Certificates for Probabilistic Pushdown Automata via Optimistic Value Iteration Tobias Winkler & Joost-Pieter Katoen

April 27, 2023 – TACAS 2023

Probabilistic Model Checking

Probabilistic Model

- Markov chain
- MDP

- ...

- Probabilistic TA

Property

- Reachability
- Safety
- LTL
- ...

Probabilistic Model Checking

Probabilistic Model

- Markov chain
- MDP

- ...

- Probabilistic TA

Property

- Reachability
- Safety
- LTL
- ...

Probabilistic Model Checking

Probabilistic Model

- Markov chain
- MDP

- ...

- Probabilistic TA

Property

- Reachability
- Safety
- LTL
- ...

(1) Fully formally verified model checkers

(1) Fully formally verified model checkers (2) Certifying model checking algorithms: compute result + easy-to-check witness

• Literature: certificates for MDP [Funke et al. '20], PTA [Jantsch et al. '20]

Certifying Algorithms for Probabilistic Pushdown Automata (pPDA)

This talk:

1) Every node has either 0 or 2 children, both with probability 1/2

- 1) Every node has either 0 or 2 children, both with probability 1/2
- 2) Leaves have value 0 or 1, again with probability 1/2 each

- 1) Every node has either 0 or 2 children, both with probability 1/2
- 2) Leaves have value 0 or 1, again with probability 1/2 each
- 3) And/Or-nodes alternate from root to leaves

- Every node has either 0 or 2 children, both 1) with probability 1/2
- 2) Leaves have value 0 or 1, again with probability 1/2 each
- 3) And/Or-nodes alternate from root to leaves
- 4) Root is an And-node or a leaf

- Every node has either 0 or 2 children, both 1) with probability 1/2
- 2) Leaves have value 0 or 1, again with probability 1/2 each
- 3) And/Or-nodes alternate from root to leaves
- 4) Root is an And-node or a leaf

What is the probability that a random tree evaluates to true?

 Model tree generation/evaluation as recursive probabilistic program

6/17

 Model tree generation/evaluation as recursive probabilistic program


```
bool and() { // main function
  prob {
   1/2: return // leaf
      (1/2: true | 1/2: false);
   1/2: { // inner node
     if(!or()) return false;
     else return or(); } } }
```

```
bool or() {
 prob {
    1/2: return
      (1/2: true | 1/2: false);
    1/2: {
      if(and()) return true;
      else return and(); } } }
```


- Model tree generation/evaluation as recursive probabilistic program
- Use our tool PRAY to construct a pPDA

bool and() { // main function prob { 1/2: return // leaf (1/2: true | 1/2: false); $1/2: \{ // \text{ inner node} \}$ if(!or()) return false; else return or(); } } }

```
bool or() {
  prob {
    1/2: return
      (1/2: true | 1/2: false);
    1/2: {
      if(and()) return true;
      else return and(); } } }
```


- Model tree generation/evaluation as recursive probabilistic program
- Use our tool PRAY to construct a pPDA

bool and() { // main function prob { 1/2: return // leaf (1/2: true | 1/2: false); 1/2: true | 1/2:

- Model tree generation/evaluation as recursive probabilistic program
- Use our tool PRAY to construct a pPDA
- Compute result:

$$Pr(V=0) \le \frac{391}{933} \approx 0.42$$
 $Pr(V=1) \le \frac{382}{657}$

bool and() { // main function prob { prob { 1/2: return // leaf 1/2: return (1/2: true | 1/2: false); 1/2: { // inner node 1/2: { if(!or()) return false; if(and()) return true; else return or(); } }

 ≈ 0.58

- Model tree generation/evaluation as recursive probabilistic program
- Use our tool PRAY to construct a pPDA
- Compute result:

$$Pr(V=0) \le \frac{391}{933} \approx 0.42$$
 $Pr(V=1) \le \frac{382}{657}$

 Correctness of result can be easily checked independently → certificate!

bool and() { // main function prob { 1/2: return // leaf (1/2: true | 1/2: false); 1/2: { if(!or()) return false; else return or(); } } else return or(); } }

 ≈ 0.58

6/17

Probabilistic Pushdown Automata [Esparza et al. '04] pPDA

Probabilistic Pushdown Automata [Esparza et al. '04] pPDA

Probabilistic Pushdown Automata [Esparza et al. '04] pPDA

7/17

Probabilistic Pushdown Automata [Esparza et al. '04] pPDA

7/17

[Esparza et al. '04]

Polynomial Equations

• Possibly many solutions \rightarrow want the least solution ≥ 0

• Possibly many solutions \rightarrow want the least solution ≥ 0

• Here:
$$x = 2 - \sqrt{2}$$

In the least solution ≥ 0 $y = \sqrt{2} - 1$

- Possibly many solutions \rightarrow want the least solution ≥ 0
- Here: $x = 2 \sqrt{2}$
- Approximate solution numerically [Etessami & Yannakakis '05]

$$y = \sqrt{2 - 1}$$

- Possibly many solutions \rightarrow want the least solution ≥ 0
- Here: $x = 2 \sqrt{2} \approx 0.582$
- Approximate solution numerically [Etessami & Yannakakis '05]

8
$$y = \sqrt{2} - 1 \approx 0.414$$

- Possibly many solutions \rightarrow want the least solution ≥ 0
- Here: $x = 2 \sqrt{2} \approx 0.583$
- Approximate solution numerically [Etessami & Yannakakis '05] Problem: How to certify that approximation is "correct"?

