A Debugger for Probabilistic Programs

Alexander Hoppen and Thomas No]l[0000—0002—-1865—1798]

Software Modelling and Verification Group
RWTH Aachen University, 52056 Aachen, Germany
alexander.hoppen@rwth-aachen.de, noll@cs.rwth-aachen.de

Abstract. Debuggers play an integral role in modern software develop-
ment workflows. They not only aid a software developer in finding and
removing bugs in a faulty program but also allow to explore its semantics
in an interactive way. This is especially useful for software that exhibits
non-deterministic behaviour, such as probabilistic programs, for which
debugging support is currently scarce. In this paper, we provide a the-
oretical foundation for recording-based debuggers for imperative proba-
bilistic programs supporting randomised choice, conditioning, and loops.
In order to handle different branches of execution, we take a semantics-
based approach that employs weakest preexpectations and that intro-
duces iteration bounds for approximating the behaviour of potentially
non-terminating loops. Moreover, we present a prototype implementa-
tion of our framework.

Keywords: probabilistic programs - debugging - semantics-based meth-
ods - weakest preexpectations

1 Introduction

Debugging plays an integral role in modern software development workflows. In
its broad sense, it is understood as the process of finding and resolving bugs (that
is, defects or problems that prevent correct operation) within computer programs
(or hardware). Debugging strategies can involve interactive debugging, various
forms of testing, monitoring and profiling, and many more techniques. Here we
are particularly interested in interactive debugging, which allows software to
be inspected at the source code level by stepping through commands, setting
breakpoints, and examining and changing variable values whenever execution is
paused. Many programming languages and software development environments
offer tool support to aid in this activity, known as debuggers [13]. While tra-
ditional debuggers only allow forward execution of a program, recording-based
debuggers like Mozilla’s rr debugger [4] also enable the user to jump to previous
execution states.

In contrast to their name (and their original intention), debuggers not only
aid a software developer in finding and removing bugs in faulty programs. Rather,
the possibility of executing a program step-by-step and inspecting variable val-
ues at intermediate states allows a software engineer who is unfamiliar with a

2 A. Hoppen, T. Noll

program to explore its semantics in an interactive way. This is especially use-
ful in situations where the program’s semantics are non-obvious at first glance.
Such situations can include programs that exhibit non-deterministic control flow
due to, e.g., concurrency or stochastic behaviour. Here, it is crucial that a soft-
ware developer is able to follow several paths of execution in order to cover all
scenarios.

This, in particular, applies to probabilistic programs, which implement a pro-
gramming paradigm in which probabilistic models are specified using a proba-
bilistic programming language and inference for these models is performed au-
tomatically. It attempts to unify probabilistic modelling and traditional general-
purpose programming in order to make the former easier and more widely ap-
plicable [7].

Use cases of probabilistic programs include both randomised variants of de-
terministic algorithms like randomised Quicksort, which compute a deterministic
result with a non-deterministic runtime behaviour, as well as the description of
complex probability distributions in a structured, algorithmic way. In this paper,
we focus our attention on the latter. Such programs typically terminate almost
surely, that is with probability one.

We note that debuggers for probabilistic programming languages, both tra-
ditional and recording-based, are currently scarce.

In this paper, we provide the theoretical foundations on which recording-
based debuggers for probabilistic programming languages can be built. As in-
dicated before, the key obstacle that needs to be overcome in order to build
such a debugger is that in the presence of probabilistic branching operations,
there no longer exists a unique execution path. To resolve this execution ambi-
guity, we introduce two new debugger commands Step Into True and Step Into
False that allow the user to jump into one of the two execution branches in such
probabilistic cases. These commands are supported by implicit observations that
restrict the execution to exactly one of the two execution branches. In addition,
we employ loop iteration bounds for approximating the behaviour of potentially
non-terminating loops, thereby making the program’s semantics computable.

The remainder of this paper is organised as follows. We continue in Section 2
with a discussion of related work, followed by the introduction of the probabilis-
tic programming language employed in this paper in Section 3. Section 4 provides
the semantic foundations of our debugging approach in terms of weakest pre-
expectations, and Section 5 describes the approximation of loops by iteration
bounds. Section 6 constitutes the core part of our paper, in which we formally
investigate how to compute weakest preexpectations for intermediate states of
a program’s execution. Finally, Section 7 sketches a prototype implementation
of our approach, and Section 8 concludes with some final remarks and possible
directions for future work.

A Debugger for Probabilistic Programs 3

2 Related Work

Owing to the importance of debugging within the software development life
cycle, there exists extensive literature on general debugging approaches [21, 24],
debuggers [13, 1], and language-specific techniques for e.g. C++ [22,9] and Java
2, 3].

