
Certificates for 
Probabilistic Pushdown Automata via 
Optimistic Value Iteration
Tobias Winkler & Joost-Pieter Katoen

April 27, 2023 —TACAS 2023

/171

Probabilistic Model Checking

Probabilistic Model 
- Markov chain 
- MDP 
- Probabilistic TA

- …

Property
- Reachability

- Safety

- LTL

- …

/172

Probabilistic Model Checking

Probabilistic Model 
- Markov chain 
- MDP 
- Probabilistic TA

- …

Property
- Reachability

- Safety

- LTL

- …

/172

Probabilistic Model Checking

Probabilistic Model 
- Markov chain 
- MDP 
- Probabilistic TA

- …

Property
- Reachability

- Safety

- LTL

- …

?
?
?
?
?

?
?

?

?
?

/172

Bugs in Model Checkers? Two solutions

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

?
?
?

?
?

?
?

?

?
?

Model

Property

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

?
?
?

?
?

?
?

?

?
?

Model

Property

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

?
?
?

?
?

?
?

?

?
?

Model

Property

certificate
checker

/
?

invalid certificate

/173

Bugs in Model Checkers? Two solutions

(1) Fully formally verified model checkers

(2) Certifying model checking algorithms: compute result + easy-to-check witness

• Literature: certificates for MDP [Funke et al. ’20], PTA [Jantsch et al. ’20]

?
?
?

?
?

?
?

?

?
?

Model

Property

certificate
checker

/
?

invalid certificate

/173

This talk:

Certifying Algorithms for
Probabilistic Pushdown Automata (pPDA)

/174

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/175

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both
with probability 1/2

/175

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both
with probability 1/2

2) Leaves have value 0 or 1, again with
probability 1/2 each

/175

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both
with probability 1/2

2) Leaves have value 0 or 1, again with
probability 1/2 each

3) And/Or-nodes alternate from root to leaves

/175

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both
with probability 1/2

2) Leaves have value 0 or 1, again with
probability 1/2 each

3) And/Or-nodes alternate from root to leaves

4) Root is an And-node or a leaf

/175

Example: Random And-Or Trees [Brázdil et al. ‘15]

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

1) Every node has either 0 or 2 children, both
with probability 1/2

2) Leaves have value 0 or 1, again with
probability 1/2 each

3) And/Or-nodes alternate from root to leaves

4) Root is an And-node or a leaf

What is the probability that a random tree evaluates to true?

/175

Example cont.
∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

• Model tree generation/evaluation as
recursive probabilistic program

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

• Model tree generation/evaluation as
recursive probabilistic program

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

• Model tree generation/evaluation as
recursive probabilistic program

• Use our tool PRAY to construct a pPDA

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

qv0 v1

(1/4,A, ε)(1/4,O, ε)

(1/2,A, OA)
(1/2,O, AO)

(1/4,A, ε) (1/4,O, ε)

(1,A, ε) (1,O, ε)

(1,O, A) (1,A, O)

• Model tree generation/evaluation as
recursive probabilistic program

• Use our tool PRAY to construct a pPDA

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

• Compute result: 
 

 Pr(V = 0) ≤
391
933

≈ 0.42 Pr(V = 1) ≤
382
657

≈ 0.58

qv0 v1

(1/4,A, ε)(1/4,O, ε)

(1/2,A, OA)
(1/2,O, AO)

(1/4,A, ε) (1/4,O, ε)

(1,A, ε) (1,O, ε)

(1,O, A) (1,A, O)

• Model tree generation/evaluation as
recursive probabilistic program

• Use our tool PRAY to construct a pPDA

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Example cont.

