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Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

• Literature: certificates for MDP [Funke et al. ’20], PTA [Jantsch et al. ’20]
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This talk: 
 

Certifying Algorithms for 
Probabilistic Pushdown Automata (pPDA)
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Example: Random And-Or Trees       [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both 
with probability 1/2

2) Leaves have value 0 or 1, again with 
probability 1/2 each

3) And/Or-nodes alternate from root to leaves

4) Root is an And-node or a leaf

What is the probability that a random tree evaluates to true?
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checked independently → certificate! qv0 v1

(1/4,A, ε)(1/4,O, ε)

(1/2,A, OA)
(1/2,O, AO)

(1/4,A, ε) (1/4,O, ε)

(1,A, ε) (1,O, ε)

(1,O, A) (1,A, O)

• Model tree generation/evaluation as 
recursive probabilistic program

• Use our tool PRAY to construct a pPDA

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176



Probabilistic Pushdown Automata  [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/177



Probabilistic Pushdown Automata  [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/177



Probabilistic Pushdown Automata  [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

Z q0

q1

1/4

q0

1/2

q0

1/4

Z
Z

q1

1/4

Z

1

1/2

q1
Z
Z

1

11/41/4 1/2
/177



Probabilistic Pushdown Automata  [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

Z q0

q1

1/4

q0

1/2

q0

1/4

Z
Z

q1

1/4

Z

1

1/2

q1
Z
Z

1

11/41/4 1/2
/177



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/178



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

                                         [q0Zqi] = Pr( )
q0

Z

qi

Reachability 
probability

/178



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

                                         [q0Zqi] = Pr( )
q0

Z

qi

Reachability 
probability

/178



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

(I) 


(II)

[q0Zq0] =
1
2

+
1
4

[q0Zq0]2

[q0Zq1] =
1
4

+
1
4

[q0Zq0][q0Zq1]+
1
4

[q0Zq1]

                                         [q0Zqi] = Pr( )
q0

Z

qi

Reachability 
probability

/178



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

                                         [q0Zqi] = Pr( )
q0

Z

qi

Reachability 
probability

/178



pPDA  Polynomial Equations       [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

                                         [q0Zqi] = Pr( )
q0

Z

qi

Reachability 
probability

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/178



Polynomial Equations

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179



Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179



Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here:                                 x = 2 − 2 y = 2 − 1

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179



Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here:                                 x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179



Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here:                                 x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]

(I) 


(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

≈ 0.588 ≈ 0.414

/179



Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here:                                 x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]
• Problem: How to certify that approximation is “correct”?
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• This is unsound! Doesn’t prove anything.
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Guess optimistically, then check 
[Hartmanns & Kaminski ’20]
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Termination?

• Algorithm does not terminate if we 
guess in the wrong direction
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Termination?

• Algorithm does not terminate if we 
guess in the wrong direction
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y

Theorem  
Convergence is guaranteed* if guessing 
direction is approximately an eigenvector 
of the system’s Jacobi matrix evaluated 
at the current under-approximation.

/1713



Float vs Exact Arithmetic

x

y

/1714



Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

x

y

/1714



Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

x

y

/1714



Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

x

y

/1714



Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

3. Check  with exact arithmetic (often fails!)≥

x

y

/1714



Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

3. Check  with exact arithmetic (often fails!)≥

4. Repair 
→ generalized k-induction [Batz et al. ’21]
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X → a ∣ XYY

Y → b ∣ X ∣ YY

(I) 


(II)

x =
1
2

(1 + xy2)

y =
1
3

(1 + x + y2)

• Consistency: Is  ?      ∑
w∈{a,b}*

Pr(w) = 1

• Grammar consistent  least solution ⟺ (x, y) = (1,1)

• Our algorithm finds certificates for inconsistency

•  (e.g.  is inconsistent)
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Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO
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Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

• #decimal digits of numerators/denominators in exact rationals always < 10

• ≈ 90% of runtime for arbitrary precision rational arithmetic

QF_NRA 
aka ETR
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Summary & Outlook

• Optimistic “guess-and-check” algorithm for 
computing self-certifying upper bounds on least 
solution of positive polynomial equations


• Certified verification of recursive probabilistic 
system


• Open: Complexity of algorithm


• Follow-up paper: Certificates for lower bounds 
& termination [W. & Katoen LICS’23]
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Thank you for listening!
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