However, as mentioned in the introduction, debugging support for probabilis-
tic programming languages is currently scarce. The only approach we are aware
of is the DePP tool [16], which employs a programming model that supports con-
structs for invoking inference in the language and that represents such inference
operations using an extended form of Bayesian networks. This allows to auto-
matically identify programming errors such as the assumption of independence
between variables that are actually correlated, or premature inference opera-
tions. However, in contrast to our approach, analysing the detailed behaviour of
probabilistic program by interactive, step-wise execution is not supported.

Another important development is the Storm framework [6]. It does not itself
provide debugging features but allows the reduction of probabilistic programs
by leveraging both generic code/data transformations from compiler testing and
domain-specific, probabilistic transformations. This way, it enables simplified
debugging and localisation of faults.

Moreover, probabilistic reasoning has been employed to improve classical
debugging by computing a probabilistic model of the dependencies in the pro-
gram, allowing to focus on the “most impacted” parts of a program [20], to
localise faults more effectively [25,17], or to combine human-like reasoning with
program semantics-based analysis [23].

It is also worth mentioning that probabilistic programming is not the only
domain where debugging activities are complicated by non-determinism. De-
bugging concurrent programs, for example, is extremely challenging due to non-
determinism in thread scheduling [19, 14].

Weakest precondition reasoning was established in a classical setting by Dijk-
stra [5] and has been extended to provide semantic foundations for probabilistic
programs by Mclver and Morgan [15], who also coined the term weakest preez-
pectations (WP). Their relation to operational models is studied in [8]. Moreover,
weakest precondition reasoning has been shown to be useful for obtaining bounds
on the expected resource consumption [18] and, in particular, the expected run-
time [12] of probabilistic programs. To the best of our knowledge, the present
paper is the first one to apply this approach as a semantic framework for debug-
ging and to offer interactive debugging support for probabilistic programs.

3 Probabilistic Programs

To start, let us introduce the probabilistic programming language which we
will be working with in this paper. It has a C-like syntax and supports the
standard probabilistic constructs of probabilistic choice and observe-statements.
An example of such a program can be seen in Figure 1. prob-statements behave

—_

O © 00 3O Ui Wi

4 A. Hoppen, T. Noll

similar to if-statements but execute the prob-branch with the given probability
and the (optional) else-branch otherwise. An observe-statement only continues
program execution for those execution branches that satisfy its condition.

bool alicelInfectious = true
bool bobInfected = false
while aliceInfectious {
prob 0.1 {
bobInfected = true
}
prob 0.6 {
aliceInfectious = false
}
}

Fig. 1. A structured probabilistic program modelling the transmission of the SARS-
CoV2 virus.

FEzxample 1. Figure 1 displays a valid probabilistic program, modelling a hypo-
thetical transmission of the SARS-CoV?2 virus.! Suppose there are two people,
Alice and Bob, who meet every day. Alice is initially infected with the virus.
While she is infectious, every time they meet, there is a 10% chance that she
infects Bob. The next day she continues to be infectious with a likelihood of
40%.

We would now like to know with which probability Bob also catches the virus,
i.e. the likelihood that bobInfected is true at the end of program execution.
Using weakest preexpectations as described in the following sections, one can
show that this probability is 15.62%.

Definition 1 (Abstract syntax). A program P is either
— the empty program P = () or
— a single statement s together with the line number? | € N at which this
statement started: P = (l,s), or

— the sequential composition P = (Py, Py) of two programs, where Py is exe-
cuted after P.

Let Q be the set of all valid programs and let V be the set of variables defined in
a program P € Q. We refer to a program P = (l,s) as P = s if we do not care
about the line number.

Definition 2 (Observe-removed program). Given a program P € Q, let P

be the program in which all observe-statements have been removed.

! The example does not claim to be medically correct in any way.

2 For simplicity’s sake, we assume that there is only one statement per line. Other-
wise information about the starting column needs to be included in I to make each
statement-line-number-combination unique.

A Debugger for Probabilistic Programs 5
4 Weakest Preexpectations

A standard way of capturing the semantics of a probabilistic program is the
computation of weakest preerpectations. For a thorough explanation of these,
we refer to [15]. In the following, we give a short recap and apply the standard
definitions to our language.

Definition 3 (Iverson brackets). Given a boolean value b € B, we define the

ITverson brackets as
0 ifb=false
[o] = o
1 ifb=true

Definition 4 (Variable assignment function). We define the set of partial
functions that map declared variables to their values as A = (V — (BUR)).

