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Cyber-Physical Systems

“The term cyber-physical systems (CPS) refers to a new generation of sys-
tems with integrated computational and physical capabilities that can interact
with humans through many new modalities. The ability to interact with, and
expand the capabilities of, the physical world through computation, communi-
cation, and control is a key enabler for future technology developments.”

[Radhakisan Baheti and Helen Gill, The Impact of Control Technology, 2011]

“How can we provide people with CPS they can bet their lives on?”
[Jeannette Wing]
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Hybrid Systems
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Crucial question :
How do the controller and the plant interact?

Traditional answer :
Coupling assumed to be (or at least modelled as) delay-free.

; Mode dynamics is covered by the conjunction of the individual ODEs.
; Switching btw. modes is an immediate reaction to environmental conditions.
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Instantaneous Coupling
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Following the tradition, above (rather typical) Simulink model assumes

delay-free coupling between all components,

instantaneous feed-through within all functional blocks.

Central questions :

1 Is this realistic?

2 If not, does it have observable effect on control performance?

3 May that effect be detrimental or even harmful?
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Q1 : Is Instantaneous Coupling Realistic?

Digital control needs A/D and D/A conversion, which
induces latency in signal forwarding.

Digital signal processing, especially in complex sen-
sors like CV, needs processing time, adding signal de-
lays.

Networked control introduces communication la-
tency into the feedback control loop.

Harvesting, fusing, and forwarding data through sen-
sor networks enlarge the latter by orders of magni-
tude.
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Q1 : Is Instantaneous Coupling Realistic? – No.

Digital control needs A/D and D/A conversion, which
induces latency in signal forwarding.

Digital signal processing, especially in complex sen-
sors like CV, needs processing time, adding signal de-
lays.

Networked control introduces communication la-
tency into the feedback control loop.

Harvesting, fusing, and forwarding data through sen-
sor networks enlarge the latter by orders of magni-
tude.
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Q1a : Resultant Forms of Delay

Delayed reaction : Reaction to a stimulus is not immediate.

Easy to model in timed automata, hybrid automata, etc. :

a / x:=0 x > 3 / b
x<4

Thus amenable to the pertinent analysis tools.

; Not of interest today.

Network delay : Information of different age coexists and is queuing in the network
when piped towards target.

End-to-end latency may exceed sampling intervals etc. by orders of magnitude

Not (continuous-time pipelined delay) or not efficiently (discrete-time pipelined
delay) expressible in our std. models.

; Our theme today.
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Q2 : Do Delays Have Observable Effect?
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ẋ(t) = −x(t−1)
x([−1, 0]) ≡ 1

0 5 10 15
−0.5

0

0.5

1

t

x

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 7 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Q2 : Do Delays Have Observable Effect?

Delayed logistic equation [G. Hutchinson, 1948] :

Ṅ(t) = N(t)[1− N(t− r)]
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Q2 : Do Delays Have Observable Effect? – Yes, they have.

Delayed logistic equation [G. Hutchinson, 1948] :

Ṅ(t) = N(t)[1− N(t− r)]
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Q3 : May the Effects be Harmful?
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Figure – A robot escape game in a 4×4 room, with
Σr = {RU, UR, LU, UL, RD, DR, LD, DL, ϵ},
Σk = {R, L, U, D}.

No delay :
Robot always wins by circling around
the obstacle at (1,2).

1 step delay :
Robot wins by 1-step pre-decision.

2 steps delay :
Robot still wins, yet extra memory is
needed.

3 steps delay :
Robot is unwinnable (uncontrollable)
anymore.
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Q3 : May the Effects be Harmful? – Yes, delays may well annihilate
control performance.
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Consequences

Delays in feedback control loops are ubiquitous.

They may well invalidate the safety/stability/…certificates obtained by verifying
delay-free abstractions of the feedback control systems.

Automatic verification/synthesis methods addressing feedback delays in hybrid
systems should therefore abound!

Surprisingly, they don’t :
1 M. Peet, S. Lall : Constructing Lyapunov functions for nonlinear DDEs using SDP (NOLCOS ’04)

2 S. Prajna, A. Jadbabaie :Meth. f. safety verification of time-delay syst. (CDC ’05)

3 L. Zou, M. Fränzle, N. Zhan, P. N. Mosaad : Autom. verific. of stabil. and safety (CAV ’15)

4 H. Trinh, P. T. Nam, P. N. Pathirana, H. P. Le : On bwd.s and fwd.s reachable sets bounding for perturbed
time-delay systems (Appl. Math. & Comput. 269, ’15)

5 Z. Huang, C. Fan, S. Mitra : Bounded invariant verif. for time-delayed nonlinear networked dyn. syst. (NAHS ’16)

6 P. N. Mosaad, M. Fränzle, B. Xue : Temporal logic verification for DDEs (ICTAC ’16)

7 M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Validat. simul.-based verific. (FM ’16)

8 B. Xue, P. N. Mosaad, M. Fränzle, M. Chen, Y. Li, N. Zhan : Safe approx. of reach. sets for DDEs (FORMATS ’17)

9 E. Goubault, S. Putot, L. Sahlman : Approximating flowpipes for DDEs (CAV ’18)

10 M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Synthesiz. controllers resilient to delayed interact. (ATVA ’18)

11 S. Feng, M. Chen, N. Zhan, M. Fränzle, B. Xue : Taming delays in dyn. syst. : Unbounded verif. of DDEs (CAV ’19)

12 [M. Zimmermann. LICS ’18, GandALF ’17], [F. Klein & M. Zimmermann. ICALP ’15, CSL ’15]

(plus a handful of related versions)
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Overview of the Tutorial

Cyber-Physical 
Systems

0

2 Continuous Dynamics

Sensitivity + Error → Simulation-Based Verif.
Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety

1 Discrete Dynamics

Safety Games 
under Delays

1.1
Incremental 

Synthesis

1.2
Equivalent Controllability under 

Diff. Delay Patterns

1.3 Delays

Stability

Reduction

Verifier

Property Φ

System S

Environm. E

YES [proof]

NO + counterx.

Synthesizer

Property Φ

System S
(S‖E |= Φ)

Environm. E
©S. A. Seshia, 2015
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Sensitivity + Error → Simulation-Based Verif.
Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety

1 Discrete Dynamics

Safety Games 
under Delays

1.1
Incremental 

Synthesis

1.2
Equivalent Controllability under 

Diff. Delay Patterns

1.3 Delays
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The Agenda

1 Synthesizing Delay-Resilient Safe Controllers

2 Verifying Safety of Delayed Dynamics

3 Concluding Remarks
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Outline

1 Synthesizing Safe Controllers Resilient to Delayed Interaction
Safety Games under Delays
Incremental Synthesis
Equivalent Controllability

2 Verifying Safety of Delayed Differential Dynamics
Delayed Differential Dynamics
Bounded Safety Verification
Unbounded Safety Verification

3 Concluding Remarks
Summary
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Solving Discrete Safety Games

Staying safe and reaching an objective
when observation & actuation are confined by delays

—Joint work with M. Fränzle, Y. Li, and P. N. Mosaad—
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Delayed Safety Games

Staying Safe
When Observation & Actuation Suffer from Serious Delays

©ESA

You could move slowly. (Well, can you?)
You could trust autonomy.
Or you have to anticipate and issue actions early.
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Delayed Safety Games

A Trivial Safety GameA Trivial Safety Game

a

b u

u

u

b

a

a

b

u

u

v

v

e
3

a
3

a
4

e
2

a

a
1

e
1

2

a
5

Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a"
except in e3:

e1, e2 7→ a
e3 7→ b

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 13 / 39

Goal : Avoid a5 by appropriate

actions of player e.

