mode M ::= m : [initial] mode
Transition T ::= m -[[p] [when e] [then x := e]]-> m′

Table 3.1.: MILS-AADL syntax

The relevant behaviour of the system is the communication between different sub-
systems of the root system via system ports. This system behaviour becomes observ-
able by considering the input and output ports of a system. To model the possible
communication behaviour of a system, an automaton with modes and transitions is
introduced. In this description model, modes represent the current system state,
whereas transitions serve to change the system state and to describe the behaviour
of the system in this process. The transitions of the description automaton can be
labelled with the following elements in order to model the requirements that are nec-
essary to change the mode and the effect taking this transition has to the output
ports.

- The event is given by an event port p and describes the event, which is consumed
or produced, depending on the port definition (input/output-port). If this label
is omitted, no port event will be consumed or produced.

- The guard expression restricts the transitions that can be taken at a specific
system state, by only allowing transitions to be taken, whose guard expression
evaluate to true. Omitted guard expressions are considered as true.

- In the full version of MILS-AADL a list of effects x1 := e1; . . . ;xn := en de-
scribes the assignments that result from taking the transition. In this process,
expressions are evaluated in the source mode and assigned simultaneously to
these variables. An omitted effect results in unchanged variables. To simplify
the analysis developed in this thesis, only one effect per transition will be al-
lowed. Therefore, to realise multiple effects, new modes and transitions must
be added to perform each effect in a single transition.

According to the specification of full MILS-AADL it is necessary to define default
values for the data ports of subcomponents except those of type (private or public)
key with matching data types (H-5 - H-7) [6, p. 24]. To define these default values
the definition of data ports PD ::= (in | out)data τ e the expression e is used
additionally to the type τ .
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With respect to cryptographic operations and security, MILS-AADL provides se-
curity primitives in its expression language. These primitives allow to encrypt or sign
values by asymmetric or symmetric encryption and authentication mechanisms. In
this thesis only asymmetric cryptography is considered. This is possible, because in
the context of confidentiality analysis, symmetric cryptographic operations can be
treated the same as asymmetric cryptography by classifying the public keys as con-
fidential and set them to the value of the private keys. To declare key pairs, global
constants of type κ are defined on top level. The keys itself are defined as private or
public subkeys in a subcomponent. This definition allows to define a static key pool
on the one hand, while a dynamic distribution of the keys is guaranteed on the other
hand. For a key pair κ a corresponding public key k and private key k′ can be used for
cryptographic operations as follows. The encrypt function encrypt(m, k) takes a mes-
sage m of type τ and a public key k : key as input and returns a ciphertext with type
enc τ . To decrypt the ciphertexts the function decrypt(c, k′) : τ is introduced. This
function takes a ciphertext c : enc τ and a private key k′ : key and returns the original
message m, if k′ is the corresponding private key to the public key k used for encryp-
tion. The function leads to a deadlock in the statement that contains the decryption
expression, if k′ does not match to k. Since a secure forwarding of encrypted mes-
sages becomes utterly impossible, if encrypted messages are readable for any attacker
without knowing the private key, it is inevitable to assume that a message encrypted
with a senders public key can only be decrypted by possessors of the matching pri-
vate key. To simplify the method developed in this thesis it is assumed that only one
encryption operation is allowed per transition. This means that transitions of the
form m -[then x:= encrypt(encrypt(y,k),k’)]–> m’ must be adapted such that
an intermediate mode and a unused variable is introduced such that this transition
can be split into two encryption steps. This reformulation results in the transitions m
-[then z:= encrypt(y,k)]–> n and n -[then x:= encrypt(z,k’)]–> m’ where
n is a new mode and z a unused variable. The same principle can be applied for
decryption.
As in [24] the other security primitives, signing and hashing, that are provided

in full MILS-AADL are not discussed in this thesis. For signing, this is because
signing can be discussed under the term of integrity, which can be seen as fully
dual to confidentiality (see Section 2.1). Therefore, an analysis that allows to check
for confidentiality can also be used to check for integrity after minor modifications.
For hashing, this is because information can be leaked by guessing the content of a
hashed value and check whether its guess was correct. Even under consideration that
this guess will be incorrect in most cases, which makes hashing secure in quantitative
settings, this information leak is generally possible and therefore hashing is not secure
in a qualitative setting.

Example 3.1.1. As an example, we want to consider a modified cryptographic con-
troller system, which is presented in its original form in [24]. The cryptographic
controller gets a low classified header and a high classified payload as input. In the
next step, the header is transmitted to a merge component unchanged by a bypass
component, whereas the payload is first encrypted and then transmitted to the merge
component. The header and the encrypted payload, which is now considered as low,
are merged in the merge component and released to a public output. This crypto-
graphic controller system can be used to encrypt confidential data before releasing it
to public outputs, to maintain confidentiality of the payload.
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m0start

then outpayload:=encrypt(inpayload,k)

Figure 3.1.: The automaton describing the crypto component

system cryptocontroller (
header : in data int 0
payload : in data int 0
outframe : out data (int ,enc int) (0, encrypt (0, k0))
mykeys : key pair
m0: initial mode
system bypass (

inheader : in data int 0
outheader : out data int 0

m0: initial mode
m0 -[then outheader := inheader ]-> m0

)
system crypto (

inpayload : in data int 0
outpayload : out data enc int encrypt (0,k0)
k: keay pub( mykeys )
m0: initial mode
m0 -[then outpayload := encrypt (inpayload ,k)]->m0

)
system merge (

header : in data int 0
payload : in data enc int encrypt (0,k0)
frame : out data (int ,enc int) (0, encrypt (0,k0))
m0: initial mode
m0 -[then frame :=( header , payload )]-> m0

)
flow header -> bypass . inheader
flow payload -> crypto . inpayload
flow bypass . outheader -> merge . header
flow crypto . outheader -> merge . payload
flow merge . frame -> outframe

)

In this example the root system cryptocontroller is hierarchically ordered into the
subsystems bypass, crypto and merge. To visualize the modes we represent them
as circles and transitions as arrows between the circles. The arrows are labelled
with event, guard and effects (if not omitted). As an example the crypto systems
behaviour is represented in the automata in Figure 3.1. All ports with type int of
this cryptographic controller component have the default value 0. The default key is
defined as k0.

3.2. Semantics
Instead of the semantics of full MILS-AADL, which are defined in [5], in this work the
presented semantics are directly reduced to labelled transition systems (LTS), which
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is done analogous to [24]. In this reduced version each component has its own LTS to
describe its behaviour. The states of the labelled transition system are given by the
modes of all systems, their subsystems and the values of the data ports and variables
[24]. Formally this state space S is defined by the cartesian product of the states and
the possible values of the data ports. The initial state of this system S0 is defined by
the initial mode m0 of the considered component and the default values of the data
ports. Transitions of the LTS are given by the transitions between these modes and
by changes in input data ports and variables. The transitions can either be internal
or external. External transitions are labelled with the corresponding event, whereas
internal transitions are unlabelled. To respect the transition guards, mode transitions
are only enabled in the LTS if and only if the guard enables to true and at least one
of the following conditions is fulfilled.

1. There is no event. In this case the transition is an internal transition, which
can always be activated, if the guard expression evaluates to true.

2. The event is an input event port and the system is the root system. In this
case, the input event comes from the environment of the root system.

3. The event is an input event port, which is connected to another systems out-
put event port and both involved systems simultaneously take a transition on
this event. In these cases two connected systems influence each other by their
input/output-behaviour.

4. The event is an output port, which is connected to another systems input port.
In this case also two connected systems influence each other.

As a result, all other events that do not satisfy the guard expression or one of the
conditions above are ignored by the LTS. To model the influence of data ports, input
data ports are considered to be controlled by the environment and can change their
value at any time, whereas output data ports only change their value in an effect.
Input events ports provide events that are able to trigger the transition labelled with
this event. Output event ports emit such events whenever a transition is taken that
has this port as event.
Connections between data ports are considered to transfer data instantaneously.

This is also modelled in the transition that changes the data value in the source end.
The same applies for event port connections.

Example 3.2.1. The semantics of the crypto component of the cryptographic con-
troller presented in Example 3.1.1 can be described by the following LTS. The state
space is defined as the cartesian product of the mode and the possible input and output
values, as well ass all possible variable assignments. In this example, the carthesian
product describing the state space is the carthesian product of the singleton state
{m0}, the integer values i and o for the values of the input data port inheader and
outheader and the keys k that are used for encryption. As a simplification, the keys
are considered to be taken from the set of keys K. Mathematically the set of states
S can be described as:

S = {m0} × Z× {encrypt(z,k)|z ∈ Z, k ∈ K} ×K

Additionally, the labelled transition system has an initial mode, which can be de-
fined as the initial mode of the component in combination with the default values in
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the declaration. In this example this leads to the following initial state s0:

s0 = (m0, 0, encrypt(0, k0), k0)

There are two possible cases for transitions whose union can be defined as the
transition relation →. In the first case, only the input values change, whereas all
other values stay the same. This case leads to transitions of the form

(m, i, o, k) i,i′

−−→ (m, i′, o, k) (3.1)

for mode a m, input value i, new input value i′, output o and key value k. In the
second case, a transition is taken spontaneously, which would lead to an update of
the output port o to the encryption of the input value i. This case leads to transitions
of the form

(m0, i, o, k)→ (m0, i, encrypt(i,k), k)



4. Slicing AADL Specifications and
Non-Interference

To control the information flow of programs Hammer and Snelting introduced in [11]
an information flow control based on slicing. In contrast to type systems, informa-
tion flow controls based on slicing have the advantage that they are inherently flow-
sensitive. However, their approach is based on program dependency graphs (PDG)
and not intended to be used for MILS-AADL specifications. Therefore, a different
slicing algorithm is extended in this thesis such that it can be used as information
flow control for MILS-AADL specifications. The main slicing algorithm used in this
thesis was developed by Odenbrett, Nguyen and Noll [18] and is originally used for
model-checking of AADL-Specifications. In this chapter this basic slicing algorithm
is extended such that it can be used for the core subset of MILS-AADL defined in
Chapter 3. Additionally, the concept of slicing is connected to the notion of non-
interference, which is used to describe that changing secret input parameters must
not effect the value of public output parameters. Since standard non-interference is
often connected with a definition of different security levels, functions to model se-
curity levels are introduced, which maintain non-interference. However, we will see
that this method based on the security concept non-interference is not able to handle
cryptographic operations. Therefore, this approach is again extended in Chapter 5
such that it can handle cryptographically-masked flows.

4.1. Slicing MILS-AADL Specifications
Odenbrett, Nguyen and Noll introduced in [18] a slicing algorithm for AADL specifi-
cations that can be used for model checking. For a given specification S and a slicing
criterion ϕ the algorithm reduces the original specification to a smaller specification
Sϕ

sliced. The principle idea is thereby to reduce the original system description S to
the (potentially) smaller system description Sϕ

sliced, by only maintaining the parts of
the system description influencing the slicing criterion ϕ. For information flow control
this property can be used, because the resulting system Sϕ

sliced must only contain ele-
ments influencing the slicing criterion. Therefore, the information flow to the output
ports can be analysed by slicing the system specification S with respect to the output
ports. In the resulting system, all maintaining parts of the system description have
a direct influence on the interesting port and thus can be used for a further analysis
respecting security levels or non-interference. This consideration is important as out-
puts with a low security level should not depend on inputs having a higher security
level.
In order to use the algorithm presented in [18] as slicing algorithm for information

flow control, the initial values must be varied slightly. Instead of a property ϕ, the
sets ID and IE of interesting data elements and events are used as slicing criterion.
In addition to these sets of data elements or events, a set of modes is used, which
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is assumed to be initially empty. The slicing criterion serves to describe the initially
interesting parts of a specification that must not be sliced away by the algorithm.
Therefore, the set ID must contain the initially interesting data elements and the
set IE must contain the initially interesting events and finally IM contains the in-
teresting modes. A slicing for mode dependencies is not intended, and therefore the
set containing the initial modes is assumed to be the empty set in most applications.
Starting from these initial sets, all other aspects that have a direct or indirect influence
on them are added. The step before is iterated until a fixpoint is reached in order
to get all dependences. The termination of this algorithm is obviously guaranteed
for finite MILS-AADL specifications but in the worst case all parts of the program
become interesting. Interestingness is thereby defined as influencing the elements in
the slicing criterion. The special aspects to identify interesting elements and a more
detailed overview on the closure rules developed in [18] are provided in the following
paragraphs.

- Identifying Interesting Data Elements: To cover explicit data flows all data ele-
ments that are used to calculate interesting data elements have to be considered
as interesting, too. In case of assignments within transition effects, this is the
right hand side of the assignment. In case of data flows, the source of an in-
teresting element must also be considered as interesting element. In addition
to these explicit flows, also the implicit information flows caused by the control
structure of the specification have to be considered. Therefore, data elements
that are used in the transition guard have to be kept in the sliced specification,
because evaluating this expression determines if the transition can be taken.

- Identifying Interesting Events: Unlike sequential programs, the components of
a MILS-AADL specifications are able to synchronously communicate by send-
ing and receiving events. Regarding the possible forwarding of events via this
bidirectional event communication, all events connected to interesting events in
any direction must be considered as interesting, too.