Definition 5 (Expectation). An expectation is a function that maps variable
assignments to probabilities. We define P = {p € R|0<p <1} as the set of
all probabilities and E = (A — P) as the set of all expectations.’

In the following, we restrict ourselves to such expectations that can be ex-
pressed as finite arithmetic expressions over V. An expectation refers to both
the function and the arithmetic expression that describes it. It will become clear
from the context which representation is meant.

Definition 6 (Variable replacement). For an expectation f € E, we let
flvar = expr] denote the expectation that results from replacing all occurrences
of var € V in the definition of f by the arithmetic expression expr over V.

Ezample 2. For f = [y = 1] € E we have fly:=2]=[2=1] =0.

Lemma 1. E forms a complete partial order and the Ifp and gfp fized-point
operators are thus well-defined for continuous functions on E (cf. [15, p. 183]).

Given these preliminaries, we can now define the weakest preexpectation
operator wp.

Definition 7 (wp). For a program P € Q and an expectation f € E, the weakest
preexpectation wp(P, f) of f € E is defined according to Figure 2.

Lemma 2. The wp operator is Scott-continuous and thus also monotonic in the
second component (cf. [8, Lemma 34]).

3 In [15, p. 16] expectations are defined as functions that map to R>¢. We are more
restrictive by choosing the image P since we are only interested in computing the
probability that a variable takes a certain value, i.e. the weakest preexpectation of
an expectation f = [z = £] with z € V and £ being a constant. The estimation of
the approximation error in Section 5.3 also requires this restricted image.

6 A. Hoppen, T. Noll

wp(P, f)
() f
(P) Wp(Plva(P27f))
(int | float | bool | &) var = expr|flvar = expr]
observe expr [expr] - f
if expr { Ps } else { Pose } [expr] - wp(Pis, f) + [—expr] - wp(Peise, f)
prob expr { Pt } else { Pese } |expr-wp(Pis, f) + (1 — expr) - wp(Peise, f)
while expr { Poody } Ifp X.([ezpr] - wp(Poody, X) + [~eapr] - f)

Fig. 2. Transformation functions of the wp operator.

In order to account for violated observe-statements, the weakest preexpec-
tation returned by the wp operator needs to be normalised with respect to the
probability that all observe-statements are satisfied during the run, which can
be computed using the weakest liberal preexpectation operator as wlp(P, 1).

Definition 8 (wlp). The definition of wlp is equal to the definition of wp (while
recursing to wlp) with the only difference that we use the greatest fized point gfp
instead of the least fixed point Ifp for loops.

Lemma 3. wlp is Scott-continuous and monotonic in the second component like
wp (cf. [8, Lemma 34]).

Definition 9 (Conditional weakest preexpectation). The probability that
a postexpectation f is satisfied after program execution, given that all observe-
statements were satisfied during the run, is represented by the conditional weakest

preexpectation v"\‘/’ﬁ) ((1;’?). This is the value we are interested in computing.

In Section 5.3 we will employ a new weakest observe-ignoring preexpectation
operator woip as a correction term.

Definition 10 (woip). The woip operator is defined like wp (recursing to woip)
but ignores observe-statements, that is woip(observe expr, f) = f.

Observation 1. We have woip(P, f) = wp(P, f) where P is the observe-removed
program defined in Definition 2.

Lemma 4. The woip operator is Scott-continuous and thus also monotonic in
the second component.

Proof. Since woip(P, f) = wp(P, f), woip inherits the properties of wp described
in Lemma 2.

5 Loop Iteration Bounds

While the definition of weakest preexpectations offers a well-founded basis for
determining a probabilistic program’s semantics, it does not directly provide an

0O Ui Wi

A Debugger for Probabilistic Programs 7

algorithmic access because the least (resp. greatest) fixed point of a loop is not
computable in general. To solve this problem, we introduce loop iteration bounds.
Intuitively, an iteration bound for a loop in a program P is a non-negative integer
b € N. Whenever the execution of P would traverse the loop more than b times,
we declare that execution branch as having diverged and stop its execution.

Observation 2. We can view the loop iteration bounds as a syntactic transfor-
mation of the program. When imposing an iteration bound b on a loop, we are
replacing the loop by a series of b if-statements as follows:

if expr {
Pioay
}
// repeat if—statement b times
if expr {
while true {}
}

Observation 3. The weakest preexpectations of the code snippet in Observa-
tion 2 are computable because for the concluding loop P = while true {}, we
know that wp(P, f) = 0, wip(P, f) = 1 and woip(P, f) =0 for all f € E.