Strategy : May always play ”a” except in e3 :

e1, e2 7→ a
e3 7→ b

Properties : Determinacy and memoryless.
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Delayed Safety Games

Playing Safety Game Subject to Discrete Delay
Playing Subject to Discrete Delay

Shift registers
Game state AdversaryEgo player

Observation: It doesn’t make an observable difference for the joint dynamics
whether delay occurs in perception, actuation, or both.

Consequence: There is an1 obvious reduction to a safety game of perfect
information.

1

In fact, two different ones: To mimic opacity of the shift registers, delay has to be
moved to actuation/sensing for ego/adversary, resp. The two thus play different games!

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 14 / 39
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Delayed Safety Games

Reduction to Delay-Free Games
from Ego-Player Perspective

The Reduction
from Ego-Player Perspective

Ego
input Σ

Shift register

Σ / Ego inp. Adv. inp.

Safe / unsafe

G
a

m
e

 g
ra

p
h

Σ

Safety games w. delay can be solved algorithmically.

Game graph incurs blow-up by factor |Alphabet(ego)|delay.
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© Safety games w. delay can be solved algorithmically.

§ Game graph incurs blow-up by factor |Alphabet(ego)|delay.
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Delayed Safety Games

The Simple Safety Game
…but with DelayA Trivial Safety Game
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Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a"
except in e3:

e1, e2 7→ a
e3 7→ b

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 13 / 39

No delay :
e1, e2 7→ a
e3 7→ b

1 step delay : Strategy?
a1, a4 7→ a
a2, a3 7→ b

2 steps delay : Strategy?

e1 7→


a if 2 steps back

an ”a” was issued,
b if 2 steps back

a ”b” was issued.
e2 7→ b
e3 7→ a

Need memory!
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a if 2 steps back
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Incremental Synthesis

Incremental Synthesis in a Nutshell

Observation : A winning strategy for delay k′ > k can always be utilized for a safe
win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being
winning under delay k′ > k.

Idea : Incrementally filter out loss states &
incrementally synthesize winning strategy for the remaining :

1 Synthesize winning strategy for the delay-free counterpart ;
2 For each winning state, lift strategy from delay k to k+ 1 ;
3 Remove states where this does not succeed;
4 Repeat from 2 until either delay-resilience suffices (winning) or
initial state turns lossy (losing).

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan :What’s to come is still unsure : Synthesizing controllers

resilient to delayed interaction. ATVA ’18. [Distinguished Paper Award].

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 19 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Incremental Synthesis

Incremental Synthesis in a Nutshell

Observation : A winning strategy for delay k′ > k can always be utilized for a safe
win under delay k.

Consequence : A position is winning for delay k is a necessary condition for it being
winning under delay k′ > k.

Idea : Incrementally filter out loss states &
incrementally synthesize winning strategy for the remaining :

1 Synthesize winning strategy for the delay-free counterpart ;
2 For each winning state, lift strategy from delay k to k+ 1 ;
3 Remove states where this does not succeed;
4 Repeat from 2 until either delay-resilience suffices (winning) or
initial state turns lossy (losing).

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan :What’s to come is still unsure : Synthesizing controllers

resilient to delayed interaction. ATVA ’18. [Distinguished Paper Award].

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 19 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Incremental Synthesis

Incremental Synthesis of Delay-Tolerant Strategies

1 Generate amaximally permissive strategy for delay k = 0.

2 Advance to delay k + 1 :

If k odd : For each (ego-)winning adversarial state define strategy as

u

v

u

v

a

e

5

e
4

a

e

5

e
4

3 3

after playing σ1, . . . σ(k−1)/2,
play {a, c, e} ∩ {b, c, e, f} = {c, e}

play {b, c, e, f}

play {a, c, e}
after playing σ1, . . . σ(k−1)/2,

after playing σ1, . . . σ(k−1)/2,

… and eliminate any dead ends by bwd. traversal.

If k even : For each winning ego state define strategy as

c

a

c

a

b
4

a

3
a

5

a
5

e

3
a

5

a
5

e

3

play σ1, . . . σk/2,

play σ′
1, . . . σ

′
k/2,

play a, σ1, . . . , σk/2 or
play c, σ′

1, . . . , σ
′
k/2

3 Repeat from 2 until either delay-resilience suffices or initial state turns lossy.
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Incremental Synthesis

Incremental vs. Reduction-Based
14 M. Chen et al.

Benchmark Reduction + Explicit-State Synthesis Incremental Explicit-State Synthesis

name |S| |→| |U| δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 %

Exmp.trv1 14 20 4 ≥ 22 0.00 0.00 0.01 0.02 0.02 ≥ 30 0.00 0.00 0.00 0.01 0.01
Exmp.trv2 14 22 4 = 2 0.00 0.01 0.01 0.02 – = 2 0.00 0.00 0.00 0.01 – 81.97
Escp.4×4 224 738 16 = 2 0.08 11.66 11.73 1059.23 – = 2 0.08 0.13 0.22 0.25 – 99.02
Escp.4×5 360 1326 20 = 2 0.18 34.09 33.80 3084.58 – = 2 0.18 0.27 0.46 0.63 – 99.02
Escp.5×5 598 2301 26 ≥ 2 0.46 96.24 97.10 ? ? = 2 0.46 0.68 1.16 1.71 – 98.98
Escp.5×6 840 3516 30 ≥ 2 1.01 217.63 216.83 ? ? = 2 1.00 1.42 2.40 4.30 – 99.00
Escp.6×6 1224 5424 36 ≥ 2 2.13 516.92 511.41 ? ? = 2 2.06 2.90 5.12 10.30 – 98.97
Escp.7×7 2350 11097 50 ≥ 2 7.81 2167.86 2183.01 ? ? = 2 7.71 10.67 19.04 52.47 – 98.99
Escp.7×8 3024 14820 56 ≥ 0 13.07 ? ? ? ? = 2 13.44 18.25 32.69 108.60 – 99.01

Benchmark Reduction + Yosys + SafetySynth (symbolic) Incremental Synthesis (explicit-state implementation)

name δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 %

Stub.4×4 = 2 1.07 1.24 1.24 1.80 – – – 0.04 0.07 0.12 0.18 – – – 98.98
Stub.4×5 = 2 1.16 1.49 1.49 2.83 – – – 0.08 0.14 0.25 0.44 – – – 98.97
Stub.5×5 = 2 1.19 2.61 2.50 13.67 – – – 0.21 0.37 0.63 1.17 – – – 98.97
Stub.5×6 = 2 1.18 2.60 2.59 23.30 – – – 0.42 0.69 1.20 2.49 – – – 98.96
Stub.6×6 = 4 1.17 2.76 2.74 19.96 19.69 655.24 – 0.93 1.47 2.60 5.79 7.54 7.60 – 99.89
Stub.7×7 = 4 1.23 2.50 2.48 24.57 23.01 2224.62 – 3.60 5.52 10.08 22.75 31.18 32.98 – 99.88

δmax: the maximum delay under whichGδ is controllable.
δmax = δ′:Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ while uncontrollable under any delay δ > δ′.
δmax ≥ δ′: Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ within 1 hour CPU time bound, yet unknown under
δ > δ′ due to the limitation of computing capability.
–: already for smaller δ the controller has no winning strategy.
?: algorithm fails to answer the control/synthesis problem within 1 hour of CPU time.
%: percentage of savings in state space compared to the reduction-based methods, as obtained on δmax + 1.