- Identifying Interesting Modes: The algorithm presented in [18] is not designed
to identify interesting modes, but is focussed on the elimination of uninteresting
modes. Most of the aspects analysed for (un)interestingness are based on the
transition relation, which is not considered directly in the slicing algorithm. For
example, interesting transitions change the values of interesting data elements,
have interesting triggers, or lead into interesting modes. Furthermore, transi-
tions with interesting triggers, guards and source modes have to be considered
as interesting. To take this important property into account without regard-
ing these interesting transitions alone, modes are made interesting and the in
and outgoing transitions become indirectly interesting, too. This is done by
regarding modes with one of the following properties in the iteration.
– Source modes of transitions, which change interesting data elements.
– Modes that are active in data flows or an interesting event port connection.
– Source modes of transitions with interesting events as triggers.

To respect the reachability, every predecessor of an interesting mode has to be
considered as interesting, too.

After introducing the term of interestingness it is necessary to define, which effects
are interesting with respect to information flow control. Resulting from the definition
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of a information flow-policy, data leaks can only be caused by output ports that
are influenced by elements with a higher security clearance. Therefore, the initially
interesting data elements should either be the data elements that are released to
public output ports, or data elements that are considered as secret and not meant
to be released to unauthorised entities. Releasing information in this case means
that information is signalled by an output port which allows to deduce aspects of the
information or the information itself. Based on this idea in Section 4.4.2 a theorem
is provided, which allows to combine the dependencies found by a slicing algorithm
with the security levels of data elements and event ports. In addition to security
leaks revealing any information about data elements or event triggers, it is allowed to
define a set of initially interesting modes to simplify the flow equations introduced in
chapter 4.4.

4.2. The Slicing Algorithm
The modified slicing algorithm based on the algorithm from [18] is presented in Al-
gorithm 4.1. The set Dat is used to describe data elements, Evt describes a set of
events and Mod is a set of modes that occur in the specification S. To model transi-
tions the relation Trn contains a set of transitions of the form m

e,g,f−−−→ m′ for mode
m,m′ ∈Mod, a trigger e ∈ Evt, a guard expression g over data elements and a list of
assignments f . Data flows of the form a d are collected in the set Flw. Data flows
in this case are either flow connections between data ports or direct assignments. In
both cases, they are described by the list of effects in the transition. Finally, con-
nections between event ports denoted as e  e′ for two event ports e, e′ ∈ Evt are
collected in the set Con. The result of the algorithm are the three sets D,E,M , where
D contains the interesting data elements, E contains the interesting events and M
contains the interesting modes. This means that for confidentiality three sets ID, IE

and IM of interesting data elements, events and modes are the input of the algorithm,
whereas the final sets D, E and M contain all data elements, events and modes that
may influence these interesting data elements.
Algorithm 4.1 calculates the so called backward slice. It is called backward, because

all modes, events and data elements that are tracked in this analysis are calculated
starting from the resulting element going backward in the system description. During
an information flow analysis based on slicing, the order of statements has an influence
on the result, because the starting point of S is given and the dependencies are tracked
backwards step by step. Therefore, an information flow control based on slicing is
flow-sensitive.
To simplify the definitions made in the following sections, the functions D(x), E(x)

and M(x) are introduced. For a singleton set {x} the resulting sets contain the data
elements, events or modes generated by Algorithm 4.1 using {x} as initial set for data
elements, events or modes depending on the type of x.

4.3. Non-Interference and Slicing
In [11] and [23] Snelting et. al. mention that for program dependency graphs, a node
a satisfies the Goguen-Meseguer non-interference criterion, if the security domains
of all elements c in the backward slice of a are allowed to interfere with the security
domain of a. The definition of allowed and disallowed interference is thereby based on
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Algorithm 4.1 The Slicing Algorithm

procedure ca l cu la t eBackwardS l i c e (S ,ID ,IE ,IM )
input :
S : A System de s c r i p t i o n
ID : The i n i t i a l l y i n t e r e s t i n g Data Elements
IE : The i n i t i a l l y i n t e r e s t i n g Events
IM : The i n i t i a l l y i n t e r e s t i n g Modes

output :
D : A l l Data Elements depending on ID

E : A l l Events depending on IE

M : A l l Modes depending on IM

begin
/∗ I n i t i a l i s a t i o n ∗/
D := ID ;
E := IE ;
M := IM ;
/∗ Fixpoint i t e r a t i o n ∗/
repeat

/∗ Trans i t i on s that a f f e c t i n t e r e s t i n g data e lements
or have i n t e r e s t i n g t r i g g e r s ∗/

for a l l m
e,g,f−−−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d i n a c t i v e in m but a c t i v e in m′

or e ∈ E do
M := M ∪{m} ;

/∗ Trans i t i on s from or to i n t e r e s t i n g modes ∗/
for a l l m

e,g,f−−−→ m′ ∈ Trn with m ∈M or m′ ∈M do
D := D ∪ {d ∈ Dat | g reads d }

∪ {d ∈ Dat | f updates some d′ ∈ D read ing d} ;
E := E ∪ {e} ;
M := M ∪ {m} ;

/∗ Data Flows to i n t e r e s t i n g data port ∗/
for a l l a d ∈ Flw with d ∈ D do

D := D ∪ {d′ ∈ Dat | a reads d′ } ;
M := M ∪ {m ∈Mod | d := a a c t i v e in m} ;

/∗ Connections i nvo l v i ng i n t e r e s t i n g event por t s ∗/
for a l l e e′ ∈ Con with e′ ∈ E do

E := E ∪ {e, e′} ;
M := M ∪ {m ∈Mod | e e′ a c t i v e in m} ;

until nothing changes ;
end
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a transitive non-interference definition introduced and explained in [23] and [14]. The
theorem they introduced is necessary to connect the (in)dependence that is analysed
using program slicing with non-interference. However, a simple extension of this
theorem for MILS-AADL specifications that are sliced with the algorithm presented
in Section 4.2 is not straight forward, because the program dependency graphs used
by Hammer and Snelting differ from the MILS-AADL specifications analysed in this
thesis. The main difference is the slicing of automata in the system description,
leading to problems concerning non-determinism and different kinds of dependencies
(data-dependencies, event-dependencies and mode-dependencies). Nevertheless, it is
possible to introduce a similar theorem, allowing to connect non-interference with the
slicing technique introduced in Section 4.2, by adapting the non-interference definition
such that it is usable for MILS-AADL specifications and different sets containing the
data elements, events and modes influencing the slicing criterion.
As the principal idea of slicing is to remove all parts of the program that do not influ-

ence the behaviour of interest [18], a sliced system specification only contains parts of
a program that influence the result. In case of Goguen-Meseguer non-interference this
means that all data elements, events and modes in the backward slice of an observable
element must not have a higher security level, because their behaviour has an influ-
ence on an observable output. For the transitive Goguen-Meseguer non-interference
definition used in [11] this means that an influence between the security domain of
the observable element and all elements in its backward slice must be related in a
non-interference relation. In the standard interpretation of Goguen-Meseguer non-
interference it is assumed that there is an output function describing the reaction of
the system depending on the input and that the system is describable by a deter-
ministic state machine. As a result, the Goguen-Meseguer non-interference criterion
is restricted to systems, where an input sequence is connected with a single output
sequence. Since the automata used to describe the behaviour of a component can be
non-deterministic, not every output is connected with specific inputs that will defi-
nitely influence the output behaviour. However, it is possible to solve this problem
by considering all elements that possibly influence a specific output of the system
instead. The inputs possibly interfering with a specific output are given by the inputs
determining, which transitions are possibly taken, or by the input values used for
computations leading to the output. As these inputs are influencing the output of
the system, the sliced system description gained by using Algorithm 4.1 using the
output port as input contains all elements that are possibly influencing the output.
In other words, we can say that Algorithm 4.1 searches all data elements, events and
modes on a trace τ influencing the slicing criterion. Therefore, the elements in the
backward-slice of an observable element are describing all elements possibly influ-
encing the output of the system. To express this mathematically, we introduce the
relation I(x, y), which expresses that element x possibly has an influence on element y
and the function σ(x) describing the security level of the element x. This security level
is a point in a lattice as described in Chapter 2.2 and further discussed in the next
section of this chapter. With this notation it is possible to introduce non-interference
as follows.

Definition 4.3.1 (Non-Interference). Let S be a system description and a be a data
or event output port in S. If all elements x possibly influencing a, denoted by I(x, a)
have a lower or equal security level σ(x) v σ(a), we say that the non-interference
criterion is satisfied for a.
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In another way, we can say that a non-interference property for an element a is
fulfilled, if all elements having an influence on a (or interfere with a) have a lower
or equal security level. According to this non-interference notion, a system is called
secure, if the non-interference criterion is satisfied for all output ports. Principally,
this definition of the non-interference criterion is quite similar to the definition used
in [11] and [9] but instead of only allowing deterministic system descriptions here,
non-deterministic system descriptions are also allowed by considering sets of possible
outputs instead of single outputs.
With this definition of non-interference it is possible to draw a connection between

a MILS-AADL system description and non-interference by providing the following
theorem:

Theorem 4.3.1. Let a be a data element, event or mode and d be a data element
of a MILS-AADL system specification S. Furthermore, let e be an event in the same
specification and m be a mode in S. Additionally, let D, E, M be the result of the
slicing algorithm 4.1 with using {a} as slicing criterion with the same type (data
element, event or mode).
If

d ∈ D ⇒ σ(d) v σ(a) (4.1)

and
e ∈ E ⇒ σ(e) v σ(a) (4.2)

and
m ∈M ⇒ σ(m) v σ(a) (4.3)

then the non-interference criterion is satisfied for a.

Proof. We assume that Slicing Algorithm 4.1 is correct. Hence, d ∈ D, e ∈ E and
m ∈M , we can conclude I(d, a), I(e, a) and I(m, a) by definition of Slicing Algorithm
4.1. Since, σ(d) v σ(a), σ(e) v σ(a) and σ(m) v σ(a) we can follow that the non-
interference criterion is satisfied for a.

This theorem describes how a MILS-AADL specifications can be checked for non-
interference using slicing. According to the definition of the backward slice in Section
4.2 all d, e, m influence each other. To be non-interfering the security domain of all
these elements influencing the value of a must be allowed to interfere, which means
that the relations σ(d) v σ(a), σ(e) v σ(a) and σ(m) v σ(a) must be fulfilled. If
this is the case, the system requirement fulfils the non-interference condition, in any
other case it is violated and the system must be declared as insecure.

4.4. Security Levels
To combine the information flow-policy and the system description given by a MILS-
AADL specification, a method is needed to specify and propagate security levels
for data elements, ports and modes. By allowing specification and propagation of
security levels, a system developer is able to model the necessary and security critical
security levels as initial assignment manually, while the remaining rules are propagated
automatically depending on the initial specification in the information flow control.
This reduces the specification overhead on the one hand, while maintaining a dynamic
security level generation due to propagation on the other hand. The security levels
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are considered to be elements of a given lattice L = (L,v,t,u,⊥,>) describing the
information flow-policy.
Hammer and Snelting suggest in [11] to use a function σ to describe actual security

levels, a function π to describe the provided security level and the function ρ to
describe the required security level of a statement. The provided security level defined
by π serves to specify the minimal security level of data provided by this statement,
whereas the required security level ρ describes the maximal allowed security level
of incoming information. A sufficient definition of an initial security level can be
done by only annotating input ports with provided security levels and output ports
with required security levels. This definition is sufficient, because a function σ that
provides the actual security level is designed to be computed from the required and
provided security level. In addition to checking for information leaks, it could also be
possible to only specify security levels for input ports in order to calculate the minimal
security level needed at the output ports. As this thesis focusses on confidentiality
checking, this option is not discussed any further.
As in this thesis MILS-AADL specifications are considered instead of Java bytecode

as in [11], not all three functions are necessary for every syntactic structure. There-
fore, only the notion of actual security level σ, required security level ρ and provided
security level π is adopted, whereas the actual function and propagation rule defi-
nition is changed depending on the considered syntactic structure. As a result, the
representation in this thesis is changed such that effects only have an actual security
level, while ports, variables and modes also have required and provided security levels.
A more detailed overview is given in Section 4.4.1.
For a given system description S and a lattice L a correct information flow con-

trol must allow to specify security levels for important syntactic structures and to
propagate them along the system. In this process it must be ensured that for confi-
dentiality any data element, event or mode y, influenced by a different data element,
event or mode x, must have a greater or equal security level to those elements y. To
express that x possibly has an influence on y, the influence relation I(x, y) defined as
I ⊆ (P ∪ V ∪M)× (P ∪ V ∪M) is introduced. Using this relation the confidentiality
requirement from Definition 4.3.1 can be formalised as

I(x, y)⇒ σ(x) v σ(y) (4.4)

In addition to this definition using the influence relation, it can also be claimed that
for confidentiality the security level of an element y must be greater or equal to the
least upper bound of all elements x influencing y, defined as set pred(y) = {x|I(x, y)}.

σ(y) w
⊔

x∈pred(y)

σ(x) (4.5)

A different task for information flow control is integrity. While confidentiality de-
mands that secret information cannot be leaked to public outputs, integrity demands
that computations using secret information cannot be manipulated from public input
ports. Since integrity can be seen as dual to confidentiality [4], the focus is on confi-
dentiality in this chapter, while integrity is only discussed by extending the constraint
(4.5) such that an integrity condition can be expressed. Using the duality to integrity
this can be done by changing w to v, because now y should not be modified by lower
classified elements x and t to u, because the greatest lower bound of all x expresses
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the minimal security level of the elements possibly influencing y.