Essentially, what we are doing when introducing loop iteration bounds is
trading computability for correctness since we are now approzimating loops. We
are able to do so because we do not need to compute values that are correct to
the last decimal digit. For applications like debugging, it is usually sufficient to
compute approximate values for variables together with an approximation error.
Therefore, we need to find suitable loop iteration bounds that are large enough
to yield results with the desired accuracy while at the same time being as small
as possible to ensure efficiency.

Definition 11 (Loop iteration bounds). The loop iteration bounds of a pro-
gram P are described by a partial function 5: Q — N that assigns to each sub-
program P of the form (I,while expr { Pooay }) an integer S(P) that limits
the number of times this loop can be traversed.

5.1 Bounded Preexpectation Transformers

With this intuitive definition of loop iteration bounds at hand, let us define
the wpg, wlpg and woipg operators that compute the weakest (liberal, observe-
ignoring) preexpectation of a postexpectation f € E with respect to a program
P € Q when taking loop iteration bounds S into account.

Definition 12 (wpg). The weakest preexpectation transformer wpg(P, f) of a
program P while respecting loop iteration bounds B is analogous to that of wp in

8 A. Hoppen, T. Noll

Definition 7 (while recursing to wpg) for all non-loop statements P. For P =
while expr { Piody I, we have:

wps(P, f) = NP ([~eapr] - f)
with - A(f) = [eapr] - wpg(Poody, f) + [—expr] - f
Observation 4. Putting the definition of wpg into context with the code snip-

pet in Observation 2, ([-expr] - f) evaluates lines 6-8. Applying the A function
B(P) times evaluates the unrolled if expr { Ppoqy } statement S(P) times.

Lemma 5. wpg is linear and monotonic in the second component.

Proof. Follows by structural induction on the program. The non-loop cases are
trivial. For loops, wps applies the A function §(P) times. Since A is a linear
combination of linear and monotonic functions (by induction), it enjoys the
same properties, entailing the linearity and monotonicity of wpg.

Definition 13 (wlpg). The operator wlps is defined analogously to wlp in Def-
inition 8 (while recursing to wlpg) for all non-loop statements P. For P =
while expr { Phody I, we have:

wlpg (P, f) = P ([eapr] + [-eapr] - f)
with p(f) = [expr] - wlpg(Phoay, f) + [-expr] - f
Lemma 6. wlpg is monotonic in the second component.

Proof. Follows by structural induction on the program. The non-loop cases have
the same definition as wpg and thus the proof carries over. For loops one proves
the lemma by induction on the loop iteration bound. Base case (8(P) = 0).

wlps (P, f) < wlps(P, g)
& p0([e] + [=el - f) < (el + [-e] - 9) (Definition 13)
=f<g (simplify)

Induction case (b= 5(P) > 0).

wipg (P,) < wlpg(P, g)

& p(Ie)+ el -) < p([e] + [~e] - 9) (Definition 13)
& ulF) < u(G) (F 1= =1 ([e] + [~e] - f), G analogous)
< [e] - wlpg (P, F) + [-e] - F < [e] - wlpg (P, G) + [-e] -G (Definition 13)
< [e] - wlpg(Py, F) < [e] - wipg (P, G) (F < G by induction)
<= wlpg (P, F) < wlpg (B, G) (simplify)
<= F<G (structural induction)
<=f<y (induction)

A Debugger for Probabilistic Programs 9

Definition 14 (woipg). The operator woipg is defined analogously to woip in
Definition 10 (while recursing to woipg) for all statements P other than loops.
For P =while expr { Pyoay } we have:

woipg (P, f) = VB(P)([[ﬁeacpr]] -f)
with 2(f) = [eapr]-woips(Pooay, f) + [~eapr]-f

Corollary 1. The functions A\ and v are linear and monotonic. The function p
18 momnotonic.

Lemma 7. We have wpg(P, f) < woipg(P, f).

Proof. For all statements other than observe, the lemma holds trivially since the
definitions match. For observe-statements, we have [ezpr]- f < f < [expr] < 1.

Lemma 8. When letting the loop iteration bounds tend towards infinity, the wpg
operator has the same semantics as wp. That is
lim wpg(P, f) = wp(P, f)

VPeDom(f):
B(P)—oo

The same holds for wlpg and wlp as well as woipg and woip.

Proof. Note that when expanding the loop as described in Observation 2, each if
expr { Ppeay I statement matches the execution of one loop iteration. If this if-
statement is repeated arbitrarily often as the loop iteration bounds tend towards
infinity, the corresponding semantics converges towards that of the unrestricted
loop.