8
$$y = \sqrt{2} - 1 \approx 0.414$$

Naive Idea to Check Solution

• Given approximation x = 0.588, y = 0.414 check

Naive Idea to Check Solution

• Given approximation x = 0.588, y = 0.414 check

• This is unsound! Doesn't prove anything.

• Then: $(x, y) \ge$ (least solution)

- Then: $(x,y) \ge (\text{least solution})$
- (x, y) is a self-certifying upper bound!

- Then: $(x,y) \ge$ (least solution)
- (*x*,*y*) is a self-certifying upper bound!

Termination?

Algorithm does not terminate if we guess in the wrong direction

Termination?

Algorithm does not terminate if we guess in the wrong direction

Theorem

Convergence is guaranteed* if guessing direction is approximately an eigenvector of the system's Jacobi matrix evaluated at the current under-approximation.

Certificate should be formal proof
 → prefer exact rational numbers

- Certificate should be formal proof
 → prefer exact rational numbers
- 1. Run algorithm with floats

- Certificate should be formal proof
 → prefer exact rational numbers
- 1. Run algorithm with floats
- 2. Convert result to rationals

Float vs Exact Arithmetic

- Certificate should be formal proof
 → prefer exact rational numbers
- 1. Run algorithm with floats
- 2. Convert result to rationals
- 3. Check \geq with exact arithmetic (often fails!)

Float vs Exact Arithmetic

- Certificate should be formal proof
 → prefer exact rational numbers
- 1. Run algorithm with floats
- 2. Convert result to rationals
- 3. Check \geq with exact arithmetic (often fails!)
- 4. Repair
 → generalized k-induction [Batz et al. '21]

$X \rightarrow a \mid XYY$ $Y \rightarrow b \mid X \mid YY$

$X \rightarrow a \mid XYY$ $Y \rightarrow b \mid X \mid YY$

• Consistency: Is $\sum_{w \in \{a,b\}^*} Pr(w) = 1$?

15/17

$X \rightarrow a \mid XYY$ $Y \rightarrow b \mid X \mid YY$

• Consistency: Is $\sum_{w \in \{a,b\}^*} Pr(w) = 1$?

(I)
$$x = \frac{1}{2}(1 + xy^2)$$

(II) $y = \frac{1}{3}(1 + x + y^2)$

$X \rightarrow a \mid XYY$ $Y \rightarrow b \mid X \mid YY$

- Consistency: Is $\sum Pr(w) = 1$? $w \in \{a,b\}^*$
- Grammar consistent \iff least solution (x, y) = (1, 1)

(I)
$$x = \frac{1}{2}(1 + xy^2)$$

(II) $y = \frac{1}{3}(1 + x + y^2)$

$X \rightarrow a \mid XYY$ $Y \rightarrow b \mid X \mid YY$

- Consistency: Is $\sum Pr(w) = 1$? $w \in \{a,b\}^*$
- Grammar consistent \iff least solution (x, y) = (1, 1)
- Our algorithm finds certificates for inconsistency

(I)
$$x = \frac{1}{2}(1 + xy^2)$$

(II) $y = \frac{1}{3}(1 + x + y^2)$

Stochastic Grammars Benchmark Certificates for inconsistency

name	non-terminals	rules	time OVI	time SMT (z3)
brown	37	22,866	3.2s	TO
lemonde	121	32,885	40.1s	TO
negra	256	29,297	10.2s	37.2s
swbd	309	47,578	19.0 s	TO
tiger	318	52,184	94.5s	17.5s
tuebadz	196	8,932	2.6 s	15.3s
wsj	240	31,170	30.3 s	TO

Stochastic Grammars Benchmark Certificates for inconsistency

name	non-terminals	rules	time OVI	time SMT (z3)
brown	37	22,866	3.2 s	TO
lemonde	121	32,885	40.1s	TO
negra	256	29,297	10.2s	37.2s
swbd	309	47,578	19.0 s	TO
tiger	318	52,184	94.5s	17.5s
tuebadz	196	8,932	2.6 s	15.3s
wsj	240	31,170	30.3 s	TO