σ(y) v
l

x∈pred(y)

σ(x) (4.6)

To formalize confidentiality it is necessary to prevent security leakages from higher
classified inputs to lower classified outputs. This can be done by claiming that no
actual security level σ of an expression x should exceed the required security level ρ
of x, which is expressed by:

∀x ∈ dom(ρ) : ρ(x) w σ(x) (4.7)

4.4.1. Equations for Security Levels
To specify the needed security levels for important syntactic structures, a method is
introduced to calculate these starting from an initial specification. Different syntactic
structures have different conditions for specifying confidentiality constraints. Addi-
tionally, the derivation of actual security levels from the given provided and required
security levels depends on the considered structures. Consequently, it is necessary to
differentiate between various rules for ports, variables and effects. However, for the
sliced parts only the data elements, which are either data ports or variables, events
and modes are interesting. Therefore, the rules for ports, variables and effects are
introduced first and recombined to form constraints for data elements, events and
modes in a second step. Again, the security levels are considered to be elements of a
given lattice L = (L,v,t,u,⊥,>) describing the flow-policy.

- Ports: For simplicity, data ports and event ports are treated in the same way
for specifying security levels. This is possible, because the propagation of secret
events and ports are logically equivalent. However, as it comes to the analy-
sis the events and data ports are considered separately by either referring to
data elements or to events. The same applies for the description of an input or
output behaviour. As already mentioned in the introduction of this section, it
is assumed that input ports are indicated by having a provided security level
π, whereas output ports are having a required security level ρ. To differen-
tiate between provided or required security levels that are introduced by the
system developer and ports without a specified security level, partial functions
describing initial provided or required security levels and total functions used to
describe the security level of all ports used for propagation are introduced. The
initial security class of a port is described by the partial functions π′p : P 9 L
and ρ′p : P 9 L. This assignment maps ports from the set of all system ports
P to a lattice point from the domain L, which describes its security level. The
function π′p is used to specify the security level of an input port, whereas the
function ρ′p describes the security level of an output port. As simplification,
these functions are extended to total functions πp : P → L and ρp : P → L.
In this process all input ports without an initial security level are considered to
have the lowest security level possible in L.

πp(x) =
{
π′p(x) if x ∈ dom(π′p)
⊥, else

(4.8)
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Additionally, unspecified output ports are considered to have the maximal se-
curity level in L.

ρp(x) =
{
ρ′p(x), if x ∈ dom(ρ′p)
>, else

(4.9)

The actual security level σp(x) of a port x must not only be greater or equal
to its own provided security level, but also greater or equal to the security level
of ports providing information to x, if x is defined as input port. To express
the ports providing information to x, we introduce the function pred(x), whose
result contains all output ports that have specified connections or information
flows to x. The actual security level σp(x) can now be expressed as

σp(x) w πp(x) t
⊔

y∈pred(x)

σp(y) (4.10)

In order to prevent leaks it is necessary to introduce the following security
constraint claiming that the security level of a port must not exceed its required
security level:

ρp(x) w σp(x) (4.11)

- Variables: The provided security level of a variable is defined in the same way
for variables as it is done for ports. Initially, the partial function π′v : V ar 9 L
describes an initial assignment of lattice points to variables. The main difference
is in the specification of V ar, which describes a set of variables v combined with
their parent system name s by writing s.v. This definition is necessary, to
prevent that a variable which is unconnected to a variable with the same name
in a different system component is able to effect the security level of the variable
in the different system.

πv(x) =
{
π′v(x), if x ∈ dom(π′v)
⊥, else

(4.12)

By definition of the MILS-AADL subset variables are unable to leak information
to other components without using data ports. Thus, the required security level
of a variable is always the maximal security level > of the lattice L.

ρv(x) = > (4.13)

The actual security level of a variable x must now be the least upper bound of
all variables that can be assigned to x, which is expressed by the set assign(x)
containing all variables y that occur on the right hand side of assignments to x.

σv(x) w πv(x) t
⊔

y∈assign(x)

σv(y) (4.14)

- Effects: Effects are assignments of the form x := e. Even though the con-
sideration of effects is not needed in combination with slicing, a security level
definition is introduced to be complete at this point and explain some aspects
concerning flow-sensitivity. For this definition, the function fv(e) is introduced,
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which contains the variables used in an expression e. Additionally, the function
fp(e) describes the set of all ports used in e. The actual security level of an
effect x := e is defined as follows.

σef (x := e) = πp(x) t
⊔

y∈fv(e)

σv(y) t
⊔

p∈fp(e)

σp(p) (4.15)

With this definition, it could be possible to provide two different security level
definitions for the variable x. The first one requires that the actual security level
of a variable must be greater or equal to the least upper bound of all effects in
a component denoted by the set Ef(x):

σv(x) w
⊔

x:=e∈Ef

σef (x := e) (4.16)

This definition has the advantage that it is easy to use and that global variables
that might be accessed in subcomponents are threatened in a similar way to data
ports. However, it has the disadvantage that an unnecessary incrementation of
a security level is possible, which is described in the following example.

Example 4.4.1. Let a system description be given and let l be a variable,
which is classified as low in the lattice from Example 2.2.1 in this description.
Additionally, let h also be a variable with a high security level in the same
system description. Then an effect l := h would result in an incrementation of
the security level σv(l) from L to H. Semantically a security leak is not possible,
if the value of the variable stays unchanged for every input value. Therefore,
assigning a constant to l before every release of l to a public output would make
the system secure. However, an analysis based on this security level definition
would detect an security leak, because the actual security level of every mode
using l would be at least H but the required security level of the public output
port is L.

The second one requires that the security level of a variable is allowed to differ
for each effect. Therefore, a dynamic binding method as defined in [12] could be
introduced, which allows to define different security levels for the same variable
depending on the assigned expression. A different approach would be to de-
fine renaming method for variables, which allows a differentiation between two
variables containing different results. To avoid the specification overhead that
is necessary for these definitions, these two approaches are not described any
further and an approach based on slicing is developed in the next sections.

After introducing these basic equations for ports, variables and effects, the security
level computation can be extended such that it is applicable for the sets generated by
Slicing Algorithm 4.1. The rules introduced for data elements, events and modes are
defined by referring to these basic equations as follows.

- Data Elements: Data elements are either data ports or variables. By combining
these cases it is possible to introduce the function π′d to describe the initially
provided security level of a data element x as follows:

π′d(x) =
{
π′p(x), if x ∈ P
π′v(x), if x ∈ V

(4.17)
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Analogously, a total function describing a provided security level for all data
elements can be introduced as follows:

πd(x) =
{
πp(x), if x ∈ P
πv(x), if x ∈ V

(4.18)

Likewise, the required security level ρd can be introduced as:

ρd(x) =
{
ρp(x), if x ∈ P
ρv(x), if x ∈ V

(4.19)

The actual security level of a data element is the combination of these two cases:

σd(x) w πd(x) t
⊔

y∈allP red(x)

σd(y) (4.20)

where allPred(x) = pred(x)∪ assign(x) describes the union of all port connec-
tions of x in pred(x) and all assignments made to the output port in the effects
in the considered component assign(x). Finally, the security constraint can be
defined as:

ρd(x) w σd(x) (4.21)

- Events: Every event that occurs is triggered or produced by an event port.
Therefore, it is possible to define π′e(x) = π′p(x), πe(x) = πp(x), ρe(x) = ρp(x)
and

σe(x) = σp(x) w πp(x) t
⊔

y∈pred(x)

σp(y) (4.22)

Finally,
ρe(x) w σe(x) (4.23)

is the security constraint for events.

- Modes: To cover implicit and explicit information flows the functions πm : M →
L and ρm : M → L are specified for all modes M in the system specification.
As for variables it is assumed that the modes are named c.m, where c is the
component name and m the mode name. The provided security level πm(x) can
be derived from the security levels of all effects in outgoing transitions and the
events in all incoming transitions. The set of all data elements assigned in effects
of outgoing transitions of a mode x is thereby denoted as OE(x) and OiEvt(x)
describes the set of all input event ports used as event triggers of transitions
leading to the mode x. Additionally, the set G(x) denotes all data elements
that are read by guards of incoming transitions. To get the security level of a
transition, the produced events, the data elements read by the guard expression
and the data elements that are assigned in the effects have to be considered.
Due to the different security level definition for data elements, expressions and
modes, the date elements read by guard expressions in incoming transitions and
the data elements assigned in outgoing transitions are summarised in the set
D′(x) = {d|y := d ∈ OE(x) ∨ g reads d with g ∈ G(x)}. Additionally, the set
E′(x) = {e|e ∈ OiEvt(x)} describes all effects produced at the mode x. The
provided security level can now be defined as the least upper bound of the
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security levels of all data elements and events that can be forwarded in a mode:

πm(x) =
⊔

d∈D′(x)

σd(d) t
⊔

e∈E′(x)

σe(e) (4.24)

The required security level of a mode depends on the security level of all y in
y := e ∈ OE(x) and on the required security level of all event port OoEvt(x) used
to emit events in incoming transitions. Since a data leak can only occur, if y is
an output data port, the required security level can be set to the greatest lower
bound of all ports in the effects of outgoing transitions. To differentiate between
the required security levels ports and variables in the effects, the function ρy :
P ∪ V → L is used, that returns the required security level if the input x is a
port and > else.

ρy(x) =
{
ρp(x), if x ∈ P
>, else

(4.25)

In addition to the data elements, all produced events have to be considered. This
is done by defining the set of all input events ports in outgoing transitions as
OoEvt(x) and taking the least upper bound of these events. Again we differenti-
ate between the possibly leaked data elements D′′(x) = {d|d ∈ d := e ∈ OE(x)}
and the events E′′(x) = {e|e ∈ OoEvt(x)}. The required security level of a mode
can now be defined as:

ρm(x) =
l

d∈D′′(x)

ρy(d) u
l

e∈E′′(x)

ρp(evt) (4.26)

To prevent implicit information flows the actual security level is defined as:

σm(x) w πm(x) t
⊔

y∈pred(x)

σm(y) (4.27)

Again, to prevent security leaks, we claim that the required security level must
be greater or equal to the actual security level of a mode:

ρm(x) w σm(x) (4.28)

Transitions are explicitly left out, because their impact on the security level of the
system is already expressed in the equations for modes, events and data elements.
Based on these equations for data elements, events and modes the confidentiality
definition made in the beginning of this section in equations (4.5) and (4.7) can be
adapted as follows.

Definition 4.4.1. Let a system specification S be given, together with a security
L = (L,v,t,u,⊥,>) as well as required- and provided security levels πp and ρp be
given for data ports and πv and ρv for variables. The system maintains confidentiality,
if all data elements, events and modes satisfy the equations (4.20), (4.21), (4.22),
(4.23), (4.27) and (4.28).

In practical applications, calculating the minimal allowed security level of a port
or a mode without knowing the actual security level is often more important than
checking whether a given security level is sufficient. In order to calculate this minimal
allowed security level it is possible to replace the w in with an = in the (in)equations
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(4.20), (4.22), (4.27). This results in the propagation rules for data elements, events
and modes:

σd(x) = πd(x) t
⊔

y∈allP red(x)

σd(y) (4.29)

σe(x) = πp(x) t
⊔

y∈pred(x)

σp(y) (4.30)

σm(x) = πm(x) t
⊔

y∈pred(x)

σm(y) (4.31)

These new equations also fulfil the (in)equations (4.20), (4.22) and (4.27), but
have the advantage that they can be used for forward propagation of the provided
security levels. Consequently, these propagation rules can be used for calculating
minimal security levels for each data element, event and mode. Hence, confidentiality
can be checked by first deriving all security levels and then checking, whether the
security constraints are satisfied. However, this approach has the weakness that in
the worst case many security levels for internal variables must be computed that are
possibly neither interesting nor useful for future applications. Therefore, the rules are
adapted again in Section 4.4.2 by providing theorems, which allow to calculate the
actual security level of only chosen elements using the backward slice. To visualise
the concept of a confidentiality checking using propagation and to allow a comparison
with the approach developed in the next section, Example 4.4.2 is introduced. In
this example a system description is outlined that leaks information using various
channels and analysed using propagation rules and security constraints.