5.2 Finding Loop Iteration Bounds Through Sampling

Having seen how loop iteration bounds can make the weakest preexpectation
operator computable, we need some heuristic that determines suitable loop it-
eration bounds. Assuming that we are given a program which almost surely
terminates (i.e. terminates with probability one), as is typically the case for
programs modelling probability distributions, a simple, yet effective, method to
determine such loop iteration bounds is to use a sampling-based execution that
counts the number of times each loop is traversed.

In this heuristic, the program is executed n times. Each of these n runs is
deterministic in the sense that each variable is assigned a unique value. A prob-
abilistic choice executes either of the two branches with the given probability.
A violated observe-statement drops the sample. For each loop, we count how
many times it is traversed in each of the deterministic runs and use the maximum
iteration count as the loop iteration bound.

Observation 5. When loop iteration bounds of a program without observe-
statements are determined using the heuristic described above, a fraction of 1 —%
of all runs are expected to terminate within these bounds.

Thus, for any program P that terminates almost surely, even when removing
observe-statements, the expected value of woipg(P, 1) is 1 — %

10 A. Hoppen, T. Noll

5.3 Approximation Error

Loop iteration bounds allow us to compute weakest preexpectations by approxi-
mating loops. It is thus only natural to ask how large the approximation error is.
To this aim, we need to establish bounds on the value of wp(P, f) and wip(P, 1)
based on the values computed with loop iteration bounds.

Lemma 9. We have wlp(P, f) = wp(P, f)+wlp(P,0) (c¢f. [11, Cor. 4.26]). Since
we can view the loop iteration bounds as a syntactic transformation of the pro-
gram by Observation 2, the lemma also holds when taking loop iteration bounds
into account.

Lemma 10. Let 31 result from the function B by increasing the loop iteration
bound for each loop by one, that is VP € Dom(3): B1(P) = B(P) + 1.

Note that if for a function ¢ parameterised on B we have p(8) < (87), the
relation also holds in the limit (analogously for “>7), i.e.

o(B) < (BT <p(BTT) < < vpelDigrln(B):@(ﬁ)

B(P)—00

Ezample 3. 1f () = wpg (P, f) for some fixed f € Eand P € Q and wpg(P, f) <
Wpﬁ+ (Pv f)v then

WpB(P7 f) < VPegg;q(ﬁ)WpB(P’ f) = Wp(P7 f)
B(P)—oo

Theorem 1 (Bounds on wp and wlp). We have

wpg (P, f) <wp(P, f) < wpg(P, f)+ (1 —woipg(P, 1))
wlpg(P, f) — wlpg(P,0) < wip(P, f) < wlpg(P, f)

Proof. We prove the bounds inequality by inequality:
Part 1: wpg(P, f) < wp(P, f)

Part 2: wp(P, f) < wpg(P, f) + (1 — woipg(P, 1))
Part 3: wipg(P, f) — wlpg(P,0) < wip(P, f)

Part 4: wip(P, f) < wlps(P, f)

Proof of Part 1 (wps(P, f) < wp(P, f)). We have

wpg (P, f) < wp(P, f)
<= wpg(P, f) <wpg+ (P, f) (Lemma 10) (%)

Now show (%). If P contains no loop, the statement is trivially true since the
definitions of wpg and wpgy match. For a loop P =while e { P, } we have:

A Debugger for Probabilistic Programs 11

Base case (B(P) = 0).

(%)
< X([-e] -) < A ([~e] - f) (Definition 12)
& [e]-f < [e] -wps(Py, [-e]-f) + [-e]-f (Definition 12)
& 0.2 [e] - wps(Po,[e] - /) (simplify) v

Induction case (b= B(P) > 0).

(%)
& N([~e] - £) < AT ([e] - f) (Definition 12)
< N[l -) < A ([-e] - f) (Corollary 1)
(holds by induction) v

Proof of Part 2 (wp(P, f) < wpg(P, f) + (1 — woipg (P, 1))). We have
wp(P, f) < wa(P7 i+ (1 — woipB(P7 1))
< wp(P, f)+(1—woip(P,1)) < wpg(P, f)+(1—woipg(P,1)) (woip(P,1) <1)

<= wpg+ (P, f) + (1 — woipg+ (P, 1)) < wpg(P, f) + (1 — woipg(P, 1))
(Lemma 10) (%)

Now show (x). If P contains no loop, the statement is trivially true. For loops
we have:

Base case (B(P) = 0).