Table 1: Benchmark results in relation to reduction-based approaches (time in seconds)

Within the lower part of Table 1, the performance of the current explicit-state im-
plementation of Algorithm 1 is compared with that of SafetySynth, the winner in the
sequential safety synthesis track of the 3rd and 4th Reactive Synthesis Competition4

(SYNTCOMP 2016 and 2017). In order to be able to examine the efficiency of our
incremental algorithm under larger delays, we used a slight modification of the escape
game forbidding the kid to take moves to the right or up, thus increasing the controlla-
bility for the robot. Note that Algorithm 1 completes synthesis faster in these “stubborn”
scenarios due to the reduced action set. SafetySynth implements a symbolic backward
fixed-point algorithm for solving delay-free safety games using the CUDD package.
Its input is an extension of the AIGER5 format known from hardware model-checking
and synthesis. We therefore provided symbolic models of the escape games in Verilog6

and compiled them to AIGER format using Yosys7. Verilog supports compact symbolic
modelling of the coordinates other than an explicit representation of the game graph
as in Fig. 3, and further admits direct use of shift registers for memorizing actions of
the robot under delays. Therefore, as visible in Table 1, SafetySynth outperforms our
explicit-state safety synthesis for some large room sizes under small delays. For larger
delays it is, however, evident that our incremental algorithm always wins, despite its
use of non-symbolic encodings.

Remark 2. It would be desirable to pursue a comparison on standard benchmarks like
the synthesis track of SYNTCOMP. As these are conveyed in AIGER format only and

4 http://www.syntcomp.org/ 5 http://fmv.jku.at/aiger/
6 http://www.verilog.com/ 7 http://www.clifford.at/yosys/

Table – Benchmark results in relation to reduction-based approaches (time in seconds)
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name δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 %

Stub.4×4 = 2 1.07 1.24 1.24 1.80 – – – 0.04 0.07 0.12 0.18 – – – 98.98
Stub.4×5 = 2 1.16 1.49 1.49 2.83 – – – 0.08 0.14 0.25 0.44 – – – 98.97
Stub.5×5 = 2 1.19 2.61 2.50 13.67 – – – 0.21 0.37 0.63 1.17 – – – 98.97
Stub.5×6 = 2 1.18 2.60 2.59 23.30 – – – 0.42 0.69 1.20 2.49 – – – 98.96
Stub.6×6 = 4 1.17 2.76 2.74 19.96 19.69 655.24 – 0.93 1.47 2.60 5.79 7.54 7.60 – 99.89
Stub.7×7 = 4 1.23 2.50 2.48 24.57 23.01 2224.62 – 3.60 5.52 10.08 22.75 31.18 32.98 – 99.88

δmax: the maximum delay under whichGδ is controllable.
δmax = δ′:Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ while uncontrollable under any delay δ > δ′.
δmax ≥ δ′: Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ within 1 hour CPU time bound, yet unknown under
δ > δ′ due to the limitation of computing capability.
–: already for smaller δ the controller has no winning strategy.
?: algorithm fails to answer the control/synthesis problem within 1 hour of CPU time.
%: percentage of savings in state space compared to the reduction-based methods, as obtained on δmax + 1.

Table 1: Benchmark results in relation to reduction-based approaches (time in seconds)

Within the lower part of Table 1, the performance of the current explicit-state im-
plementation of Algorithm 1 is compared with that of SafetySynth, the winner in the
sequential safety synthesis track of the 3rd and 4th Reactive Synthesis Competition4

(SYNTCOMP 2016 and 2017). In order to be able to examine the efficiency of our
incremental algorithm under larger delays, we used a slight modification of the escape
game forbidding the kid to take moves to the right or up, thus increasing the controlla-
bility for the robot. Note that Algorithm 1 completes synthesis faster in these “stubborn”
scenarios due to the reduced action set. SafetySynth implements a symbolic backward
fixed-point algorithm for solving delay-free safety games using the CUDD package.
Its input is an extension of the AIGER5 format known from hardware model-checking
and synthesis. We therefore provided symbolic models of the escape games in Verilog6

and compiled them to AIGER format using Yosys7. Verilog supports compact symbolic
modelling of the coordinates other than an explicit representation of the game graph
as in Fig. 3, and further admits direct use of shift registers for memorizing actions of
the robot under delays. Therefore, as visible in Table 1, SafetySynth outperforms our
explicit-state safety synthesis for some large room sizes under small delays. For larger
delays it is, however, evident that our incremental algorithm always wins, despite its
use of non-symbolic encodings.

Remark 2. It would be desirable to pursue a comparison on standard benchmarks like
the synthesis track of SYNTCOMP. As these are conveyed in AIGER format only and

4 http://www.syntcomp.org/ 5 http://fmv.jku.at/aiger/
6 http://www.verilog.com/ 7 http://www.clifford.at/yosys/

Table – Benchmark results in relation to reduction-based approaches (time in seconds)
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Equivalent Controllability

How about Non-Order-Preserving Delays?

§ Observations may arrive out-of-order :

Maximum delay 5

Out of order!

60
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62

59

56
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58

62

61
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60

64

59Sample #

t

© But this may only reduce effective delay, improving controllability :

More recent

state information

available earlier

Effective

delay 2

Maximum delay 5

Factual delay 3

61

58

60

57

65

62

64

59

62

61

63

60Sample #

t !

© W.r.t. qualitative controllability, the worst-case of out-of-order delivery is equivalent to
order-preserving delay k.

© Stochastically expected controllability even better than for strict delay k.
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Equivalent Controllability

How About (Bounded) Message Loss?

§ Message carrying the state information may get lost :

cached in a queue

from the action queue

Message lost!

Retrieve pre−decisions

with pre−decisions

Action submission

State information

!

π0 π2 π4 π6 π8 π10

σ2 σ4 σ6 σ8 ⊥ σ12

σ4 σ6 σ8 ⊥ ⊥ σ14

σ4 σ8 σ10{ σ0 σ2 σ6

© The controller can still win a safety game in the presence of bounded message loss
leveraging delay-resilient strategies.
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Equivalent Controllability

Equivalence of Qualitative Controllability

Theorem (Equivalence of qualitative controllability)

Given a two-player safety game, the following statements are equivalent if δ is even :

1 There exists a winning strategy under an exact delay of δ, i.e., if at any point of time
t the control strategy is computed based on a prefix of the game that has length
t− δ.

2 There exists a winning strategy under time-stamped out-of-order delivery with a
maximum delay of δ, i.e., if at any point of time t the control strategy is computed
based on the complete prefix of the game of length t− δ plus potentially available
partial knowledge of the game states between t− δ and t.

3 There exists a winning strategy when at any time t = 2n, i.e., any player-0 move,
information on the game state at some time t′ ∈ {t− 2k, . . . , t} is available, i.e.,
under out-of-order delivery of messages with a maximum delay of δ and a maximum
number of consecutively lost upstream or downstream messages of δ

2
.

The first two equivalences do also hold for odd δ.

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Indecision and delays are the parents of failure : Taming them

algorithmically by synthesizing delay-resilient control. Acta Informatica ’20.
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Outline

1 Synthesizing Safe Controllers Resilient to Delayed Interaction
Safety Games under Delays
Incremental Synthesis
Equivalent Controllability

2 Verifying Safety of Delayed Differential Dynamics
Delayed Differential Dynamics
Bounded Safety Verification
Unbounded Safety Verification

3 Concluding Remarks
Summary
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Solving Delay Differential Equations (DDEs)

A formal model of delayed feedback control

—Joint work with M. Fränzle, Y. Li, S. Feng, P. N. Mosaad, B. Xue, and L. Zou—
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Delayed Differential Dynamics

Delayed Coupling in Differential Dynamics

©Wikipedia

Vito Volterra

©J. Pastor, 2016

Predator-prey dynamics

“Despite [...] very satisfactory state of affairs as far as [ordinary] differential equations
are concerned, we are nevertheless forced to turn to the study of more complex equations.
Detailed studies of the real world impel us, albeit reluctantly, to take account of the fact
that the rate of change of physical systems depends not only on their present state, but also
on their past history.”