Example 4.4.2. To familiarise with this basic concept of security levels we consider
the following example. We assume that we have given a system description containing
a subsystem leak, which is intended to leak every information about all inputs to the
outputs. The formal system description can be found in the following listing:
system example (

in: in data int 0 // Secret
out: data int 0 // Public
e1: in event // Secret
e2: out event // Public
m0: initial mode

system leak(
in: in data int 0
out: out data int 0
e1: in event
e2: out event
s: bool // Secret
x: int 0
m0: initial mode
m1: mode
m0 -[e1 then x := in]-> m1
m1 -[e2 when s then out := x]-> m0
m1 -[when not s then out := x]-> m0;

)
flow in -> leak.in
flow leak.out -> out
connection (e1 , leak.e1)
connection (leak.e2 , e2)

)
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In this example two kinds of information leaks occur. One of them is the explicit infor-
mation flow from the secret input in to the public output out via x. The second one
is called an implicit information flow that occurs, because the event e2 is produced,
if the secret variable s evaluates to true. To describe the security levels we use the
lattice from Example 2.2.1 as lattice description. The security level L is thereby used
to describe the public security level and the security level H is used to describe the
secret security level. As initial assignment we get that according to the commented
port specification π′p(example.in) = H, π′p(example.e1) = H, ρ′p(example.out) = L,
ρ′p(example.e2) = L. Additionally, the initial security level of s is expressed by
π′v(leak.s) = H. Note that the variable names are always used together with their
component specification as it is recommended for variables. By using the equations
(4.29), (4.30) and (4.31), it is possible to calculate the security levels of relevant ports
by forward propagation, starting from the input ports. The equations (4.21), (4.23)
and (4.28) can then be used to check for security leaks.
Using the equations (4.8), (4.9), (4.18), (4.19) and (4.29), we get the provided,

required and actual security level for the input port of the example component
example.in. Using equation (4.21) we get a condition, that has to be assured to
prevent security leaks. In our example this means that we get:

πd(example.in) = πp(example.in) = π′p(example.in) = H

ρd(example.in) = ρp(example.in) = > = H

σd(example.in) = πp(example.in) = H

ρd(example.in) = H w H = σd(example.in)

By using the same port equations but also the additional event equations (4.30)
and (4.23) we get for the input event port example.e1:

πe(example.e1) = πp(example.e1) = π′p(example.e1) = H

ρe(example.e1) = ρp(example.e1) = > = H

σe(example.e1) = σp(example.e1) = πp(example.e1) = H

ρe(example.e1) = ρp(example.e1) = H w H = σp(example.e1)

The security levels of the subsystem leak can be computed using the event port
connections and data flows. We get:

πd(leak.in) = πp(leak.in) = ⊥ = L

ρd(leak.in) = ρp(leak.in) = > = H

σd(leak.in) = σp(leak.in) = πp(leak.in) t σp(example.in) = H

ρd(leak.in) = ρp(leak.in) = H w H = σp(leak.in)
πe(leak.e1) = πp(leak.e1) = ⊥ = L

ρe(leak.e1) = ρp(leak.e1) = > = H

σe(leak.e1) = σp(leak.e1) = πp(leak.e1) t σp(example.e1) = H

ρe(leak.e1) = ρp(leak.e1) = H w H = σp(leak.e1)
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And for the variables s and x we get:

πd(leak.s) = π′v(leak.s) = H

ρd(leak.s) = H

σd(leak.s) = πd(leak.s) = H

ρd(leak.s) = H w H = σd(leak.s)
πd(leak.x) = L

ρd(leak.x) = H

σd(leak.x) = πd(leak.x) t σd(leak.in) = H

ρd(leak.x) = H w H = σd(leak.x)

After the security levels of the input ports and variables of the leak component are
calculated, we consider the modes using the equations (4.24), (4.26) and (4.31):

πm(leak.m0) = σd(leak.in) t σd(leak.s)
ρm(leak.m0) = ρy(leak.x) = > = H

σm(leak.m0) = πm(leak.m0) = H

ρm(leak.m0) w σm(leak.m0)
πm(leak.m1) = σd(leak.x) t σe(e1)
ρm(leak.m1) = ρd(leak.out) u ρe(leak.e2) = > = H

σm(leak.m1) = σm(leak.m0) t πm(leak.m1)
ρm(leak.m1) w σm(leak.m1)

We conclude:

πm(leak.m0) = H
ρm(leak.m0) = H ρm(leak.m0) = H w H = σm(leak.m0)
σm(leak.m0) = H

πm(leak.m1) = H
ρm(leak.m1) ρm(leak.m1) = H w H = σm(leak.m1)
σm(leak.m1) = H

For the output ports of the example component we get:

πd(example.out) = πp(example.out) = ⊥ = L

ρd(example.out) = ρp(example.out) = ρ′p(example.out) = L

σd(example.out) = σp(example.out)
= πp(example.out) t σp(leak.out) t σv(leak.x)
= L tH = H

ρd(example.out) = ρp(example.out) = L w H = σp(example.out)  
πe(example.e2) = πp(example.e2) = ⊥ = L

ρe(example.e2) = ρp(example.e2) = ρ′p(example.e2) = L

σe(example.e2) = σp(example.e2) = πp(example.e2) t σp(leak.e2) = L tH = H

ρe(example.e2) = ρp(example.e2) = L w H = σp(example.e2)  
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Both equations ρd(example.out) w σd(example.out) and ρe(example.e2) w σe(exam
ple.e2) are violated, and therefore an information leak is detected. But, if the initial
required security level of example.out and example.e2 is declared as high, the violation
disappears, because the ports are now high output ports.

4.4.2. Confidentiality Checking using Slicing
Until this point the equalities and constraints do not fully depend on the slicing
approach. To add this relation, it is necessary to reformulate the computation of
the actual security level of a data element or event. Therefore, the elements used
for the security level propagation are computed using the backward slicing algorithm
presented in Algorithm 4.1. As a result, only the elements influencing a statement
are considered in order to compute its security level. This approach is justified by
the following theorem, which states that the actual security level of any data element,
event or mode is given by the least upper bound of all data elements and events it
depends on.

Theorem 4.4.1. Let a system description S be given and x be a data element, event
or mode. Let D, E and M be the result of the slicing algorithm 4.1 using {x} as
slicing criterion as initial set of data elements, events ore modes while the remaining
parts are considered to be the empty set. Then the least fixpoint σ(x) for the actual
security level is gained by

σ(x) =


⊔

y∈D πd(y), if x ∈ PD ∪ V⊔
y∈E πe(y), if x ∈ PE⊔
y∈D πd(y) t

⊔
y∈E πe(y), if x ∈M

(4.32)

Proof. To prove this we follow the inductive concept shown in [11] for program depen-
dency graphs. We assume that D, E and M are the result of the Slicing Algorithm
4.1, and differentiate between the following cases:

1. x is a Data Element: Equation (4.29) implies that σd(x) w πd(x) and σd(x) w
σd(y) for all y ∈ pred(x) ∪ assign(x). By induction, this implies that for any
I(y, x): πd(y) v σd(x). Since, I(y, x) implies y ∈ D by definition of Algorithm
4.1, we get σd(x) w

⊔
y∈D πd(y), by the definition of a supremum. In the next

step, we need to show that (4.32) is a (minimal) solution of (4.29). Therefore,
we introduce the set D(y), to denote that the set of data elements D is a result
of Algorithm 4.1. Due to the fact that we assume σ(x) to be the least fixpoint
(the minimal security level in the security lattice that is considered as save) we
get that σd(x) v

⊔
y∈D πd(y) and therefore:

σd(x) v
⊔

y∈D

πd(y)

= πd(x) t
⊔

y∈pred(x)∪assign(x)

⊔
z∈D(y)

πd(z)

(4.29)
= πd(x) t

⊔
y∈allP red(x)

σd(y)

Consequently, the equality follows as stated in the theorem.
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2. x is an Event: Can be shown analogous to the previous case.

3. x is a Mode: By definition of the slicing algorithm 4.1 D and E contain all
data elements and events that have an influence on the mode x. From equation
(4.31) follows that σm(x) w πm(x) and σm(x) w σm(y) for all y ∈ pred(x). By
induction this implies that for any data element y and event z influencing x the
provided security levels of y and z are lower or equal to the actual security level
of x, which is denoted by I(y, x)∧ I(z, x) : πd(y) v σm(x)∧ πe(z) v σm(x). By
definition of the supremum, σm(x) w

⊔
y∈D πd(y) ∧ σm(x) w

⊔
z∈E πe(z). From

the definition of v, which states that a v b implies that atb = b, we can follow:

σm(x) w
⊔

y∈D

πd(y) iff σm(x) t
⊔

y∈D

πd(y) = σm(x)

σm(x) w
⊔

y∈D

πe(y) iff σm(x) t
⊔

z∈E

πe(z) = σm(x)

Using the monotonicity of order-theoretic lattices [3] (which are the lattices
considered for the security classes) we get that:

σm(x) w
⊔

y∈D

πd(y)

⇔σm(x) = σm(x) t
⊔

y∈D

πd(y)

⇔σm(x) t
⊔

z∈E

πe(z) = σm(x) t
⊔

y∈D

πd(y) t
⊔

z∈E

πe(z)

⇔σm(x) w
⊔

y∈D

πd(y) t
⊔

z∈E

πe(z)

It is now left to show that (4.32) is a (minimal) solution of (4.31). Since we
assume σ(x) to be the least fixpoint we get that σ(x) v

⊔
y∈D πd(y)t

⊔
y∈E πe(y)

and therefore:

σ(x) v
⊔

y∈D

πd(y) t
⊔

y∈E

πe(y)

= πm(x) t
⊔

y∈pred(x)

⊔
z∈M(x))

πd(z) t
⊔

z′∈E

πe(z′)

(4.31)
= πm(x) t

⊔
y∈pred(x)

σm(y)

Consequently, equality as stated in the theorem follows.

Intuitively, a system is secure if no higher classified element can influence the result
of a lower classified output port. In the context of provided and actual security level
this can be formulated as the condition that the value of all output ports must not
depend on higher classified elements than the output port has itself. This can be
formulated by the following theorem.
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Theorem 4.4.2. If

∀a ∈ dom(ρ′p) : ∀d ∈ D(a) ∩ dom(π′d) ∧ ∀e ∈ E(a) ∩ dom(π′p) :
π′d(d) v ρ′p(a) ∧ π′e(e) v ρ′p(a)

(4.33)

then confidentiality is maintained.

Proof. To prove this theorem we need to show that (4.7) is fulfilled for all output
ports a, with a specified required security level, and for all data elements d and
events e in the backward slice of a. From the premise it is possible to follow that
∀d ∈ D(a) ∧ ∀e ∈ E(a) : πd(d) v ρp(a) ∧ πe(e) v ρp(a), because πd(d) = π′d(d), if
d ∈ (dom(π′p) ∪ π′v)) and πe(e) = π′e(e), if e ∈ dom(π′p). In the next step we follow⊔

d∈D(a) πd(d) v ρp(a) ∧
⊔

e∈D(a) πe(e) v ρp(a), thus by theorem (4.4.1) we get that
σ(d) v ρp(a)∧ σ(e) v ρp(a). Consequently (4.7) is satisfied for all data elements and
events.

In addition to the reduced computational overhead, it is possible to derive an confi-
dentiality checking algorithm based on slicing from Theorem 4.4.2, which is presented
in Algorithm 4.2. This algorithm takes a system description S and partial functions
ρ′p, π′d and π′e as input. While the system description specifies the system that should
be analysed, the partial functions describe the required or provided security levels
that are defined for the system initially. The output of this algorithm is a boolean
variable indicating whether a security leak occurred and a set of security constrains
justifying the solution.
The steps necessary to perform are in principle equivalent to the intuitive approach

used in Example 4.4.3. For every output port, which is defined as a port with a
specified required security level ρp, the backward slide is computed. In the next step
it is checked if a security leak occurred by formulating and checking the security
constraints and the security constraints are added to the output.
Using Algorithm 4.2, the computation overhead can be reduced drastically, because

an expensive unnecessary security level computation via forward propagation can
be left out. By calculating the backward slice for every a ∈ ρ′p, it is possible to
calculate all elements that are depending on the output ports with an initially specified
security level. Having these elements, we can now check whether any element in the
backward slice has a higher initial security level than the required security level of
the output port. With these two theorems the effort needed to analyse programs can
be drastically reduced. To illustrate this we look again at Example 4.4.2 but now use
Theorem 4.4.2 together with Algorithm 4.2.