(%)
e M([-el-)+ (1= ([=eD)) < X([=el -) + (1 =1°([e])) (Def. 12, 14)
& [e] -wpg(P, [-e] - £) + [el - f + (1 — [e] - woipg (P, [-e]) — [e])

<[-e]- f+ (1 —[—el) (Definition 12, 14)
& [e] - wo(Pon [~e] -) — [e] - woips(Ph, [e]) < 0 (simplify)
<= wpg (P, [-e] - f) < woipg (P, [e]) (rearrange)

(continues on next page)

< wpg (P, [e] - f) < wpg(P, [e]) (Lemma 7)
< [e] - f < [e] (Lemma 5)
=f<1 (simplify) v/

Induction case (b= S(P) > 0). First reformulate the statement to show
(%)
=)\b—&-l(
o)\b—&-l(

el f)+ (1 =" ([=eD)) < A([-el - £) + (1 —~"([—e])) (Def. 12)

[=el - f
[=el - f) = A([=e] -) < A" ([=el) = *([-e]) (rearrange) ()

12 A. Hoppen, T. Noll

Now show (%*) by induction.

(xx)
S A ([el -)~ N (el - 1) < A ([=el) — PN ([eD)) (Corollary 1)
< ANA) < () (abbreviate terms inside A,)
< [e] -wpg(Py, A) 4 [-e] - A < [e] - woipg (P, I') + [—e] - I (Def. 12, 14)
< [e] -wpg(Py, A) < [e] - woipg (B, I) (A < I by induction)
<= wpg (P, A) < woipg (P, I) (simplify)
<= wpg (P, A) <wpg(By, 1) (Lemma 7)
<AL (Lemma 5)

(holds by induction) v

Proof of Part 3 (wlps(P, f) — wlpg(P,0) < wlp(P, f)).
Wlpﬂ(Pﬂ f) - WlpB(P7 O) < WIP(P7 f)
< wp(P, f) < wlp(P, f) (Part 1) v/

Proof of Part 4 (wlp(P, f) < wlpg(P, f)). We have
wip(P, f) < wlpg(P, f)
<= wlpgs (P, f) < wlpg(P, f) (Lemma 10) (%)

Now show (x). If P contains no loop, the statement is trivially true. For loops
we have:

Base case (B(P) = 0).

(%)
& pi([e] + [l - £) < 1O([e] + [~e] -) (Definition 13)
& [e] -wlpg(Py, [e] + [—e] - f) + [—e] - f < [e] + [~e] - f (Definition 13)
< [e] -WlpB(Pb, [e] + [—e] - f) < [e] (simplify)
<= wlpg (P, [e] + [-e] - f) <1 (simplify) v/
Induction case (b= B(P) > 0).

(%)
& T ([e] + el - f) < 1*([e] + [e] - f) (Def. 13)
& @l + el -) < 1N Te) + el -) (Cor. 1)

(holds by induction) v

Corollary 2. Combining the bounds on wp(P, f) and wip(P, 1) from Theorem 1,

we obtain bounds on the conditional weakest preexpectation m;((lj;ﬁ)) :

wpg(P, f) + (1 — woipg (P, 1))

WpB(Pvf) < Wp(Pvf)
wlps(P, 1) — wlpg(P,0)

wIpB(P,l) ~ wlp(P, 1)

<

A Debugger for Probabilistic Programs 13

Theorem 2. If a program P is almost surely terminating even when removing
all observe-statements and the loop iteration bounds are being determined using
the sampling technique described in Section 5.2 on P, then the approzimation
error (that is, the difference between the upper and lower bound on the conditional

weakest preexpectation) is expected to be less than #(Pl)' It is thus in (’)(%)

Proof.

wps (P, f) + (1 woipg (P, 1)) wpﬁ(P7

f
wlpg (P, 1) — wlpg(P,0) W|pB(P,].
wps (P, f) + (1 — woipg (P, 1)) wpﬁ(P,f))
~ wipg(P,1) — (1 — woipg(P, 1)) ~ wipg(P, 1)
wpg(P, f) +2- (1 — woipg (P, 1)) WPg(P, f) ade — a -ra
= wip, (P 1) Twp,) ez gifisle=0)
=2 (1 W\I/\;I)(;IF?’(IP)’ b) (simplify)
<2. ¢ _WV}I[())EF? (5’ D) (Theorem 1)
~ #(Pl) (Observation 5)

t:1—woipg(P,1)=1—wpg(P,1)=wlps(P,0) >wlps(P,0)

6 Weakest Preexpectations at Intermediate Execution
States

With the definition of computable weakest preexpectation operators at hand,
let us turn towards the development of a debugger for probabilistic programs.
The first thing we need to consider, is how the interaction features of a debugger
for deterministic programs can be mapped to those for probabilistic programs.
Common debuggers for deterministic languages essentially offer the following
four interaction buttons:

— Step Over: Continue execution to the next statement in the current func-
tion.