[Richard Bellman and Kenneth L. Cooke, 1963]
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Delayed Differential Dynamics

Delay Differential Equations (DDEs)

{
ẋ (t) = f (x (t) , x (t− r1) , . . . , x (t− rk)) , t ∈ [0,∞)
x (t) = ϕ (t) , t ∈ [−rmax, 0]

The unique solution (trajectory) : ξϕ(t) : [−rmax,∞) 7→ Rn.
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Delayed Differential Dynamics

Why DDEs are Hard(er)

x = f0

ẋ = −f0

d3

dt x = −f0

d2

dt x = f0

d10

dt x = f0

ẋ(t) = −x(t− 1)

DDEs constitute a model of system
dynamics beyond “state snapshots” :

They feature “functional state”
instead of state in the Rn.

Thus providing rather infallible,
infinite-dimensional memory of the
past.

N.B. :More complex transformations may be applied to
the initial segment f0 according to the DDE’s right-hand
side. f0 will nevertheless hardly ever vanish from the
state space.

Try only if

to you!
infinite state no longer is scary enough
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Delayed Differential Dynamics

Safety Verification Problem

Given T ∈ R, X0 ⊆ Rn, U ⊆ Rn, weather

∀ϕ ∈ {ϕ | ϕ(t) ∈ X0,∀t ∈ [−rmax, 0]} :

(⋃
t≤T

ξx0 (t)
)

∩ U = ∅ ?

©M. Althoff, 2010

System is T-safe, if no trajectory enters U within [−rmax, T] ; Unbounded :∞-safe.
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Bounded Verification

Bounded Safety Verification of DDEs

Sensitivity + Error → Simulation-Based Verif.

Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Sensitivity + Error → Simulation-Based Verif.

Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety
Stability

Reduction
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Bounded Verification – Validated Simulation-Based

Simulation-Based Verification Framework

176 A. Donzé and O. Maler

Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure – A finite ϵ-cover of the initial set of states.

Systematic Simulation Using Sensitivity Analysis 177

Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

Figure – An Over-approximation of the reachable set by
bloating the simulation.

©A. Donzé & O. Maler, 2007
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Bounded Verification – Validated Simulation-Based

Validated Simulation-Based Verification

1 Do numerical simulation on a (sufficiently dense) sample of initial states.

2 Add (pessimistic) local-error by solving an optimization problem.

3 “Bloat” the resulting trajectories by sensitivity analysis.

x

y

t

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Validat. simul.-based verific.. FM ’16.
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Validated Simulation-Based Verification

1 Do numerical simulation on a (sufficiently dense) sample of initial states.

2 Add (pessimistic) local-error by solving an optimization problem.

3 “Bloat” the resulting trajectories by sensitivity analysis.

x

y

t

E(t) =

{
d0, if t = 0,

E(ti) + (t − ti)ei+1, if t ∈ [ti, ti+1].

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Validat. simul.-based verific.. FM ’16.
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Bounded Verification – Validated Simulation-Based

Validated Simulation-Based Verification

1 Do numerical simulation on a (sufficiently dense) sample of initial states.

2 Add (pessimistic) local-error by solving an optimization problem.

3 “Bloat” the resulting trajectories by sensitivity analysis.

x

y

t

ξx0 (t) ∈ BE(t)

 (t − ti)yi + (ti+1 − t)yi+1

ti+1 − ti

 , ∀t ∈ [ti, ti+1].

; M. Chen, M. Fränzle, Y. Li, P. N. Mosaad, N. Zhan : Validat. simul.-based verific.. FM ’16.
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Bounded Verification – Validated Simulation-Based

Example : Delayed Logistic Equation
[G. Hutchinson, 1948]

Ṅ(t) = N(t)[1− N(t− r)]

0 2 4 6 8 10
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0.8
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1.2

1.4

1.6

t

N

 

 

numerical solution N(t)

over−approximation by bloating factor d(t)

Figure –X0 = B0.01(1.49), r = 1.3, τ0 = 0.01, T =
10s.
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numerical solution N(t)

over−approximation by bloating factor d(t)

lower bound of the unsafe set

Figure – Over-approximation rigorously proving unsafe,
with r = 1.7, X0 = B0.025(0.425), τ0 =
0.1, T = 5s,U = {N|N > 1.6}.
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Figure –X0 = B0.01(1.49), r = 1.3, τ0 = 0.01, T =
10s.
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Figure – Over-approximation rigorously proving unsafe,
with r = 1.7, X0 = B0.025(0.425), τ0 =
0.1, T = 5s,U = {N|N > 1.6}.
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Fig. 1: Over-approximation of the solutions of Eq. (12) origi-
nating from region B0.01(1.49) under delay r = 1.3. Initial
stepsize τ0 = 0.01, time bound T = 10s.
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Fig. 2: Over-approximation rigorously proving Eq. (12) un-
safe, with r = 1.7, X0 = B0.025(0.425), τ0 = 0.1,
T = 5s and U = {N |N > 1.6}.
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(a) An initial over-approximaion of trajectories start-
ing from B0.225(1.25). It overlaps with the unsafe set
(s. circle). Initial set is consequently split (cf. Figs. 3b,
3c).
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(b) All trajectories starting from B0.125(1.375)
are proven safe within the time bound, as the over-
approximation does not intersect with the unsafe set.
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(c) Initial state setB0.125(1.125) is verified to be safe
as well.
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(d) B0.25(0.75) yields overlap w. unsafe; the ball is
partitioned again (Figs. 3e, 3f).
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(e) All trajectories originating from B0.125(0.875)
are provably safe.
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(f) All trajectories originating from B0.125(0.625)
are provably safe as well.

Fig. 3: The logistic system is proven safe through 6 rounds of simulation with base stepsize τ0 = 0.1. Delay r = 1.3,
initial state set X0 = {N |N ∈ [0.5, 1.5]}, time bound T = 5s, unsafe set {N |N > 1.6}.
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Bounded Verification – Validated Simulation-Based

Example : Delayed Microbial Growth
[S. F. Ellermeyer, 1994]

{
Ṡ(t) = 1− S(t)− f(S(t))x(t)
ẋ(t) = e−rf(S(t− r))x(t− r)− x(t)
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numerical solution (S;x)
over−approximation around sampling point
initial state space

Figure – Themicrobial system is proven safe by 17 rounds of simulationwithτ0 = 0.45. Here, f(S) = 2eS/(1+S),
r = 0.9,X0 = B0.3((1; 0.5)),U = {(S; x)|S + x < 0}, T = 8s.
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Bounded Verification – Boundary Propagation-Based

Boundary Propagation-Based Approximation of Reachable Sets

1 Impose a homeomorphism by bounding the time-lag through sensitivity analysis.

2 Compute an enclosure of the reachable set’s boundary.

3 Over- (under-)approximate the reachable set by incl. (excl.) the enclosure.

r ≤ min


ϵ − 1

ϵn2M′R
,

ln R

2
√

nnM′
,

ϵ − 1

ϵ(n2MR + n2NRϵ)
,

ln R2+1
2√

n(2nM + n2NRϵ)


; B. Xue, P. Mosaad, M. Fränzle, M. Chen, Y. Li, N. Zhan : Safe approx. of reachable sets for DDEs. FORMATS ’17.
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Unbounded Verification

Unbounded Safety Verification of DDEs

Stability
Sensitivity + Error → Simulation-Based Verif.

Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Sensitivity + Error → Simulation-Based Verif.

Homeomorphism → Boundary-Based Verif.