Example 4.4.3. Assuming the same system description as in Example 4.4.2 we can
check confidentiality using the presented algorithm based on Theorem 4.4.2 as follows.
Firstly, we calculate the backward slice for every output port with a specified se-

curity level ρ′p. In this example these port are example.out and example.e2. For
reasons of readability, just the results are presented in this example, while the ad-
vanced execution is described in Appendix B.1. For this calculation we use the nota-
tion D(example.out), E(example.out) and M(example.out) to denote the output of
Algorithm 4.1 with example.out as initial singleton set of data elements. The same
notation is used for the resulting sets for example.e2 as singleton set data element
input. Thus, we can follow for the data element example.out as the first execution of
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Algorithm 4.2 Basic Confidentiality Checking Algorithm

procedure ch e ckCon f i d en t i a l i t y (S ,ρ′p ,π′p ,π′v )
input :
S : A system de s c r i p t i o n
ρ′p : Required s e c u r i t y l e v e l s o f por t s in S

π′d : Provided s e c u r i t y l e v e l s o f data e lements in S
π′e : Provided s e c u r i t y l e v e l s o f e f f e c t s in S

output :
L : A boolean va r i ab l e i n d i c a t i n g a s e c u r i t y l eak
χ : The generated s e t o f s e c u r i t y c on s t r a i n t s

begin
/∗ I n i t i a l i s a t i o n ∗/
L := false ;
χ := ∅ ;
BS := ∅ ; // A va r i ab l e used to s t o r e the

// (D,E,M) S l i c i n g t r i p l e s
/∗ Calcu la te the Backward S l i c e ∗/
for a l l a ∈ dom(ρ′p) do

i f a i s a data element then
BS := ca l cu la t eBackwardS l i c e (S ,{a} ,∅ ,∅ ) ;

f i
i f a i s an e f f e c t then

BS := ca l cu la t eBackwardS l i c e (S ,∅ ,{a} ,∅ ) ;
f i
/∗ Generate Const ra int s and de t ec t s e c u r i t y l e ak s ∗/
for a l l (D,E,M) ∈ BS do

for a l l d ∈ D do
i f d ∈ dom(π′d) then
χ := χ ∪{“π′d(d) v ρp(a)”} ;
i f π′d(d) 6v ρ′p(a)} then

L := true ;
f i

f i
for a l l e ∈ E do

i f e ∈ dom(π′e) then
χ := χ ∪{“π′d(d) v ρp(a)”} ;
i f π′e(d) 6v ρ′p(a)} then

L := true ;
f i

f i
end



36 Chapter 4. Slicing AADL Specifications and Non-Interference

the outer for all loop:

D(example.out) = {example.out, leak.out, example.s, leak.x, leak.in, example.in}
E(example.out) = {leak.e1, leak.e2, example.e1, example.e2}
M(example.out) = {example.m0, leak.m0, leak.m1}

After calculating the backward slice BS, Algorithm 4.2 uses BS to generate and check
the following security constraints based on Theorem 4.4.2:

π′d(example.in) v ρ′p(example.out)
π′e(example.e1) v ρ′p(example.out)

As the example has a second output port example.e2, the same steps are performed
for this output port. In the first step of the outer for all loop, the backward slice
using {example.e2} as initial event is computed1:

D(example.e2) = {leak.s, leak.x, leak.in, example.in}
E(example.e2) = {example.e2, leak.e2, leak.e1, example.e1}
M(example.e2) = {example.m0, leak.m1, leak.m0}

Afterwards, also for example.e2 the security constraints are generated and checked
based on Theorem 4.4.2:

π′d(example.in) v ρ′p(example.e2)
π′e(example.e1) v ρ′p(example.e2)

Since the security constraints are violated for the initial definition made in Example
4.4.2 an information leak is detected with a reduced overhead.

1An extended computation is also presented in Appendix B.1



5. Analysing
Cryptographically-Masked Flows

In the previous approach, the security primitives of MILS-AADL were ignored in or-
der to develop a general security analysis without considering the characteristics of
cryptographically-masked flows. In this chapter the focus lies on extending this basic
approach such that a cryptographically-masked flows can be regarded. However, the
consideration of cryptography is not straight forward, because it breaks the notion of
standard non-interference. To visualize this problem we assume that a naive modifi-
cation of slicing algorithm 4.1 only adds y, x, k to D for an encrypt statement in an
effect y := encrypt(x,k). And that for calculating the security constraint the least
upper bound of x and k is taken. This approach would be legitimate using the no-
tion of standard non-interference, because the result of the encryption function would
depend on x and k. However, releasing the result to a port that is lower classified
than x must not necessarily result in an information leak, because the receiver of the
encrypted message would not be able to get the secret x from the messages (in an ap-
propriate time) without knowing the decryption key. To underline this problem, in the
following example the information flow of the crypto element of the cryptocontroller
system from Example 3.1.1 is analysed using this idea.

Example 5.0.1. The main purpose of the crypto element from Example 3.1.1 is
obviously to encrypt the input and release it to the output. In the most applications
this would only be necessary if the output has a lower security level than the input
as itself in order to mask the flow for unauthorised entities.
system crypto (

inpayload : in data int 0
outpayload : out data enc int encrypt (0,k0)
k: key pub( mykeys )
m0: initial mode
m0 -[then outpayload := encrypt (inpayload ,k)]-> m0

)

Therefore, we assume that crypto.inpayload has the provided security level H in the
security lattice that is shown in Example 2.2.1 and that crypto.outpayload has the
required security level L. Additionally, it is assumed that k is a public key, which
is modelled by assigning the security level L. These statements can be summarised
by the initial equations π′p(crypto.inpayload) = H, ρ′p(crypto.outpayload) = L and
π′v(crypto.k) = L. Using the Slicing Algorithm 4.1 and the theorems presented in
Chapter 4.4.2 we get 1:

D(crypto.outpayload) = {crypto.outpayload, crypto.inpayload, crypto.k}
E(crypto.outpalyoad) = ∅
M(crypto.outpayload) = {crypto.m0}

1An extended version of this computation is provided in Appendix B.2
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And the security constraints:

π′d(crypto.inpayload) = π′p(crypto.inpayload) v ρ′p(crypto.outpayload)
π′d(crypto.k) = π′v(crypto.k) v ρ′p(crypto.outpayload)

The security constraints are violated, because:

π′d(crypto.inpayload) = H, but
ρ′p(crypto.outpayload) = L

Therefore, the program would be considered as insecure. However, the information
flow from a high input port to a low output port might be allowed (in this case even
is the purpose of the component), if the secret key is not released and the actual value
of the high data element is masked by cryptographic operations that are sufficiently
strong.

As described in the previous example, a naive extension of the security level assign-
ment to programs with cryptography leads to many false alarms. However, a save
extension to cryptographically-masked flows requires that the cryptographic opera-
tions used for masking are sufficiently strong. It is easy to think of a situation where
poorly encrypted information could be leaked, if the attacker is able to decrypt the in-
formation without knowing the private key. Fortunately, it is already assumed in the
specification of the MILS-AADL language that messages encrypted with a receivers
public key can only be decrypted by receivers knowing the corresponding private key
[6].
As a result, the remaining tasks for preventing illegal flows are to detect illegal

releases of keys used for cryptographic operations and to evaluate the security level
of encrypted and decrypted information. Solving the first task is comparably easy,
because it is possible to use the mechanisms preventing classified variables from being
leaked. Principally, a public key k is a data element used for encryption and a
corresponding private key k′ is a data element used to decrypt messages encrypted
with k using the decrypt function. To prevent illegal information flows forwarding
encryption keys it is therefore possible to treat keys like data elements and to assign
security levels analogous to variables. To model the public and the private key with
distribution kp, it is necessary to claim that the security level of the private key
kprivate should be greater or equal to the security level of the public key kpublic with
the same key pair definition:

πd(kpublic) v πd(kprivate) (5.1)

As a differentiation of public and private keys by their security class is important, it
is mandatory to specify provided security levels for encryption keys.
To model the knowledge of an attacker with access to a data port x with security

level l it is assumed that he has access to all private keys with a security level v l.
This is necessary, because it is not always possible to deduce the keys an attacker
has already access to, if he is not modelled as a component within the system. The
calculation of the resulting security levels is a bit more complex and is described in
the following sections.
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5.1. Declassification
As described in the introduction of this chapter, a main problem of the information
flow control is its abstraction level, which is too simplistic in cases where informa-
tion is intentionally released after cryptographic operations. A common approach to
handle cryptography in information flow controls, is the concept of declassification.
Declassification in general describes a mechanism to downgrade or declassify sensitive
information in order to relax the information flow-policy. As a result, declassification
is not only suitable for releasing secret information after encryption, but also for any
controlled release of information. In their overview paper on declassification Sabelfeld
and Sands deal with the question, what the policies for expressing intentional infor-
mation releases by programs are [22]. As a result to this question, they define a
description using the four dimensions:

- what: What information is released.

- who: Who releases information.

- where: Where in the system is the information released.

- when: When information can be released.

In addition to these dimensions of declassification, Sablefeld and Sands define four
semantic principles of declassification [22]:

- semantic consistency: Security definitions should be invariant under equivalence
preserving transformations.

- conservativity: A declassification should be a weakening of the non-interference
definition. In other words this means that without using any declassification,
security should reduce to non-interference.

- monotonicity of release: Secure programs should not render insecure, if declas-
sification annotations are used. As a result, the security guarantee is weakened
the more data objects are declassified.

- non-occlusion: The presence of declassification should not allow masking other
information flows than the intended ones.

5.2. Security Levels for Cryptographically-Masked Flows
The concept of declassification allows to introduce a more advanced definition of
security levels for cryptographic operations. First of all, a key pair must be defined in
order to perform a cryptographic operation. This key pair keys consisting of public
and private keys k and k′ must thereby be defined as global constants on top level
according to Table 3.1. Any information d which is encrypted with a public key k
in the operation encrypt(d,k) results in a message m unreadable for any attacker
without access to the corresponding private key k′. As a result, it is possible to assume
that the result of the encryption always has the security level of the encryption key
k. Using the notation of a provided security level the security level definition can be
extended for encryption as follows:

σ(encrypt(d,k)) = πd(k) (5.2)
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Additionally, to analyse the security levels in the backward slice we add [k] to the setD
of dependent data elements to denote that the result of the encryption is possibly any
value possible to express in the output of an encryption with public key k. Therefore,
the security level of [k] must be the same than for k

πd([k]) = πd(k) (5.3)

According to Sabelfeld and Sands [22], this policy corresponds to the where dimension,
because the encryption operation describes the physical location where information
is allowed to be declassified. The declassification itself is expressed by ignoring all
additional dependencies including d and adding [k] to the data dependencies D in-
stead. This should serve to express that an encrypted message m in the image of
encrypt(d,k) is assigned at this point. As a result, πd([k]) can be used to express
the security level of the output of the encryption operation in the analysis.
In addition to the security level computation for encryption using the public key, it

is also possible to derive which data elements C are possibly encrypted with the public
keys U . This can be done by maintaining (C,U) pairs of all data elements d ∈ C
that are possibly used as first argument of an encryption function encrypt(d,k) and
all public keys k ∈ U that are possibly used as second argument. These pairs do
not exactly describe the what dimension defined by Sabelfeld and Sands, but allow
to analyse the knowledge a possessor of a key in U has. Therefore, it can be used to
recalculate the public key of a description. The actual security level of an encryption
operation can be defined as least upper bound of all security levels that possibly used
encryption keys might have.
For decryption it is necessary to differentiate between two cases. In the first case

the decryption is performed in the subsystem of a complete system description. In
this case it is possible to reuse the (C,U) pairs calculated in the encryption step in
order to derive the information C ′ that a component has access to, if it knows the
private key k′. In order to identify the corresponding private key k′ to a public key k
in Chapter 3.1 key pairs were introduced to the MILS-AADL syntax to which public
and private keys were connected. To draw a mathematical connection we introduce
the function κ(k) returning the corresponding key pair of a key k. Consequently,
a private key k′ can be used to decrypt messages encrypted with a public key k if
κ(k) = κ(k′). Using this connection C ′ can be defined as follows.

C ′ =
⋃
{C|∃u ∈ U∃k′ ∈ K : κ(u) = κ(k′)} (5.4)

The resulting security level is now the least upper bound of all elements in C ′.
In the second case it is assumed, that the decryption is performed in the root system

or an incomplete system description. Here, the security level can only be regained
by taking the security level of the private key, because the (C,U) pair is unknown.
Combining both cases leads to the security definition

σ(decrypt(d,k)) =
⊔

d∈C

πd(d) u
⊔

k∈K

πd(k) (5.5)

where d ∈ D describes a possible argument that is decrypted and k ∈ K describes a
possibly used private key.
To prevent data elements from being leaked using encryption, it is necessary to

introduce additional security constraints. A possible leak could occur, if data elements
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are encrypted with a public key k and a corresponding private key k′ with a lower
security level than the encrypted data has itself. As a result, encrypted data elements
that can be decrypted with a lower classified public key must be considered as leaked
data elements, because anyone with access to the lower classified private key k′ is able
to read the information. To prevent these misuses of encryption, it is necessary to
introduce that all elements in C ′ must have a security level which is lower or equal
to the greatest lower bound of all private keys that are possibly used for decryption.
Mathematically, this can be formulated by the following definition.

Definition 5.2.1. Let C ′ be the set of all data elements that are possibly decrypted
with the private keys in K. Then the decryption is called secure, if

∀d ∈ C ′ : σd(d) v
l

k∈K

πd(k) (5.6)

By combining encryption and decryption the security level definition of data ele-
ments, namely equations (4.20) and (4.29) can be redefined as follows. To analyse
encryption, the security level definition of a data element x is modified such that in
addition to the variables and ports in allPred(x), also the private keys are consid-
ered. To model decryption, all elements in C ′ must be considered for all private keys
K possible to use as decrypted information. To model the encrypted data elements
influencing the currently considered data element x, the set enc(x) = {k|∃m,m′ ∈
M∃y ∈ P ∪ V : m -[x := encrypt(y, k)]-> m’} is introduced. Since we assumed
that the result of a cryptographic operation is always declassified to the security level
of k, the set cryptPred(x) = pred(x)∪ assign(x)∪ enc(x)∪C ′(K) can be introduced
to express the security levels of all data elements influencing x. By using this set,
(4.29) can be updated for cryptographic operations as follows:

σd(x) = πd(x) t
⊔

y∈encP red(x)

σd(y) u
⊔

k∈K

σd(k) (5.7)

Equation (4.20) can be updated analogously by using the w instead of the equality.

5.3. Slicing for Cryptographically-Masked Flows
After describing the sets needed for the security level definition in the previous section,
the aim of this section is to introduce a mechanism for deriving these sets. As for
the general security level description, this mechanism should be based on slicing,
to maintain the advantages gained in the previous approach. Therefore, the Slicing
Algorithm 4.1 is extended such that the set of possibly encrypted data element C,
possibly used private key U and public keys K are calculated for each encryption or
decryption operation, while the sets D, E and M should stay the same. The input
variables of this algorithm are unchanged. Therefore, ID, IE and IM still describe the
sets of interesting data elements, events and modes used as slicing criterion. As result,
the algorithm returns a setsD, E andM of data elements, events and modes having an
influence on the elements used as slicing criterion. Additionally, the modified slicing
algorithm returns a set CU containing all elements used as first and second element
in an encryption operation. These sets can be used to derive which data elements
are restored using a decryption operation and which keys can be possibly used for
decryption. As this derivation is not necessarily a fixpoint iteration, this is done in a
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different algorithm checking for confidentiality of a system which is introduced in the
next section.