— Step Into: If the current statement is a function call, continue execution
inside the callee’s body.

— Step Out: Continue execution until the end of the current function and
step out to the caller.

— Continue: Continue execution until the end of the program.

Step Into and Step Out both deal with function calls which are not defined
in our language and can thus be ignored in this paper. Continue can be thought
of as executing the Step Over command infinitely often. Hence, these debuggers

14 A. Hoppen, T. Noll

essentially have a single interaction feature for programs without function calls,
namely the Step Over command that continues execution to the next statement.
This is possible since in deterministic programs each execution state has a unique
successor state. Even for the branching statements if and while, the condition
is either satisfied or not. Thus, execution either jumps into the true- or the
false-branch.

In probabilistic programs, this is no longer the case. While non-branching
statements like assignments still have a unique successor, the branching state-
ments if, prob and while do not. For if expr { Pys } else { P,s } where
ezpr is true with 60% and false with 40%, both branches are viable — it is up
to the user to decide which branch he or she wants to jump into.? The possible
options are:

— Only focus on those runs where ezpr is true and jump to the first statement
in Pif.

— Only focus on those runs where expr is false and jump to the first statement
in Pege-

— Do not focus on a particular value of ezpr but evaluate both branches si-
multaneously and jump to the statement after the if-statement.

This gives us the following three debugger commands for probabilistic pro-
grams:

— Step Over: Execute the current statement and jump to the next statement.®

— Step Into True: If execution is currently at a branching statement®, only
focus on runs that satisfy the condition and jump to the first statement of
the true-branch. For if- and prob-statements, this means jumping into the
if-branch. For while-statements, this means jumping into the loop’s body.
If the current statement is not branching, the semantics is equivalent to Step
Owver.

— Step Into False: Analogous to Step Into True. For if- and prob-statements
jump into the else-branch, for while-statements terminate the loop, for
non-branching statements equivalent to Step Over.

So far we have talked vaguely about focussing on certain runs. Fortunately,
there already exists a construct that performs exactly the operation we require,
namely observe-statements. We can thus view a Step Into True command as
executing a virtual observe (ezpr == true) statement right before the branch-
ing statement (which afterwards has a unique successor). The Step Into False
command analogously executes a virtual observe (expr == false) statement.

4 The same logic also applies to prob- and while-statements. For loops, the user can
jump into the loop’s body or exit the loop.

® Here, if-, prob and while-statements are viewed as single statements that include
their bodies.

5 Branching statements are if-, prob- and while-statements. All other statements are
non-branching.

A Debugger for Probabilistic Programs 15

6.1 Execution History of a Program

While the interactive execution of a program is very well suited for usability, we
need a way to grasp the entire interaction procedure in a single object for formal
analysis. For this, we describe an intermediate execution state by its execution
history, which consists of all debugger commands that have been executed since
the start of the program.

Definition 15 (Execution history). An execution history h = (hg,...,hy)
with h; € {so,sit,sif } is the list of debugger commands that have been executed
since the start of the program, hy being the first debugger command. $o stands
for Step Over, sit for Step Into True and sif for Step Into False.

Definition 16 (Augmented execution history). For an execution history
h = (ho,...,hn) on a program P € Q, the augmented execution history is a
list WY = ((ho, Py), ..., (hn, Pn)) with P; € Q where each debugger command is
augmented with the statement on which it was executed.

Ezample 4. The execution history (so,so,sit,s0,80) executes exactly one loop
iteration of the program in Figure 1.

The corresponding augmented execution history has the following entries.
Notice that executing the Step Into True command on the while-statement
only deals with the condition. The body is executed by the two following Step
Over commands.

— (s0,bool aliceInfectious = true)

— (s0,bool bobInfected = false)

— (sit,while aliceInfectious { ... })

— (so,prob 0.1 { bobInfected = true })

— (so,prob 0.6 { aliceInfectious = false })

6.2 WP-Inference of Execution Histories

Now that we have defined execution histories and intuitively covered how the
Step Into True and Step Into False commands should be handled, we can also
define WP-inference on them.

Definition 17 (wph). The wph operator performs WP-inference of an aug-
mented execution history h* and a postexpectation f € E.