2.1 Bounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety
Interval Taylor Encl. → Discrete-Time Dynamics

Linearization + Spectral Anal. → Time Bound

2.2 Unbounded Safety

Reduction

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 37 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Interval Taylor Enclosure-Based

Unbounded Analysis for Simple DDE ẋ(t) = f(x(t− r))
Main Ingredients

1 Generate Taylor series for the segment x |[nr,(n+1)r] by integrating f(x) |[(n−1)r,nr].

§ Degree of Taylor series grows indefinitely (and rapidly so i.g.).
§ Computationally intractable.
§ Lacking means for analyzing unbounded behaviors.

2 Overapproximate segments by Interval Taylor Series (ITS) of fixed degree.
© Tractable (if degree low enough).
© Thus permits bounded model checking.
§ Still no immediate means for unbounded analysis.

3 Extract operator computing next ITS from current one; analyse its properties.
© Unbounded safety and stability analysis become feasible.

; L. Zou, M. Fränzle, N. Zhan, P. N. Mosaad : Automatic stability and safety verification for DDEs. CAV ’15.

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 38 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Interval Taylor Enclosure-Based

Unbounded Analysis for Simple DDE ẋ(t) = f(x(t− r))
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Unbounded Verification – Interval Taylor Enclosure-Based

Analysis of a Linear DDE by Example

Recall the DDE ẋ(t) = −x(t− 1)with the initial condition x([0, 1]) ≡ 1.

Segmentwise integration yields

x(n+ t) = x(n) +
∫ n−1+t

n−1
−x(s)ds, t ∈ [0, 1].

Rename and shift x |[n,n+1], with n ∈ N, to fn : [0, 1] 7→ R by setting
fn(t) =̂ x(n+ t) for t ∈ [0, 1] :

fn(t) = fn−1(1) +

∫ t

0
−fn−1(s) ds, t ∈ [0, 1].

§ fn is a polynomial of degree n, i.e., degree 86,400 after a day, …

§ Intractable beyond the first few steps!
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Unbounded Verification – Interval Taylor Enclosure-Based

Analysis of a Linear DDE by Example

Employ interval Taylor series to enclose the segmentwise solutions by Taylor
series of fixed degree

fixing degree 2, e.g., yields template fn(t) = an0 + an1 ∗ t + an2 ∗ t2,
interval coefficients ani incorporate the approximation error.

For computing the ITS, we need to obtain the first and second derivatives f(1)n+1(t)

and f(2)n+1(t) based on fn :

f(1)n+1(t) = −fn(t) = −an0 − an1 ∗ t − an2 ∗ t2,

f(2)n+1(t) =
d
dt

f(1)n+1(t) = −an1 − 2 ∗ an2 ∗ t.

Using a Lagrange remainder with fresh variable ηn ∈ [0, 1], we obtain

fn+1(t) = fn(1) +
f(1)n (0)

1!
∗ t +

f(2)n (ηn)

2!
∗ t2

= (an0 + an1 + an2) − an0 ∗ t −
an1 + 2 ∗ an2 ∗ ηn

2
∗ t2.
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Unbounded Verification – Interval Taylor Enclosure-Based

Analysis of a Linear DDE by Example

Substituting fn+1(t) by its Taylor form an+10 + an+11 ∗ t+ an+12 ∗ t2 and
matching coefficients, one obtains a time-variant, parametric linear operatoran+10

an+11
an+12

 =

 1 1 1
−1 0 0
0 − 1

2
−ηn

 ∗

an0an1
an2


which can be made time-invariant by replacing ηn with its interval [0, 1].

© Have thus obtained a discrete-time interval-linear system a′ = Ma !
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Unbounded Verification – Interval Taylor Enclosure-Based

Stability of Linear DDEs

Observation : The global solution x to the DDE stabilizes asymptotically
if the sequence of segments fn converges to 0,
iff the coefficients An of the interval Taylor forms converge to 0.

Consequence : Can reduce asymptotic stability verification of the DDE to that of the
interval-linear time-invariant system A′ = MA, which boils down to

Theorem (J. Daafouz and J. Bernussou, 2001)

The time-variant system x(n + 1) = T(η(n)) ∗ x(n), T(η(n)) =
q∑

i=1
ηi(n) ∗ Ti , with ηi(n) ≥ 0,

q∑
i=1

ηi(n) = 1,

is asymptotically/robustly stable iff there exist symmetric positive definite matrices Si , Sj and matrices Gi of
appropriate dimensions s.t. [

Gi + GTi GTi TTi
Ti Gi Sj

]
> 0

for all i = 1, ..., N and j = 1, ..., N. Moreover, the corresponding Lyapunov function is

V(x(n),η(n)) = x(n)T ∗ (

q∑
i=1

ηi(n) ∗ S−1
i ) ∗ x(n).

Just requires some technicalities to obtain appropriate interval forms for applicability of Rohn’s method for
solving linear interval inequalities.
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Unbounded Verification – Interval Taylor Enclosure-Based

Unbounded Safety Verification for Linear DDEs

© Verifying unbounded safety □S can be accomplished by

1 generating a Lyapunov function V(A, η) by above method,

2 computing a barrier value for the safe set by letting iSAT search for the largest c such that
V(A(n), η(n)) ≤ c ∧ ¬S(fn(t)) is unsatisfiable,

; existence of such c implies that V(A(n), ηn) ≤ c → S(fn(t)) holds.

3 calculating a safe bound on the minimum reduction dm on the condition V(A(n), η(n)) ≥ c,
i.e.

dm = min{V(A(n), η(n)) − V(A(n + 1), ηn+1) | V(A(n), ηn) ≥ c},
by iSAT optimization.

; Existence of such dm implies that after k =̂ max
(

V(A(0),0)−c
dm

,
V(A(0),1)−c

dm

)
we can be sure

to reside inside the safety region S.

4 Pursuing BMC for the first k steps, which completes proving unbounded invariance.
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; existence of such c implies that V(A(n), ηn) ≤ c → S(fn(t)) holds.

3 calculating a safe bound on the minimum reduction dm on the condition V(A(n), η(n)) ≥ c,
i.e.

dm = min{V(A(n), η(n)) − V(A(n + 1), ηn+1) | V(A(n), ηn) ≥ c},
by iSAT optimization.

; Existence of such dm implies that after k =̂ max
(

V(A(0),0)−c
dm

,
V(A(0),1)−c

dm

)
we can be sure

to reside inside the safety region S.

4 Pursuing BMC for the first k steps, which completes proving unbounded invariance.
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Interval Taylor Enclosure-Based

Multidimensional Polynomial DDEs

Consider a DDE of the form

ẋ(t+ r) = g(x(t)), ∀t ∈ [0, r] : x(t) = p0(t),

where g and p0(t) are vectors of polynomials in Rm[x].

Generalizing the linear case, the Lie derivatives f(1)n+1, f
(2)
n+1, . . . , f

(k)
n+1 can now be

computed symbolically as follows :

f(1)n+1(t) = g(fn(t)), f(2)n+1(t) =
d
dt
f(1)n+1 =

d
dt
g(fn(t)), . . .

The corresponding Taylor expansion of fn+1(t)with degree k is

fn+1(t) = fn(r) +
f(1)n+1(0)

1!
∗ t+ · · ·+

f(k−1)
n+1 (0)

(k− 1)!
∗ ti +

f(k)n+1(ηn)

k!
∗ tk ,

where ηn is a vector ranging over [0, r]m.
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ẋ(t+ r) = g(x(t)), ∀t ∈ [0, r] : x(t) = p0(t),

where g and p0(t) are vectors of polynomials in Rm[x].

Generalizing the linear case, the Lie derivatives f(1)n+1, f
(2)
n+1, . . . , f

(k)
n+1 can now be

computed symbolically as follows :

f(1)n+1(t) = g(fn(t)), f(2)n+1(t) =
d
dt
f(1)n+1 =

d
dt
g(fn(t)), . . .