Algorithm 5.1 A Slicing Algorithm for Cryptographically-Masked Flows

procedure ca lcu lateCryptoBackwardS l i ce (S ,ID ,IE ,IM )
input :
S : A System de s c r i p t i o n
ID : The i n i t i a l l y i n t e r e s t i n g Data Elements
IE : The i n i t i a l l y i n t e r e s t i n g Events
IM : The i n i t i a l l y i n t e r e s t i n g Modes

output :
D : A l l Data Elements depending on ID

E : A l l Events depending on IE

M : A l l Modes depending on IM

K : A l l p r i va t e keys used
CU : A l l (C,U) pa i r s

begin
/∗ I n i t i a l i s a t i o n ∗/
D := ID ;
E := IE ;
M := IM ;
K := ∅ ;
CU := ∅ ;
/∗ Fixpoint i t e r a t i o n ∗/
repeat

/∗ Trans i t i on s that a f f e c t i n t e r e s t i n g data e lements
or have i n t e r e s t i n g t r i g g e r s ∗/

for a l l m
e,g,f−−−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d i n a c t i v e in m but a c t i v e in m′

or e ∈ E do
M := M ∪{m} ;

/∗ Trans i t i on s from or to i n t e r e s t i n g modes ∗/
for a l l m

e,g,f−−−→ m′ ∈ Trn with m ∈M or m′ ∈M do
i f f updates some d′ ∈ D read ing d and encrypts

i t with pub l i c key k then
E := E ∪ {e} ;
M := M ∪ {m} ;
C := C ∪ {d} ;
U := U ∪ {k} ;
CU := CU ∪ (C,U) ;
D := D ∪ {[k]} ;

else
i f f uses decrypt ion with p r i va t e key k′ then
D := D ∪ {d ∈ Dat | g reads d} ;
E := E ∪ {e} ;
M := M ∪ {m} ;
K := K ∪ {k′} ;

else
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D := D ∪{d ∈ Dat | g reads d}
∪{d ∈ Dat | f updates some d′ ∈ D read ing d} ;

E := E ∪ {e} ;
M := M ∪ {m} ;

f i
f i

/∗ Data Flows to i n t e r e s t i n g data por t s ∗/
for a l l a d ∈ Flw with d ∈ D do

D := D ∪ {d′ ∈ Dat | a reads d′ } ;
M := M ∪ {m ∈Mod | d := a a c t i v e in m} ;

/∗ Connections i nvo l v i ng i n t e r e s t i n g event por t s ∗/
for a l l e e′ ∈ Con with e′ ∈ E do

E := E ∪ {e, e′} ;
M := M ∪ {m ∈Mod | e e′ a c t i v e in m} ;

until nothing changes ;
end

5.4. Confidentiality Checking for
Cryptographically-Masked Flows

The extended Slicing Algorithm 5.1 and the basic confidentiality checking method
presented in Algorithm 4.2 allow to introduce an algorithm for confidentiality check-
ing of programs using cryptographic operations. As in Algorithm 4.2 this modified
Algorithm 5.2 takes a system description S and functions ρ′p, π′d and π′e describing
the initially provided or required security levels of output ports, data elements and
events in S. The output of the algorithm is a boolean variable L indicating whether
a security leak occurred or not and a set of security constraints χ justifying the re-
sult. Differently from Algorithm 4.2, Algorithm 5.1 is used as slicing algorithm and
recreates the decrypted values before checking for confidentiality. Therefore, all pos-
sibly encrypted data elements C ′ are computed as described in Section 5.2 for every
decryption operation in the backward slice of an output and added to the data depen-
dencies. To restore all dependencies influencing the decrypted values Algorithm 5.1
is used again with ID = C ′, IE = ∅ and IE = M as input and the output is added to
the slicing results before cryptography. If C ′ is empty, then a random variable having
the security level is added as data dependency for each private key in K to fulfil
equation (5.7). As public keys should have a lower or equal security level than private
keys according to equation (5.1), this equation is checked and added to the set χ of
security constraints. Additionally, the decrypted elements are checked to be secure
according to definition 5.2.1. The remaining security constraints are then checked
as for programs without cryptography, however with the additional data elements,
events and modes added to the investigated sets.
As the concept of declassification is not sound, it is not possible to introduce a

theorem similar to Theorem 4.4.2 for an approach based on declassification. However,
it is common to show that the approach follows the principles of declassification that
are shown in Section 5.1. Since a detailed proof of these concepts would exceed the
limits of this thesis only a few basic points about conservativity and non-occlusion
are sketched in the following.
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- conservativity: Without any use of cryptography Algorithm 5.1 computes the
same sliced specifications as Algorithm 4.1, because the added code parts are
never executed. Therefore, Algorithm 5.2 and Algorithm 4.2 return the same re-
sults, because the sliced specifications are the same and no additional statement
considering cryptography is executed.

- non-occlusion: Since the results of all cryptographic operations are considered
to be data dependencies, all events and modes influencing the control flow of
the system should be threatened in the same way as without cryptographically-
masked flows. Therefore, only masking of (defined) data elements is possible
without producing any additional implicit information flows.

Algorithm 5.2 Confidentiality Checking Algorithm for Crypographically-Masked
Flows

procedure checkCryptoCon f ident i a l i ty (S ,ρ′p ,π′p ,π′v )
input :
S : A system de s c r i p t i o n
ρ′p : Required s e c u r i t y l e v e l s in S

π′d : Provided s e c u r i t y l e v e l s o f data e lements in S
π′e : Provided s e c u r i t y l e v e l s o f e f f e c t s in S

output :
L : A boolean va r i ab l e i n d i c a t i n g a s e c u r i t y l eak
χ : The generated s e t o f s e c u r i t y c on s t r a i n t s

begin
/∗ I n i t i a l i s a t i o n ∗/
L := false ;
χ := ∅ ;
C’ := ∅ ; // The s e t o f p o s s i b l y decrypted data e lements
BS := ∅ ; // A va r i ab l e used to s t o r e the (D,E,M,K,CU)

// r e s u l t s from S l i c i n g
for a l l a ∈ dom(ρ′p)

/∗ Calcu la te the Backward S l i c e ∗/
i f a i s a data element then

BS := ca lcu lateCryptoBackwardS l i ce (S ,{a} ,∅ ,∅ ) ;
f i
i f a i s an e f f e c t then

BS := ca lcu lateCryptoBackwardS l i ce (S ,∅ ,{a} ,∅ ) ;
f i
/∗ Restore forwarded pr i va t e keys ∗/
K := K ∪ ca lcu lateCryptoBackwardS l i ce (S ,K ,∅ ,∅ ) .D;
/∗ Add po s s i b l y decrypted data e lements ∗/
for a l l (D,E,M,K,CU) ∈ BS do

/∗ Calcu la te C ′ and add decrypted v a r i a b l e s ∗/
for a l l (C,U) ∈ CU such that do

/∗ Restore forwarded pub l i c keys ∗/
U := U ∪ ca lcu lateCryptoBackwardS l i ce (S ,U ,∅ ,∅ ) .D;
i f ∃u ∈ U ′ ∃k ∈ K ′ : κ(u) = κ(k) then
C’ := C’ ∪ C;

f i
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i f C’ 6= ∅ then
D := D ∪ ca lcu lateCryptoBackwardS l i ce (S ,C ′ ,∅ ,∅ ) .D;
E := E ∪ ca lcu lateCryptoBackwardS l i ce (S ,C ′ ,∅ ,∅ ) .E ;
M := M ∪ ca lcu lateCryptoBackwardS l i ce (S ,C ′ ,∅ ,∅ ) .M;
K := K ∪ ca lcu lateCryptoBackwardS l i ce (S ,C ′ ,∅ ,∅ ) .K;
CU := CU ∪ ca lcu lateCryptoBackwardS l i ce (S ,C ′ ,∅ ,∅ ) .CU;

else
D := D ∪ {[k]|k ∈ K} ;

f i
/∗ Generate s e c u r i t y c on s t r a i n t s ( cryptography ) ∗/
for a l l (C,U) ∈ CU do

for a l l k ∈ K do
/∗ Const ra in t s accord ing to (5.1) ∗/
for a l l u ∈ U do

i f κ(k) = κ(u) ∈ K then
χ := χ ∪{“π′d(u) v π′d(k)”} ;
i f π′d(u) 6v π′d(k) then

L := true ;
f i

f i
/∗ Const ra in t s accord ing to De f i n i t i o n 5.2.1 ∗/
for a l l c ∈ C do
χ := χ ∪{“π′d(c) v π′d(k)”} ;

i f π′d(c) 6v π′d(k) then
L := true ;

f i
/∗ Generate s e c u r i t y c on s t r a i n t s ( in fo rmat ion f l ows ) ∗/
for a l l d ∈ D do

i f d ∈ dom(π′d) then
χ := χ ∪{“π′d(d) v ρ′p(a)”} ;
i f π′d(d) 6v ρ′p(a)} then

L := true ;
f i

f i
for a l l e ∈ E do

i f e ∈ dom(π′e) then
χ := χ ∪{“π′d(d) v ρp(a)”} ;
i f π′e(d) 6v ρp(a)} then

L := true ;
f i

f i
end

5.5. Possibilistic Non-Interference
A different approach avoiding the problems gained by introducing declassification
could be developed by using possibilisitc non-interference instead of the non-inter-
ference definition made in Chapter 4.3. This method is suggested in [2] and has the
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advantage that introducing a theorem analogous to Theorem 4.4.2 becomes possible
for a changed notion of non-interference. However, we will see that fully verify-
ing a characteristic for possibilisitc non-interference called restrictiveness or hook-up
security would exceed the limits of this thesis. Thus, only a small simplification is
sketched, which allows a discussion on non-interference and cryptographically-masked
flows as in [2] but is not a fully developed proof of all characteristics of possibilisitc
non-interference.
The concept of restrictiveness or hook-up security is presented in [16, 17] and was

developed by Daryl McCullough. The main difference to the standard notion of
non-interference introduced by Goguen and Meseguer is the ability to handle non-
determinism and to describe a composable security property for systems. Since the
MILS-AADL system descriptions analysed in this thesis are non-deterministic as well
as component based due to their hierarchical structure, this approach is more practi-
cable than the notion standard non-interference. Restrictiveness is a generalisation of
non-interference called possibilistic non-interference, which describes that a changes
of an input port should not influence the possible behaviour of lower classified output
ports. To describe this, McCullough introduces the terms low-level behaviour and low-
level state, describing the behaviour observable from with access to low-level outputs
and the system parts (states) influencing this behaviour. The principle of possibilistic
non-interference is now that high-level inputs may not change the low-level state of
the output. Restrictiveness is originally defined for traces [16] or state machines [17]
but can be adapted such that the automaton describing the semantic behaviour of a
MILS-AADL component can be considered.
Broadly speaking, an automaton (or better state machine) could be called restrictive

as described in [17], if the following statements hold:

- It is input total, which means that no input is blocked, and so every input
possibly has effect on the transitions taken in the system description.

- There is an equivalence relation ≡l on system states indicating that the states
are equivalent on security level l such that:
1. Inputs may not affect system parts having a lower security level.
2. The states b, reached from a state a by a transition, should only depend on

the inputs triggering the transition and system parts with a security level
level lower or equal to the security level of a.

3. If two states have the same system parts on a level l, then for any possible
output sequence leading from one state there must be an equivalent output
sequence sequence leading from the other. A system part in this context
describes an input or output sequence. In other words, this requirement
means that two states with the same input or output behaviour should
provide the same output sequence. In addition to this requirement, which
only regards the behaviour of the system, also the resulting state must be
equivalent in order to produce the same possible system state.

Summed up into two properties for traces starting from the initial state, we can say
that there is

- a “write only up” policy prohibiting higher classified inputs from determining
lower classified outputs, and
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- a “read only down” policy, which means that the possible output sequences of an
output port should only be determined by states in a lower or equal equivalence
class.

For cryptography, Askarov, Hedin and Sabelfeld argue that the outputs of ideal en-
cryption operations can be seen as l-equivalent, if the output an encryption operation
is possibly any value with security level l, which can be assumed if the encrypted
message is undistinguishable for the attacker [2]. Arguing for system descriptions
in MILS-AADL this means that the possibly used public keys should have a lower
or equal security level than the output. This argumentation would render the de-
classification assumed in Section 5.2 unnecessary, because the results can be seen as
k-equivalent for an encryption with public key k and therefore has inherently the
same security level then k.
The consideration of non-determinism is more complex and would require a different

slicing method which allows to slice for execution traces. Since this approach would
definitely exceed the limits of this work, it is left for further research.