Stochastic Grammars Benchmark Certificates for inconsistency

name	non-terminals	rules	time OVI	time SMT (z3)
brown	37	22,866	3.2s	ТО
lemonde	121	32,885	40.1s	ТО
negra	256	29,297	10.2s	37.2s
swbd	309	47,578	19.0s	ТО
tiger	318	52,184	94.5s	17.5s
tuebadz	196	8,932	2.6s	15.3s
wsj	240	31,170	30.3 s	ТО
	brown lemonde negra swbd tiger tuebadz	brown 37 lemonde 121 negra 256 swbd 309 tiger 318 tuebadz 196	brown3722,866lemonde12132,885negra25629,297swbd30947,578tiger31852,184tuebadz1968,932	brown3722,8663.2slemonde12132,88540.1snegra25629,29710.2sswbd30947,57819.0stiger31852,18494.5stuebadz1968,9322.6s

Stochastic Grammars Benchmark QF_NRA **Certificates for inconsistency** aka ETR

name	non-terminals	rules	time OVI	time SMT (z3)
brown	37	22,866	3.2s	TO
lemonde	121	32,885	40.1s	ТО
negra	256	29,297	10.2s	37.2s
swbd	309	47,578	19.0s	ТО
tiger	318	52,184	94.5s	17.5s
tuebadz	196	8,932	2.6 s	15.3s
wsj	240	31,170	30.3 s	TO

#decimal digits of numerators/denominators in exact rationals always < 10

Stochastic Grammars Benchmark QF_NRA **Certificates for inconsistency** aka ETR

name	non-terminals	rules	time OVI	time SMT (z3)
brown	37	22,866	3.2 s	ТО
lemonde	121	32,885	40.1s	ТО
negra	256	29,297	10.2s	37.2s
swbd	309	47,578	19.0s	TO
tiger	318	52,184	94.5s	17.5s
tuebadz	196	8,932	2.6s	15.3s
wsj	240	31,170	30.3 s	ТО

- $\approx 90\%$ of runtime for arbitrary precision rational arithmetic

#decimal digits of numerators/denominators in exact rationals always < 10

Summary & Outlook

- Optimistic "guess-and-check" algorithm for computing self-certifying upper bounds on least solution of positive polynomial equations
- Certified verification of recursive probabilistic system
- Open: Complexity of algorithm
- Follow-up paper: Certificates for lower bounds & termination [W. & Katoen LICS'23]

Summary & Outlook

- Optimistic "guess-and-check" algorithm for computing self-certifying upper bounds on least solution of positive polynomial equations
- Certified verification of recursive probabilistic system
- Open: Complexity of algorithm
- Follow-up paper: Certificates for lower bounds & termination [W. & Katoen LICS'23]

Thank you for listening!

<u>`</u>														-	-
benchmark	Q	P	$ \Gamma $	vars	terms	sccs	scc_{max}	cert	G	D	$t_{\mathbb{Q}}$	t_{tot}	$ cert_{z3} $	D_{z3}	$t_{ m z3}$
rw-0.499	18	29	5	38	45	1	12	1	5	5	17%	163	1	2	11
rw-0.500	18	29	5	38	45	1	12	X	10	-	-	7327	1	2	10
rw-0.501	18	29	5	38	45	1	12	1	5	4	6%	36	1	13	12
geom-offspring	24	40	5	52	80	4	24	1	8	6	13%	15	1	9	16
golden	27	49	6	81	94	1	36	1	1	5	30%	10	1	7	14
and-or	50	90	7	149	182	1	48	1	2	4	26%	19	1	12	15260
gen-fun	85	219	7	202	327	1	16	1	2	3	32%	22	1	15	141
virus	68	149	27	341	551	1	220	1	1	5	38%	40	1	7	139
escape10	109	174	23	220	263	1	122	1	1	4	5%	56	1	7	48
escape25	258	413	53	518	621	1	300	1	1	5	17%	245	1	7	15958
escape50	508	813	103	1018	1221	1	600	1	1	7	23%	653	1	7	410
escape75	760	1215	153	1522	1825	1	904	1	2	9	10%	3803	X	-	ТО
escape100	1009	1614	203	2020	2423	1	1202	X	5	-	-	29027	1	6	939
escape200	2008	3213	403	4018	4821	1	2400	X	6	-	-	83781	X	-	ТО
sequential5	230	490	39	1017	1200	10	12	1	15	4	26%	103	1	8	1074
sequential7	572	1354	137	3349	3856	14	12	1	21	5	27%	1049	1	8	12822
sequential10	3341	8666	1036	26367	29616	20	12	1	30	5	2%	100613	1	8	453718
mod5	44	103	10	296	425	1	86	1	1	5	39%	28	1	9	34150
mod7	64	159	14	680	1017	1	222	1	1	6	69%	172	1	7	443
mod10	95	244	20	1574	2403	1	557	×	1	-	-	675	1	7	1245