The corresponding Taylor expansion of fn+1(t)with degree k is

fn+1(t) = fn(r) +
f(1)n+1(0)

1!
∗ t+ · · ·+

f(k−1)
n+1 (0)

(k− 1)!
∗ ti +

f(k)n+1(ηn)

k!
∗ tk ,

where ηn is a vector ranging over [0, r]m.

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 42 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Interval Taylor Enclosure-Based

Multidimensional Polynomial DDEs

Akin to the linear case, the above equation can be rephrased as a time-invariant
polynomial interval operator

A(n+ 1) = P(A(n), [0, r]), (†)

where P this time is a vector of polynomials.

© Apply polynomial constraint solving to
pursue BMC exactly as before, unwinding relation (†),
find a relaxed Lyapunov function by instantiating a polynomial Lyapunov function
template w.r.t. (†), using the method in [S. Ratschan and Z. She, SIAM J. of Control and Optimiz.,
2010],
compute barrier values for a safe set,
…
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Stability of General Linear Dynamics by Spectral Analysis

For linear DDEs :

ẋ (t) = Ax (t) + Bx (t− r)

The characteristic equation :

det (λI− A−) = 0

Globally exponentially stable if ∀λ : R(λ) < 0, i.e.,

∃K > 0.∃α < 0:
∥∥ξϕ(t)∥∥ ≤ K ‖ϕ‖ eαt, ∀t ≥ 0, ∀ϕ ∈ Cr
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ẋ (t) = Ax (t) + Bx (t− r)

The characteristic equation :

det
(
λI− A− Be−rλ

)
= 0

Globally exponentially stable if ∀λ : R(λ) < 0, i.e.,

∃K > 0.∃α < 0:
∥∥ξϕ(t)∥∥ ≤ K ‖ϕ‖ eαt, ∀t ≥ 0, ∀ϕ ∈ Cr

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 43 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Stability of General Linear Dynamics by Spectral Analysis

For linear DDEs :
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Reduction to Bounded Verification
[PD-Controller, E. Goubault et al., CAV ’18]

1 Identify the rightmost eigenvalue (and hence α) and construct K.

2 Compute T∗ based on the exponential estimation spanned by α and K.

3 Reduce to bounded verifi., i.e., ∀T > T∗,∞-safe⇐⇒ T-safe.
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മ 4.1 PD-᧗ࡦಘⲴᰐ⭼ᰦ䰤ᆹޘᙗ傼䇱Ǆ(a) ࡙⭘ DDE-BIFTOOL ՠ计 h(z) Ⲵᴰਣ⢩ᖱ

ṩˈ䘋㘼ᗇࡠ┑䏣 maxλ∈σ R (λ) < α < 0 Ⲵк⭼ α = −0.5˗(b) ┑䏣ᔿ(4.9)Ⲵ䰸٬

M = 11.9125ˈ֯ᗇᓄⲴᰐェ〟࠶ਟԕ㻛䖜ॆѪᇊ〟࠶计算˗(c)ᰦ T ∗ = 4.80579sˈ

֯ᗇሩҾԫ T > T ∗ˈ䈕 PD-᧗ࡦಘⲴ∞-ᆹޘᙗㅹԧҾ T-ᆹޘᙗǄ

Figure 4.1 Ubounded safety verification of the PD-controller. (a) The identified rightmost

roots of h(z) in DDE-BIFTOOL and an upper bound α = −0.5 such thatmaxλ∈σ R (λ) <

α < 0; (b) M = 11.9125 that suffices to split and hence upper-bound the improper

integral
∫ ∞
−∞

O (1/z2)
 dν in Eq. (4.9); (c) The obtained time instant T ∗ = 4.80579s guar-

anteeing the equivalence of∞-safety and T-safety of the PD-controller, for any T > T ∗.

⧠൘ˈᡁԜ傼䇱㌫㔏(4.13)ሩҾࡍ⣦ᘱ䳶ਸ X = [−0.1, 0.1] × [0, 0.1] ৺н

ᆹޘ⣦ᘱ䳶ਸ U = {(ŷ; v̂) | | ŷ | > 0.2} ൘ᰐェᰦ䰤кⲴᆹޘᙗǄสҾࡽ᮷Ⲵᶴ
䙐䗷〻৺ਾ᮷ሶ䈖䘠Ⲵ工ާᇎ⧠ˈᡁԜⲴᶴ䙐ᙗᯩ⌅㠚ࣘ⭏ᡀⲴޣ䭞ᑨᮠ˄ྲ

മ4.1所⽪˅ྲл：α = −0.5ˈM = 11.9125ˈK = 7.59162ԕ৺ K̂ = 2.21103Ǆ൘

↔สкˈᡁԜᗇࡠ T ∗ = 4.80579sǄ⭡ᇊ理4.7ˈ䈕 PD-᧗ࡦಘ∞-ᆹޘᙗ傼䇱䰞

仈㻛ㅹԧ䖜ॆѪԫ┑䏣 T > T ∗ = 4.80579sⲴ T-ᆹޘᙗ傼䇱䰞仈Ǆ

һᇎкˈᔿ(4.11)中Ⲵ [−K̂eαt, K̂eαt ]n ᱟ㌫㔏ሩҾࡍ⣦ᘱ䳶ਸ X Ⲵਟ䗮
䳶Ⲵањк䘁լˈণ RX(t) ⊆ [−K̂eαt, K̂eαt ]nǄ❦㘼ˈྲമ4.1(c)中䱤ᖡ䜘࠶所⽪ˈ

䈕䘁լ᰾ᱮ䗷Ҿ؍ᆸˈ֯ަࠐѾᰐ⌅⭘Ҿ䇱᰾ԫօާᴹᇎ䱵ѹⲴᆹޘᙗ䍘Ǆ

նᱟˈᡁԜ所ᨀᯩ⌅ⲴṨᗳ䍑⥞൘Ҿሶᰐ⭼ᰦ䰤ᆹޘᙗ傼䇱䰞仈ᖂ㔃ѪҶᴹ⭼

ᰦ䰤ᆹޘᙗ傼䇱䰞仈ˈণ计算ࠪањᱮᔿⲴᰦ䰤к⭼ T ∗ˈӾ㘼ⴱ৫Ҷ所ᴹ䪸ሩ

t > T ∗ Ⲵ傼䇱ࣚ࣋Ǆ਼ᰦˈᖂ㓖ਾⲴ T-ᆹޘᙗ傼䇱䰞仈ਟԕُࣙ⧠ᴹⲴ䪸ሩᖒ

ྲ(4.1)ᡆ(2.1)Ⲵ DDEsⲴᴹ⭼ᰦ䰤ᆹޘᙗ傼䇱Ⲵᯩ⌅≲䀓Ǆ䘉Ӌᯩ⌅वᤜᡁԜ൘

каㄐ中ᨀࠪⲴ࠶别สҾᮠ٬⁑ᤏ઼䗩⭼计算Ⲵ傼䇱ᯩ⌅ˈԕ৺สҾ Taylor⁑

රⲴ傼䇱ᯩ⌅ [91]ㅹǄ

54

K= K̂
(
1 + ∥B∥

∫ r
0

e−ατ dτ
)
∥X∥

K̂= 1
2π

(∫
M
−M

∥∥∥∥O (
1

(α+iν)2

)∥∥∥∥ dν + 8n
M

(
∥A∥ + ∥B∥ e−rα))

+ 10(α)

; S. Feng, M. Chen, N. Zhan, M. Fränzle, B. Xue : Taming delays in dyn. syst. : Unbounded verif. of DDEs. CAV ’19.
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[PD-Controller, E. Goubault et al., CAV ’18]
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Fig. 1: Left: the identified rightmost roots of h(z) in DDE-BIFTOOL and an upper bound α = −0.5 such that
maxλ∈σ R(λ) < α < 0; Center: M = 11.9125 that suffices to split and hence upper-bound the improper integral∫∞
−∞

∥∥O (1/z2)∥∥ dν in Eq. (11); Right: the obtained time instant T∗ = 4.80579s guaranteeing the equivalence of
∞-safety and T -safety of the PD-controller, for any T > T∗.

however, is obviously too conservative to be utilized in proving or disproving almost
any safety specifications of practical interest. The contribution of our approach lies in
the reduction of unbounded verification problems to their bounded counterparts, thereby
yielding a quantitative time bound T ∗ that substantially “trims off” the verification ef-
forts pertaining to t > T ∗. The derived T -safety verification task can be tackled effec-
tively by methods dedicated to bounded verification of DDEs of the form (3), or more
generally, (1), e.g., approaches in [17] and [4].