6. Case Studies
In this chapter, the results of the previous chapter should be visualised by discussing
some case studies. The aim is to analyse a cryptographically-masked communication
provided by the cryptographic controller system from [24], which was analysed in
different ways in this thesis. The corresponding case study is presented in Section
6.1. After analysing the encryption alone in, the system is extended such that a
second component is added in order to decrypt the information the cryptographic
controller sends over an insecure channel. This case study is presented in Section
6.2. After explaining the advantages of the approach developed in this thesis are
presented, a limitation of this approach is discussed in Section 6.3. Therefore, the
cryptographic controller is extended such that the information is provided in frames
which are divided into header and payload by a split component.

6.1. Crypto Controller
In this example, the cryptocontroller system from Example 3.1.1 is analysed again. In
contrast to the analysis presented in the introduction of Chapter 5, in this section the
full system is analysed considering the cryptographically-masked flows. The security
levels of this system are expressed using the information flow-policies presented in
Example 2.2.1. To model the initially defined security levels for the inputs and outputs
of the cryptocontroller system, it is assumed that the input frame of the cryptographic
controller gets a header with security level L and a payload with security level H.
The return value is an output frame outframe consisting of a header with security
level L and an encrypted payload, which should also have security level L. To express
this using the provided and required security levels for ports introduced in Chapter
4.4, we use π′d(cryptocontroller.header) = L, π′d(cryptocontroller.payload) = H,
pid(crypto.k) = L, and ρp(cryptocontroller.outframe) = L as initial security level
description. The security levels of the subcomponents are thereby left out in order
to allow a security level consideration with the least modelling effort as possible.
Furthermore, we assume that all names of ports, variables and modes are implicitly
renamed such that data elements, events and modes of the form component.variable
can be used for the analysis. In order to allow a clear distinction between variables
with the same name in different (sub-)components, we only allow system descriptions
to be analysed, if this clear distinction can be made. Starting from the initial security
level assignment, Algorithm 5.2 can be used in order to generate security constraints
and to check the confidentiality of the system.
In the first step this algorithm initialises the variables used in the algorithm as

follows.

L = false, χ = ∅, C ′ = ∅, BS = ∅

After initialising the variables, confidentiality is checked for each output port of the
system. For this purpose, the algorithm calculates the backward slice of this output
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using Algorithm 5.1. As this section should give a general overview on confidential-
ity checking, only the result of this computation is presented here, while the actual
compuatation is shown in Appendix B.3.

D = {cryptocontroller.outframe,merge.frame,merge.header,merge.payload,
bypass.outheader, crypto.outpayload, bypass.inheader, [crypto.k],
cryptocontroller.header}

E = ∅
M = {cryptocontroller.m0,merge.m0, bypass.m0, crypto.m0}
K = ∅

CU = {({crypto.inpayload}, {crypto.k})}

In the next step Algorithm 5.2 adds all possibly decrypted dependencies to D, E and
M and checks for violations of a correct key usage. Since no decryption operation
is used in this example and no key is forwarded, there is nothing added in this step.
Finally, the security constraints are then calculated and checked leading to the result:

π′d([crypto.k]) = π′d(crypto.k) = L v L = ρ′p(cryptocontroller.outframe)
π′d(cryptocontroller.header) = L v L = ρ′p(cryptocontroller.outframe)

All constraints are satisfied, therefore no leak is detected.

6.2. Secure Communication
The example presented in this section aims to develop a method to signal information
over lower classified channels. Every incoming information in the root system is en-
crypted using a system that is similar to the cryptographic controller system analysed
before. In a second component, it is decrypted using a decryption controller system,
if an event decrypt is triggered. This has a various field of application possibilities,
for example in a automotive engineering or avionics whenever sensor data is send over
public channels and has to be decrypted at specific points in time.
The split and merge operations for encryption and decryption are performed anal-

ogously to the cryptographic controller system, but with inverted encryption and
decrypted results. As the full system definition would unnecessarily exceed this sec-
tion, the complete system description is presented in Appendix A.2 and only the
decrypto component used for decryption is presented here.

system decrypto (
inpayload : in data enc int encrypt (0,k0)
outpayload : out data int 0
decrypt : in event
k: key priv( mykeys )
m0: initial mode
m0 -[ decrypt then outpayload := decrypt (inpayload ,k)]->m0

)

To model the initially defined security levels for the inputs and outputs of the root sys-
tem we use π′p(seccom.inheader) = L, π′p(seccom.inpayload) = H, pi′d(crypto.k) =
L, π′d(decrypto.k) = H, π′p(seccom.decrypt) = H and ρ′p(seccom.outframe) = H.
Additionally, we assume ρ′p(cryptocontroller.outframe) = L to model that the data
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frames generated by the cryptographic controller are send over an insecure channel.
Starting from this assignment, we use Algorithm 5.2 to generate security constraints
and to check the confidentiality of the system. Sine Algorithm 5.2 checks confiden-
tiality for each output port with a specified required security level, the following steps
would be executed for cryptocontroller.outframe and seccom.outframe. However,
only the basic steps for slicing and constraint computation of this part should be
sketched here, because the resulting backward slice for cryptocontroller.outframe is
quite similar to the results we already generated in Section 6.1. In the first step the
specification is sliced for {cryptocontroller.outframe} leading to:

D = {cryptocontroller.outframe,merge.frame,merge.header,merge.payload,
bypass.outheader, crypto.outpayload, bypass.inheader, [crypto.k],
cryptocontroller.header, seccom.inheader}

E = ∅
M = {cryptocontroller.m0,merge.m0, bypass.m0, crypto.m0}
K = ∅

CU = {({crypto.inpayload}, {crypto.k})}

The security constraint generation in the next step leads to:

π′d([crypto.k]) = π′d(crypto.k) = L v L = ρ′p(cryptocontroller.outframe)
π′d(seccom.inheader) = L v L = ρ′p(cryptocontroller.outframe)

After the security constraint generation for the first element in dom(ρ′p) is fin-
ished, the same steps are executed for the second element in dom(ρ′p) which is
seccom.outframe. Firstly, the variables are reset to allow an independent consid-
eration.

L = false, χ = ∅, C ′ = ∅, BS = ∅

Then the backward slice for seccom.outframe is computed using Algorithm 5.1. As
in the previous case study, the advanced computation is not shown here but can be
found in Appendix B.4. To additionally increase the readability, only the relevant
data elements D′ = D ∩ (dom(π′p)∪ dom(ρ′p)) are shown here, while the complete set
is also part of Appendix B.4.

D′ = {seccom.outframe, [crypto.k], seccom.inheader}
E = {decrypto.decrypt, decryptocontroller.decrypt, seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0, bypass2.m0,

decrypto.m0, split.m0, split.m1, cryptocontroller.m0,merge1.m0
bypass1.m0, crypto.m0}

K = {decrypto.k}
CU = {({crypto.inpayload}, {crypto.k})}

In the next step Algorithm 5.2 calculates the set C ′ containing all data elements
that are possibly encrypted by the system. As keys can be forwarded, but only the
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keys used as second argument are sliced, the possibly forwarded keys influencing the
actually used keys must be added. Since no keys are forwarded, there is nothing to add
in this step and K and CU stay unchanged. In the next step, the possibly decrypted
data element are restored by comparing the possibly used encryption keys in the
(C,U) pairs and the possibly used private keys in K. Since crypto.k and decrypto.k
belong to the same key pair mykeys, we get the following set C ′ of decrypted data
elements.

C ′ = {crypto.inpayload}

To add all elements influencing the decrypted values Slicing Algorithm 5.1 is used
again to get these dependencies and added to the previously generated sets D, E and
M . As before, the slicing itself is again presented in Appendix B.4. The resulting
sets are then:

D′ = {seccom.outframe, seccom.inheader, seccom.inpayload}
E = {decrypto.decrypt, decryptocontroller.decrypt, seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0, bypass2.m0,

decrypto.m0, split.m0, split.m1, cryptocontroller.m0,merge1.m0
bypass1.m0, crypto.m0}

K = {decrypto.k}
CU = {({crypto.inpayload}, {crypto.k})}

After restoring the decrypted data elements, Algorithm 5.2 generates and checks
security constraints for a correct use of encryption.

π′d(crypto.k) v π′d(decrypto.k)
π′d(crypto.inpayload) v π′d(decrypto.k)

Since the security level of crypto.k is lower than the security level of decrypto.k the
encryption was legal and no security leak is detected at this point. Additionally,
the decrypted element crypto.inpayload and the private key decrypto.k have equal
security levels. Therefore, the decryption was legal and the operation allowed without
a security leak.
In the last step, Algorithm 5.2 generates and checks the security constraints for all

elements in D and E with a provided security level.

π′d([crypto.k]) = π′d(crypto.k) = L v L = ρ′p(seccom.outframe)
π′d(seccom.inheader) = L v H = ρ′p(seccom.outframe)
π′d(seccom.inpayload) = H v H = ρ′p(seccom.outframe)

As non of these security constraints are violated, no security leak is detected as
intended in the specification of the system. However, if the security level of seccom.out
frame would be L a security leak would correctly be detected, because

π′d(seccom.inpayload) = H v L = ρ′p(seccom.outframe)

would be a violation in this case.
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6.3. The Limits of this Approach
In this section a problem of the approach developed in this thesis should be visualised
in order to show its limits. Therefore, the original system description of the unchanged
cryptocontroller system from [24] is taken and analysed using the Algorithm 5.2. Since
the main problem is in the split component, only this component is shown here while
the full specification is provided in Appendix A.3.
system split (

frame : in data (int ,int) (0 ,0)
header : out data int 0
payload : out data int 0
m0: initial mode
m0 -[then header := frame [0]] - > m1
m1 -[then payload := frame [1]] - > m0

)

To get this problem we assume that the following security level definition for in put
and output ports is given.

π′d(cryptocontroller.inframt[0]) = L, π′d(cryptocontroller.inframt[1]) = H,

ρ′p(cryptocontroller.outframe[0]) = L, ρ′p(cryptocontroller.outframe[1]) = L,

Additionally, we assume that k is a public key with security level L denoted by
π′d(k) = L. If we calculate the backward slice using Algorithm 5.1, we get the following
result.1

D = {cryptocontroller.outframe,merge.frame,merge.header,merge.payload,
bypass.outheader, crypto.outpayload, bypass.inheader, [crypto.k],
split.header, split.frame[0], split.frame[1], cryptocontroller.inframe}

E = ∅
M = {merge.m0, bypass.m0, crypto.m0, split.m0
K = ∅

CU = {({crypto.inpayload}, {crypto.k})}

Resulting from the definition of the split component, the frame split.frame[1] which
contains the payload of the information is always part of the sliced system descrip-
tion. This leads to the problem that the complete inframe is added as dependency.
Consequently, a security leak is detected, even though there is now possible way of re-
leasing an unencrypted payload. This problem is caused, because the declassification,
which allows to model encryption, can only express which information (an encrypted
value) is allowed to be released at a specific point of the system description. This
problem was already discussed in Chapter 5.5 where a form of restrictiveness is shown
which allows to handle this kind of problem. The main difference to the approach
developed in this thesis is that the all possible traces for are considered instead of
all data elements possibly influencing the output of the system. This would have the
advantage that the precision of the analysis would be increased again.

1The full computation is presented in Appendix B.5





7. Conclusion

7.1. Summary

In this thesis, a method for analysing cryptographically-masked information flows
using slicing was presented. In this context a core subset of the MILS-AADL specifi-
cation language was introduced in Chapter 3. This core subset extended the system
decryption Kevin van der Pol and Thomas Noll used in [24] for their type system such
that a distribution of keys can be expressed and a differentiation between data and
event ports can be made.
To slice these specifications, a slicing algorithm for AADL specifications developed

by Maximilian Odenbrett, Viet Yen Nguyen and Thomas Noll [18] was presented, such
that a basic slicing approach became possible. Since non-interference is one of the
most frequently used notions in the context of security analysis, a connection between
a version of non-interference provided in Definition 4.3.1 and this slicing algorithm
was drawn and summarised in Theorem 4.3.1. The main result of this theorem can be
concluded by stating that all data elements, events and modes in the backward slice of
a system description should be allowed to interfere in the information flow-policy. To
express this allowed interference, security levels were introduced and further specified
in the next section of this chapter. To minimise the definition overhead, a method was
introduced to propagate initial security levels for data or event ports and variables
and security constraints were introduce to specify a confidentiality condition based
on the function Hammer and Snelting introduced in [11]. Finally, the results were
put together in order to algorithmically check confidentiality in Theorem 4.4.2 and
Algorithm 4.2.
However, we saw that this approach was unable to handle cryptographically-masked

flows, because the declassifying effect of cryptographic operations was not taken into
account. Therefore, the previously described algorithms had to be extended such
that this consideration became possible. As a result, (C,U) pairs were introduced
in order to model the dependence between the encrypted values and the possibly
used decryption keys in Chapter 5. Additionally, a set K of possibly used private
keys used for decryption was introduced. Using this notation Algorithms 5.1 and
5.2 were developed, which made a consideration of cryptographically-masked flows
possible. To show the differences between the declassification of encrypted messages
and possibilistic non-interference, this chapter was concluded by a short introduction
of restrictiveness.
Based on these Algorithms in Chapter 6 some case studies using a simple crypto-

graphic controller were introduced. In this context an encryption operation was dis-
cussed and a secure communication using encryption and decryption was presented.
Finally, this chapter was concluded by an example in which the analysis of this thesis
gives false alarms and possibilistic non-interference would lead to better results.