• Compute result: 
 

 Pr(V = 0) ≤
391
933

≈ 0.42 Pr(V = 1) ≤
382
657

≈ 0.58

• Correctness of result can be easily
checked independently → certificate! qv0 v1

(1/4,A, ε)(1/4,O, ε)

(1/2,A, OA)
(1/2,O, AO)

(1/4,A, ε) (1/4,O, ε)

(1,A, ε) (1,O, ε)

(1,O, A) (1,A, O)

• Model tree generation/evaluation as
recursive probabilistic program

• Use our tool PRAY to construct a pPDA

∧

∨ ∨

∧ ∧ 1 0

1 0 1 1

/176

Probabilistic Pushdown Automata [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/177

Probabilistic Pushdown Automata [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/177

Probabilistic Pushdown Automata [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

Z q0

q1

1/4

q0

1/2

q0

1/4

Z
Z

q1

1/4

Z

1

1/2

q1
Z
Z

1

11/41/4 1/2
/177

Probabilistic Pushdown Automata [Esparza et al. ’04]

pPDA

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

Z q0

q1

1/4

q0

1/2

q0

1/4

Z
Z

q1

1/4

Z

1

1/2

q1
Z
Z

1

11/41/4 1/2
/177

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/178

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

 [q0Zqi] = Pr()
q0

Z

qi

Reachability 
probability

/178

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

 [q0Zqi] = Pr()
q0

Z

qi

Reachability 
probability

/178

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

(I)

(II)

[q0Zq0] =
1
2

+
1
4

[q0Zq0]2

[q0Zq1] =
1
4

+
1
4

[q0Zq0][q0Zq1]+
1
4

[q0Zq1]

 [q0Zqi] = Pr()
q0

Z

qi

Reachability 
probability

/178

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

 [q0Zqi] = Pr()
q0

Z

qi

Reachability 
probability

/178

pPDA Polynomial Equations [Esparza et al. ’04]

q0 q1

(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

 [q0Zqi] = Pr()
q0

Z

qi

Reachability 
probability

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/178

Polynomial Equations

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179

Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179

Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here: x = 2 − 2 y = 2 − 1

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179

Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here: x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

/179

Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here: x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

≈ 0.588 ≈ 0.414

/179

Polynomial Equations

• Possibly many solutions → want the least solution ≥ 0

• Here: x = 2 − 2 y = 2 − 1
• Approximate solution numerically [Etessami & Yannakakis ’05]
• Problem: How to certify that approximation is “correct”?

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

≈ 0.588 ≈ 0.414

/179

Naive Idea to Check Solution

• Given approximation , checkx = 0.588 y = 0.414

(I)

(II)

x ≈ε
1
2

+
1
4

x2

y ≈ε
1
4

+
1
4

xy+
1
4

y

/1710

Naive Idea to Check Solution

• Given approximation , checkx = 0.588 y = 0.414

(I)

(II)

x ≈ε
1
2

+
1
4

x2

y ≈ε
1
4

+
1
4

xy+
1
4

y

• This is unsound! Doesn’t prove anything.

/1710

Certifying Solutions

• Our idea: Compute approximate solution with a special property:

/1711

Certifying Solutions

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y

• Our idea: Compute approximate solution with a special property:

/1711

Certifying Solutions

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y

• Our idea: Compute approximate solution with a special property:

• Then: (x,y) ≥ (least solution)

/1711

Certifying Solutions

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y

• Our idea: Compute approximate solution with a special property:

• Then: (x,y) ≥ (least solution)
• is a self-certifying upper bound! (x,y)

/1711

Certifying Solutions

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y

• Our idea: Compute approximate solution with a special property:

• Then: (x,y) ≥ (least solution)
• is a self-certifying upper bound! (x,y)

/1711

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

/1712

Computing Certifying Solutions

(I)

(II)

x =
1
2

+
1
4

x2

y =
1
4

+
1
4

xy+
1
4

y

x

y least
solution

“ ”-solutions≥

“Optimistic” Value Iteration

Guess optimistically, then check 
[Hartmanns & Kaminski ’20]

/1712

Termination?

• Algorithm does not terminate if we
guess in the wrong direction

x

y

/1713

Termination?

• Algorithm does not terminate if we
guess in the wrong direction

x

y

Theorem  
Convergence is guaranteed* if guessing
direction is approximately an eigenvector
of the system’s Jacobi matrix evaluated
at the current under-approximation.