4 Nonlinear Dynamics

In this section, we address a more general form of dynamics featuring substantial non-
linearity, by resorting to linearization techniques and thereby establishing a quantitative
stability criterion, analogous to the linear case, for nonlinear delayed dynamics.

Consider a singly delayed version of Eq. (1):{
ẋ (t) = f (x (t) ,x (t− r)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (16)

with f being a nonlinear vector field involving possibly non-polynomial functions. Let

f (x,y) = Ax+By + g(x,y), with A = fx (0,0) , B = fy (0,0) ,

where fx and fy are the Jacobian matrices of f in terms of x and y, respectively; g is
a vector-valued, high-order term whose Jacobian matrix at (0,0) is O.

By dropping the high-order term g in f , we get the linearized counterpart of Eq. (16):{
ẋ (t) = Ax (t) +Bx (t− r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (17)

which falls in the scope of linear dynamics specified in Eq. (3), and therefore is associ-
ated with a characteristic equation of the same form as that in Eq. (4). Eq. (17) will be

; S. Feng, M. Chen, N. Zhan, M. Fränzle, B. Xue : Taming delays in dyn. syst. : Unbounded verif. of DDEs. CAV ’19.
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Reduction to Bounded Verification
[PD-Controller, E. Goubault et al., CAV ’18]

1 Identify the rightmost eigenvalue (and hence α) and construct K.

2 Compute T∗ based on the exponential estimation spanned by α and K.

3 Reduce to bounded verifi., i.e., ∀T > T∗,∞-safe⇐⇒ T-safe.
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Figure 4.1 Ubounded safety verification of the PD-controller. (a) The identified rightmost

roots of h(z) in DDE-BIFTOOL and an upper bound α = −0.5 such thatmaxλ∈σ R (λ) <

α < 0; (b) M = 11.9125 that suffices to split and hence upper-bound the improper

integral
∫ ∞
−∞

O (1/z2)
 dν in Eq. (4.9); (c) The obtained time instant T ∗ = 4.80579s guar-

anteeing the equivalence of∞-safety and T-safety of the PD-controller, for any T > T ∗.
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Fig. 1: Left: the identified rightmost roots of h(z) in DDE-BIFTOOL and an upper bound α = −0.5 such that
maxλ∈σ R(λ) < α < 0; Center: M = 11.9125 that suffices to split and hence upper-bound the improper integral∫∞
−∞

∥∥O (1/z2)∥∥ dν in Eq. (11); Right: the obtained time instant T∗ = 4.80579s guaranteeing the equivalence of
∞-safety and T -safety of the PD-controller, for any T > T∗.

however, is obviously too conservative to be utilized in proving or disproving almost
any safety specifications of practical interest. The contribution of our approach lies in
the reduction of unbounded verification problems to their bounded counterparts, thereby
yielding a quantitative time bound T ∗ that substantially “trims off” the verification ef-
forts pertaining to t > T ∗. The derived T -safety verification task can be tackled effec-
tively by methods dedicated to bounded verification of DDEs of the form (3), or more
generally, (1), e.g., approaches in [17] and [4].

4 Nonlinear Dynamics

In this section, we address a more general form of dynamics featuring substantial non-
linearity, by resorting to linearization techniques and thereby establishing a quantitative
stability criterion, analogous to the linear case, for nonlinear delayed dynamics.

Consider a singly delayed version of Eq. (1):{
ẋ (t) = f (x (t) ,x (t− r)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (16)

with f being a nonlinear vector field involving possibly non-polynomial functions. Let

f (x,y) = Ax+By + g(x,y), with A = fx (0,0) , B = fy (0,0) ,

where fx and fy are the Jacobian matrices of f in terms of x and y, respectively; g is
a vector-valued, high-order term whose Jacobian matrix at (0,0) is O.

By dropping the high-order term g in f , we get the linearized counterpart of Eq. (16):{
ẋ (t) = Ax (t) +Bx (t− r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (17)

which falls in the scope of linear dynamics specified in Eq. (3), and therefore is associ-
ated with a characteristic equation of the same form as that in Eq. (4). Eq. (17) will be
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Stability of General Nonlinear Dynamics by Linearization

For nonlinear DDEs :

ẋ (t) = f (x (t) , x (t− r))

= Ax + By + g(x, y), with A = fx (0, 0) ,B = fy (0, 0)

The linearization yields
ẋ (t) = Ax (t) + Bx (t− r)

Locally exponentially stable if ∀λ : R(λ) < 0, i.e.,

∃δ > 0.∃K > 0. ∃α < 0: ‖ϕ‖ ≤ δ =⇒
∥∥ξϕ(t)∥∥ ≤ K ‖ϕ‖ eαt/2, ∀t ≥ 0
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ẋ (t) = Ax (t) + Bx (t− r)

Locally exponentially stable if ∀λ : R(λ) < 0, i.e.,

∃δ > 0.∃K > 0. ∃α < 0: ‖ϕ‖ ≤ δ =⇒
∥∥ξϕ(t)∥∥ ≤ K ‖ϕ‖ eαt/2, ∀t ≥ 0

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 45 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Reduction to Bounded Verification
[Population Dynamics, G. Hutchinson, 1948]

1 Identify the rightmost eigenvalue (and hence α), then construct K and δ.

2 Compute T∗, as well as T′ (by bounded verifiers) s.t. ‖Ω‖ < δ within T′.

3 Reduce to bounded verifi., i.e., ∀T > T′ + T∗,∞-safe⇐⇒ T-safe.
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䏣 maxλ∈σ R (λ) < α < 0 Ⲵк⭼ α = −0.5˗(b) สҾ Taylor ⁑රⲴᴹ⭼ᰦ䰤傼䇱ᯩ
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Figure 4.2 Ubounded safety verification of the population dynamics. (a) The identified right-

most eigenvalues of h(z) and an upper bound α = −0.5 such that maxλ∈σ R (λ) < α < 0;

(b) Overapproximation of the reachable set of the system (4.20) produced by the method

in [91] using Taylor models for bounded verification. Together with this overapproxi-

mation we prove the equivalence of ∞-safety and T-safety of the system, for any T >

(T ′ + T ∗) = 15.5s.