56 Chapter 7. Conclusion

7.2. Future Work
As conclusion of this thesis a few directions for future works should be given. Since
this work manly focussed on the theoretical aspects and only pseudocode algorithms
are given, the practical aspects of this work could be shown in an implementation.
This would allow a more refined argumentation about the scalability and precision
of the used algorithms. Moreover, an actual implementation would allow to verify
security conditions for additional and more advanced case studies as well as real
applications.
In addition to the practical aspects, also some theoretic aspects might require fur-

ther research. As the used non-interference criterion is not fully a possibilistic non-
interference condition, some false alarms as the one presented in 6.3 still occur. To
solve such problems the slicing algorithm could be extended such that actual com-
putation traces are considered instead of sets containing data elements, events and
modes possibly influencing an output port. A possible starting point would be show-
ing restrictiveness as sketched in Chapter 5.5.
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A. Additional Examples

A.1. Extended Security-Level Computation
In this Section, a different way to analyse the data flows for the crypto controller
example from the introduction of Chapter 5 is presented. In this approach (again)
the naive analysis for cryptographically-masked flows without using the backward
slice is used. Therefore, a higher overhead is prduced, leading to the same result as in
Chapter 5 (the program is falsely considered as insecure). Using the equations from
Chapter 4.4 we can calculate the security levels using the propagation rules as follows

πd(crypto.inpayload) = π′p(crypto.inpayload) = H

ρd(crypto.inpayload) = H

σd(crypto.inpayload) = H

πd(crypto.k) = π′v(crypto.k) = L

ρd(crypto.k) = H

σd(crypto.k) = πd(crypto.k0) = L

πd(crypto.outpayload) = L

ρd(crypto.outpayload) = ρ′p(crypto.outpayload) = L

σd(crypto.outpayload)
= πd(crypto.outpayload) t σd(crypto.inpayload) t σd(crypto.k) = H

πm(crypto.m0) = σd(crypto.inpayload) t σd(crypto.k) = H

ρm(crypto.m0) = ρd(crypto.outpayload) = L

σ(crypto.m0) = πm(crypto.m0) = H

and the security constraints

ρd(crypto.inpayload) = H w H = σd(crypto.inpayload)
ρd(crypto.k) = H w L = σd(crypto.k)

ρd(crypto.outpayload) = L w H = σd(crypto.outpayload)
ρd(crypto.m0) = L w H = σd(crypto.m0)

A.2. System Description for Secure Communication

system seccom (
inheader : in data int 0
inpayload : in data int 0
outframe : out data (int ,int) (0, encrypt (0, k0))
decrypt : in event
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mykeys : key pair
system cryptocontroller (

header : in data int 0
payload : in data int 0
outframe : out data (int ,enc int) (0, encrypt (0, k0))
mykeys : key pair
m0: initial mode
system bypass1 (

inheader : in data int 0
outheader : out data int 0

m0: initial mode
m0 -[then outheader := inheader ]-> m0

)
system crypto (

inpayload : in data int 0
outpayload : out data enc int encrypt (0,k0)
k: key pub( mykeys )
m0: initial mode
m0 -[then outpayload := encrypt (inpayload ,k)]->m0

)
system merge1 (

header : in data int 0
payload : in data enc int encrypt (0,k0)
frame : out data (int ,enc int) (0, encrypt (0,k0))
m0: initial mode
m0 -[then frame :=( header , payload )]-> m0

)
flow header -> bypass1 . inheader
flow payload -> crypto . inpayload
flow bypass1 . outheader -> merge1 . header
flow crypto . outpayload -> merge1 . payload
flow merge . frame -> outframe

)
system decryptocontroller (

inframe : in data (int ,enc int) (0, encrypt (0, k0))
outframe : out data (int ,int) (0 ,0)
decrypt : in event
m0: initial mode
system split (

frame : in data (int ,enc int) (0, encrypt (0, k0))
header : out data int 0
payload : out data int 0
m0: initial mode
m0 -[then header := frame [0]] -> m1
m1 -[then payload := frame [1]] - > m0

)
system bypass2 (

inheader : in data int 0
outheader : out data int 0

m0: initial mode
m0 -[then outheader := inheader ]-> m0

)
system decrypto (

inpayload : in data enc int encrypt (0,k0)
outpayload : out data int 0
decrypt : in event
k: key priv( mykeys )
m0: initial mode
m0 -[ decrypt then outpayload := decrypt (inpayload ,k)]->m0

)
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system merge2 (
header : in data int 0
payload : in data int 0
frame : out data (int ,int) (0 ,0)
m0: initial mode
m0 -[then frame :=( header , payload )]-> m0

)
flow inframe -> split . frame
flow split . header -> bypass2 . inheader
flow split . payload -> decrypto . inpayload
flow bypass2 . outheader -> merge2 . header
flow decrypto . outpayload -> merge2 . payload
flow merge1 . frame -> outframe
connection (decrypt , decrypto . decrypt )

)
flow inheader -> cryptocontroller . header
flow inpayload -> cryptocontroller . payload
flow cryptocontroller . outframe -> decryptocontroller . inframe
flow decryptocontroller . outframe -> outframe
connection (decrypt , decryptocontroller . decrypt )

)

A.3. Cryptocontroller with Split

system cryptocontroller (
inframe : in data (int ,int) (0 ,0)
outframe : out data (int ,enc int) (0, encrypt (0, k0))
mykeys : key pair
m0: initial mode
system split (

frame : in data (int ,int) (0 ,0)
header : out data int 0
payload : out data int 0
m0: initial mode
m0 -[then header := frame [0]] - > m1
m1 -[then payload := frame [1]] - > m0

)
system bypass (

inheader : in data int 0
outheader : out data int 0

m0: initial mode
m0 -[then outheader := inheader ]-> m0

)
system crypto (

inpayload : in data int 0
outpayload : out data enc int encrypt (0,k0)
k: key pub( mykeys )
m0: initial mode
m0 -[then outpayload := encrypt (inpayload ,k)]->m0

)
system merge (

header : in data int 0
payload : in data enc int encrypt (0,k0)
frame : out data (int ,enc int) (0, encrypt (0,k0))
m0: initial mode
m0 -[then frame :=( header , payload )]-> m0

)
flow inframe -> split . frame
flow split . header -> bypass . inheader
flow split . payload -> crypto . inpayload
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flow bypass . outheader -> merge . header
flow crypto . outpayload -> merge . payload
flow merge . frame -> outframe

)



B. Computation Tables
In the following more detailed descriptions of the execution of the different slicing
algorithms should be provided. Therefore, tables are provided showing how the fix-
point iteration in the slicing algorithms influences the result. For readability reasons,
the last step of the fixpoint iteration without a change is omitted.

B.1. Leak Component
Slicing for the output data port out leads to the following result.

Iteration Result
0 D = {example.out}

E = ∅
M = ∅

1 D = {example.out, leak.out}
E = ∅
M = {example.m0}

2 D = {example.out, leak.out, leak.s, leak.x, leak.in, example.in}
E = {leak.e1, leak.e2, example.e1, example.e2}
M = {example.m0, leak.m1, leak.m0}

Slicing for the output event port e2 leads to the following result.
Iteration Result

0 D = ∅
E = {example.e2}
M = ∅

1 D = ∅
E = {example.e2, leak.e2}
M = {example.m0}

2 D = {leak.s, leak.x, leak.in, example.in}
E = {example.e2, leak.e2, leak.e1, example.e1}
M = {example.m0, leak.m1, leak.m0}

B.2. Crypto Component
Iteration Result

0 D = {crypto.outpayload}
E = ∅
M = ∅

1 D = {crypto.outpayload, crypto.inpayload, crypto.k}
E = {crypto.m0}
M = ∅
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B.3. Cryptocontroller
Iteration Result

0 D = {cryptocontroller.outframe}
E = ∅
M = ∅
K = ∅
CU = ∅

1 D = {cryptocontroller.outframe,merge.frame}
E = ∅
M = {cryptocontroller.m0}
K = ∅
CU = ∅

2 D = {cryptocontroller.outframe,merge.frame,merge.header,
merge.payload, bypass.outheader, crypto.outpayload}
E = ∅
M = {cryptocontroller.m0,merge.m0}
K = ∅
CU = ∅

3 D = {cryptocontroller.outframe,merge.frame,merge.header,
merge.payload, bypass.outheader, crypto.outpayload,
bypass.inheader, [crypto.k], cryptocontroller.header}
E = ∅
M = {cryptocontroller.m0,merge.m0, bypass.m0, crypto.m0}
K = ∅
CU = {({crypto.inpayload}, {crypto.k})}

B.4. Secure Communication

Iteration Result
0 D = {seccom.outframe}

E = ∅
M = ∅
K = ∅
CU = ∅

1 D = {seccom.outframe, decryptocontroller.outframe}
E = ∅
M = {seccom.m0}
K = ∅
CU = ∅

2 D = {seccom.outframe, decryptocontroller.outframe,
merge2.outframe}
E = ∅
M = {seccom.m0, decryptocontroller.m0}
K = ∅
CU = ∅

3 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
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bypass2.outheader, decrypto.outpayload}
E = ∅
M = {seccom.m0, decryptocontroller.m0,merge2.m0}
K = ∅
CU = ∅

4 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header}
E = {decrypto.decrypt, decryptocontroller.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0, decrypto.m0}
K = {decrypto.k}
CU = ∅

5 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header, split.frame, cryptocontroller.outframe}
E = {decrypto.decrypt, decryptocontroller.decrypt,
seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0, decrypto.m0, split.m0, split.m1,
cryptocontroller.m0}
K = {decrypto.k}
CU = ∅

6 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header, split.frame, cryptocontroller.outframe,
merge.frame}
E = {decrypto.decrypt, decryptocontroller.decrypt,
seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0,
decrypto.m0, split.m0, split.m1, cryptocontroller.m0}
K = {decrypto.k}
CU = ∅

7 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header, split.frame, cryptocontroller.outframe,
merge1.frame,merge1.header,merge1.payload,
bypass1.outheader, crypto.outheader}
E = {decrypto.decrypt, decryptocontroller.decrypt,
seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0, decrypto.m0, split.m0, split.m1,
cryptocontroller.m0,merge1.m0}
K = {decrypto.k}



66 Appendix B. Computation Tables

CU = ∅
8 D = {seccom.outframe, decryptocontroller.outframe,

merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header, split.frame, cryptocontroller.outframe,
merge1.frame,merge1.header,merge1.payload,
bypass1.outheader, crypto.outheader, bypass1.inheader,
[crypto.k], cryptocontroller.inheader}
E = {decrypto.decrypt, decryptocontroller.decrypt,
seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0, decrypto.m0, split.m0, split.m1,
cryptocontroller.m0,merge1.m0, bypass1.m0, crypto.m0}
K = {decrypto.k}
CU = {({crypto.inpayload}, {crypto.k})}

9 D = {seccom.outframe, decryptocontroller.outframe,
merge2.frame,merge2.header,merge2.payload,
bypass2.outheader, decrypto.outpayload, bypass2.inheader,
split.header, split.frame, cryptocontroller.outframe,
merge1.frame,merge1.header,merge1.payload,
bypass1.outheader, crypto.outheader, bypass1.inheader,
s[crypto.k], cryptocontroller.inheader, seccom.inheader}
E = {decrypto.decrypt, decryptocontroller.decrypt,
seccom.decrypt}
M = {seccom.m0, decryptocontroller.m0,merge2.m0,
bypass2.m0, decrypto.m0, split.m0, split.m1,
cryptocontroller.m0,merge1.m0, bypass1.m0, crypto.m0}
K = {decrypto.k}
CU = {({crypto.inpayload}, {crypto.k})}

Slicing for the decrypted values crypto.inpayload leads to the following result.

Iteration Result
0 D = {crypto.inpayload}

E = ∅
M = ∅
K = ∅
CU = ∅

1 D = {crypto.inpayload, cryptocontroller.payload}
E = ∅
M = {cryptocontroller.m0}
K = ∅
CU = ∅

2 D = {crypto.inpayload, cryptocontroller.payload
seccom.inpayload}
E = ∅
M = {cryptocontroller.m0}
K = ∅
CU = ∅
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B.5. Cryptocontroller with Split
Iteration Result

0 D = {cryptocontroller.outframe}
E = ∅
M = ∅
K = ∅
CU = ∅

1 D = {cryptocontroller.outframe,merge.frame}
E = ∅
M = ∅
K = ∅
CU = ∅

2 D = {cryptocontroller.outframe,merge.frame,merge.header,
merge.payload, bypass.outheader, crypto.outpayload}
E = ∅
M = {merge.m0}
K = ∅
CU = ∅

3 D = {cryptocontroller.outframe,merge.frame,merge.header,
merge.payload, bypass.outheader, crypto.outpayload,
bypass.inheader, [crypto.k], split.header}
E = ∅
M = {merge.m0, bypass.m0, crypto.m0}
K = ∅
CU = {(crypto.inpayload, crypto.k)}

4 D = {cryptocontroller.outframe,merge.frame,merge.header,
merge.payload, bypass.outheader, crypto.outpayload,
bypass.inheader, [crypto.k], split.header, split.frame[0],
split.frame[1], cryptocontroller.inframe}
E = ∅
M = {merge.m0, bypass.m0, crypto.m0, split.m0}
K = ∅
CU = {({crypto.inpayload}, {crypto.k})}
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