/1713

Float vs Exact Arithmetic

x

y

/1714

Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

x

y

/1714

Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

x

y

/1714

Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

x

y

/1714

Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

3. Check with exact arithmetic (often fails!)≥

x

y

/1714

Float vs Exact Arithmetic

• Certificate should be formal proof 
→ prefer exact rational numbers

1. Run algorithm with floats

2. Convert result to rationals

3. Check with exact arithmetic (often fails!)≥

4. Repair 
→ generalized k-induction [Batz et al. ’21]

x

y

/1714

Application
Consistency of stochastic CFG

X → a ∣ XYY

Y → b ∣ X ∣ YY

• (e.g. is inconsistent)

/1715

Application
Consistency of stochastic CFG

X → a ∣ XYY

Y → b ∣ X ∣ YY

• Consistency: Is ? ∑
w∈{a,b}*

Pr(w) = 1

• (e.g. is inconsistent)

/1715

Application
Consistency of stochastic CFG

X → a ∣ XYY

Y → b ∣ X ∣ YY

(I)

(II)

x =
1
2

(1 + xy2)

y =
1
3

(1 + x + y2)

• Consistency: Is ? ∑
w∈{a,b}*

Pr(w) = 1

• (e.g. is inconsistent)

/1715

Application
Consistency of stochastic CFG

X → a ∣ XYY

Y → b ∣ X ∣ YY

(I)

(II)

x =
1
2

(1 + xy2)

y =
1
3

(1 + x + y2)

• Consistency: Is ? ∑
w∈{a,b}*

Pr(w) = 1

• Grammar consistent least solution ⟺ (x, y) = (1,1)

• (e.g. is inconsistent)

/1715

Application
Consistency of stochastic CFG

X → a ∣ XYY

Y → b ∣ X ∣ YY

(I)

(II)

x =
1
2

(1 + xy2)

y =
1
3

(1 + x + y2)

• Consistency: Is ? ∑
w∈{a,b}*

Pr(w) = 1

• Grammar consistent least solution ⟺ (x, y) = (1,1)

• Our algorithm finds certificates for inconsistency

• (e.g. is inconsistent)

/1715

Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

/1716

Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

QF_NRA
aka ETR

/1716

Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

QF_NRA
aka ETR

/1716

Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

• #decimal digits of numerators/denominators in exact rationals always < 10

QF_NRA
aka ETR

/1716

Stochastic Grammars Benchmark
Certificates for inconsistency

name non-terminals rules time OVI time SMT (z3)
brown 37 22,866 3.2s TO

lemonde 121 32,885 40.1s TO
negra 256 29,297 10.2s 37.2s
swbd 309 47,578 19.0s TO
tiger 318 52,184 94.5s 17.5s

tuebadz 196 8,932 2.6s 15.3s
wsj 240 31,170 30.3s TO

• #decimal digits of numerators/denominators in exact rationals always < 10

• ≈ 90% of runtime for arbitrary precision rational arithmetic

QF_NRA
aka ETR

/1716

Summary & Outlook

• Optimistic “guess-and-check” algorithm for
computing self-certifying upper bounds on least
solution of positive polynomial equations

• Certified verification of recursive probabilistic
system

• Open: Complexity of algorithm

• Follow-up paper: Certificates for lower bounds
& termination [W. & Katoen LICS’23]

x

y

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y
(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

/1717

Summary & Outlook

• Optimistic “guess-and-check” algorithm for
computing self-certifying upper bounds on least
solution of positive polynomial equations

• Certified verification of recursive probabilistic
system

• Open: Complexity of algorithm

• Follow-up paper: Certificates for lower bounds
& termination [W. & Katoen LICS’23]

x

y

(I)

(II)

x ≥
1
2

+
1
4

x2

y ≥
1
4

+
1
4

xy+
1
4

y
(1/2, Z, ε)

(1/4, Z, ZZ)

(1/4, Z, ε)

(1, Z, ε)

Thank you for listening!

/1717

/1718