४䰤 [−1, 与[15.5 U нӔⲴһᇎˈᡁԜᡀ࣏䇱᰾Ҷ㌫㔏(4.20)൘ᰐェᰦ䰤

ⲴᆹޘᙗǄ

ਜ਼ᴹཊњн਼ᰦᔦᑨᮠⲴ DDEs: ᮷所ᨀࠪⲴ䪸ሩ单њᰦᔦᑨᮠⲴ理论ˈवࡽ

ᤜ指ᮠՠ计઼ㅹԧᆹޘᙗᇊ理ˈਟԕⴤ᧕ൠᢙኅ㠣ᖒྲ(2.1)Ⲵਜ਼ᴹཊњн਼

ᰦᔦᑨᮠⲴа㡜ᖒᔿ DDEsǄѫ㾱Ⲵ४别൘Ҿˈ䴰㾱ሶᓄⲴ ∥B∥ e−rα ᴯᦒѪ∑k
i=1 ∥Ai∥ e−riαˈ㘼 ∥B∥ᴯᦒѪ

∑k
i=1 ∥Ai∥ˈަ中 Ai 㺘⽪㓯ᙗॆ㌫㔏中亩 x(t − ri)

ሩᓄⲴ Jacobian⸙䱥Ǆ↔ཆˈཊᰦᔦᛵߥлⲴᑨᮠਈ᱃ޜᔿ⮕ᴹн਼ˈᓄ㓶㢲

ਟ৲㘳 [8]中Ⲵᇊ理 1.2ǄᡁԜሶ൘ла㢲中Ѯֻ䈤᰾ᵜㄐ所ᨀᯩ⌅਼ṧ䘲⭘Ҿ

ཊᰦᔦᰦ┎㌫㔏Ǆ

4.3 ᯯ⌋ᇔ⧦фᇔ僂㔉᷒

Ѫ䘋а↕䇱ᇎᵜㄐ所ᨀࠪⲴᶴ䙐ᙗᯩ⌅Ⲵਟᢙኅᙗ઼᭸⦷ˈᡁԜ൘Wolfram

Mൺඍඁൾආൺඍංർൺ [152]中ሩަ䘋㹼Ҷරᇎ⧠Ǆ䙊䗷䈳⭘ DDE-BIFTOOL6ᶕՠ计㓯

6http://ddebiftool.sourceforge.net/
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δ = min
{
δϵ, δϵ/

(
K̂e−rα (

1 + ∥B∥
∫ r
0

e−ατ dτ
))}

δϵ = K̂e−rα (
1 + ∥B∥

∫ r
0

e−ατ dτ
)
∥ϕ∥ eϵK̂e−rα t+αt

ϵ≤ −α/(2K̂e−rα)
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Reduction to Bounded Verification
[Population Dynamics, G. Hutchinson, 1948]

1 Identify the rightmost eigenvalue (and hence α), then construct K and δ.

2 Compute T∗, as well as T′ (by bounded verifiers) s.t. ‖Ω‖ < δ within T′.

3 Reduce to bounded verifi., i.e., ∀T > T′ + T∗,∞-safe⇐⇒ T-safe.
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Figure 4.2 Ubounded safety verification of the population dynamics. (a) The identified right-

most eigenvalues of h(z) and an upper bound α = −0.5 such that maxλ∈σ R (λ) < α < 0;

(b) Overapproximation of the reachable set of the system (4.20) produced by the method

in [91] using Taylor models for bounded verification. Together with this overapproxi-

mation we prove the equivalence of ∞-safety and T-safety of the system, for any T >

(T ′ + T ∗) = 15.5s.
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Figure 4.2 Ubounded safety verification of the population dynamics. (a) The identified right-

most eigenvalues of h(z) and an upper bound α = −0.5 such that maxλ∈σ R (λ) < α < 0;

(b) Overapproximation of the reachable set of the system (4.20) produced by the method

in [91] using Taylor models for bounded verification. Together with this overapproxi-

mation we prove the equivalence of ∞-safety and T-safety of the system, for any T >

(T ′ + T ∗) = 15.5s.
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Unbounded Verification – Linearization & Spectral Analysis-Based

Reduction to Bounded Verification
[Population Dynamics, G. Hutchinson, 1948]

1 Identify the rightmost eigenvalue (and hence α), then construct K and δ.

2 Compute T∗, as well as T′ (by bounded verifiers) s.t. ‖Ω‖ < δ within T′.

3 Reduce to bounded verifi., i.e., ∀T > T′ + T∗,∞-safe⇐⇒ T-safe.
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(b) Overapproximation of the reachable set of the system (4.20) produced by the method
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(T ′ + T ∗) = 15.5s.
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Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Non-Polynomial Dynamics : Disease Pathology
[M. C. Mackey and L. Glass, 1977]

ṗ(t) = βθnp(t−r)
θn+pn(t−r) − γp(t)

#mature blood cells in circulation delay btw. cell production and maturation

Parameters : θ = n = 1, β = 0.5, γ = 0.6, r = 0.5.

∞-safety configuration : X0 = [0, 0.2],U = {p | |p| > 0.3}.

Linearization yields
ṗ(t) = −0.6p(t) + 0.5p(t− 0.5).

Critical values : α = −0.07,K = 1.75081, δ = 0.0163426, T∗ = 0.

By bounded verification [E. Goubault et al., CAV ’18], with Taylor models of the order 5 :∥∥ Ω |[25.45,25.95]
∥∥ < δ and Ω |[−0.5,25.95+0]∩ U = ∅.

⇓

∞-safety
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ṗ(t) = −0.6p(t) + 0.5p(t− 0.5).

Critical values : α = −0.07,K = 1.75081, δ = 0.0163426, T∗ = 0.

By bounded verification [E. Goubault et al., CAV ’18], with Taylor models of the order 5 :∥∥ Ω |[25.45,25.95]
∥∥ < δ and Ω |[−0.5,25.95+0]∩ U = ∅.

⇓

∞-safety

N. Zhan · ISCAS&CCF-TCFM, M. Chen · RWTH Aachen Taming Delays in Cyber-Physical Systems HTD, RTSS 2020 · Houston, TX 47 / 51



Motivation Controller Synthesis Formal Verification Concluding Remarks

Unbounded Verification – Linearization & Spectral Analysis-Based

Comparison with Existing Methods for Unbounded Verification

© Allow immediate feedback, i.e, x(t), as well as multiple delays in the dynamics, to
which the technique in [L. Zou et al., CAV ’15] does not generalize immediately.

© No polynomial template needs to be specified, yet necessarily for the interval
Taylor models in [L. Zou et al., CAV ’15] and [P. N. Mosaad et al., ICTAC ’16], for Lyapunov
functionals in [M. Peet and S. Lall, NOLCOS ’04], or for barrier certificates in [S. Prajna
and A. Jadbabaie, CDC ’05].

© Delay-dependent stability certificate, other than the absolute stability exploited
in [M. Peet and S. Lall, NOLCOS ’04], i.e., a criterion requiring stability for arbitrarily
large delays.

§ Confined to differential dynamics featuring exponential stability. Investigation
of more permissive forms of stability, e.g., asymptotical stability, that may admit
a similar reduction-based idea, is subject to future work.
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Outline

1 Synthesizing Safe Controllers Resilient to Delayed Interaction
Safety Games under Delays
Incremental Synthesis
Equivalent Controllability

2 Verifying Safety of Delayed Differential Dynamics
Delayed Differential Dynamics
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Summary

Concluding Remarks

Problem : We face

increasingly wide-spread use of networked distributed sensing and control,
substantial feedback delays thus affecting hybrid control schemes,
delays impact controllability and control performance in both the discrete and the
continuous parts.

Status : We present

safety games under delays and incremental algorithm for efficient control synthesis,
bounded safety verification methods for delayed differential dynamics,
extension to unbounded verification by leveraging stability criteria.

Future Work : We’d explore

controller synthesis for delayed hybrid systems in the setting of continuous time,
DDE exhibiting state-dependent or/and stochastic delay,
hybrid automata comprising DDEs instead of ODEs,
hybrid automata combining delayed continuous & discrete reactive behaviors,
invariant generation for time-delayed systems.
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