/ it hP = ()
see table below if h¥ = ((ho, Py))
if W2 = (nE,...,hP),n>1

wph(h”,) =

16 A. Hoppen, T. Noll

P hO th((h07P0)7f)
(int | float | bool | €) o
var = expr g0, sit, sifl\wp(Fo, f)
observe expr 80, sit, sifj\wp(FPp, f)
if expr { Py } 5'0 Wp(Po, f)
else { Puse } sit [expr] - f
ese sif [—expr] - f
prob expr { Pif } 5? Wp(P07f)
else { Puce } sit expr - f
ese sif (1—expr)-f
80 Wp(POa f)
while expr { Poody | [sit [expr] - f
s |[eapr] f

Definition 18 (wlph, woiph). The wiph operator for execution histories is anal-
ogous to wph with the only difference that it delegates to wlp where wph delegates
to wp. Similarly the woiph operator delegates to woip instead of wp.

Definition 19 (wphg, wlphs, woiphg). The wphg, wiphs and woiphg operators
compute the weakest preexpectation of an execution history while taking loop
iteration bounds 8 into account. They are defined analogously to wph, wlph and
woiph but delegate to wpg, wlpg and woipg instead of wp, wlp and woip.

Given the definitions of the weakest preexpectation operators for execution

histories, we can also place bounds on the unbounded conditional weakest pre-

wph(h” f)

expectation Wiph(hP.1)

based on the loop-bounded values.

Theorem 3 (Approximation error of weakest preexpectations for ex-
ecution histories). We have

thﬂ(hpa f)
wlphg(RE 1)

wph 5 (h”, f)+ (1—woiphg(h') 1))
wlph (RE 1) —wlph4(hF;0)

wph(h" f)
wlph(hf 1)

<

IN

Proof. The proof is analogous to that of Theorem 1.

Ezxample 5. For the program in Figure 1, the probability that Bob is infected
after two encounters with an infectious Alice is given by the probability of
bobInfected being true after the execution of exactly two loop iterations. This
is modelled by the execution history h = (80,80, sit, 80, 80, sit, 80, 80). Figure 3
shows the computation of wph,(h”, [bobInfected]) and wiphg(h’, 1).

P
By Theorem 3 we get a lower bound of %ZG = 0.19 on %. Since we
did not employ loop iteration bounds in this example, we have woiph B(hP, =1

and wlphﬁ(hf: 0) = 0. Thus the upper bound is also 0.19.

A Debugger for Probabilistic Programs 17

([pob], 1) (0.076,0.4)
(80, prob 0.6 { alice = false }) (80,bool alice = true)
([bob], 1) (0.076 - [alice], 0.4 - [alice])
(80, prob 0.1 { bob = true }) (80, ool bob = false)

—~
o

.9+ [bob] +0.1,1) (0.4 - [alice] - (0.81 - [bob] + 0.19),0.4 - [alice])
(sit,while alice { ... }) (sit,while alice { ... })
([alice] - (0.9 - [bob] +0.1), [alice]) (0.4 - [alice] - (0.81- [bob] +0.19),0.4 - [alice])

(80, prob 0.6 { alice = false }) (80,prob 0.1 { bob = true })

(0.4 - [alice] - (0.9 - [bob] + 0.1),0.4 - [alice])

Fig.3. Computation of wphg (h*, [bobInfected]) and WlphB(hP, 1) for h =
(80, 80, 8it, 80, 80, 8it, 80, 80) on the program in Figure 1 (where alice and bob respec-
tively stand for aliceInfectious and bobInfected).

7 Implementation

Based on the ideas of the algorithms described in this paper, a debugger for
probabilistic programs has been implemented. It operates on an Intermediate
Representation (IR) in Static Single Assignment (SSA) form instead of the syn-
tactic representation discussed in this paper.

The debugger is available both as a graphical user interface, which runs on
macOS, as well as a command line tool that runs on both macOS and Linux.
The source code can be found at [10].

Figure 4 shows a screenshot of the debugger’s graphical user interface. Its
left-hand side displays a structured outline of the program’s execution. This
execution outline is being generated during a sample-based execution of the pro-
gram as described in Section 5.2. For each executed statement, a corresponding
entry is being added to the execution outline. Clicking on one of the entries in
the execution outline jumps to the corresponding execution state. When doing
so, the statement that will be executed next is highlighted in the source code
on the top right and the current variable values, together with their approxima-
tion error if necessary, are displayed on the bottom right. Should the user want
to step through the program manually, he or she can use the three debugger
buttons Step Qwver, Step Into True and Step Into False on top of the variables
view.

By the ability to step to arbitrary execution states from the execution outline
on the left-hand side, our software implements a recording-based debugger.

8 Conclusion

In this paper, we have provided the semantic foundations for debugging proba-
bilistic programs. After some initial considerations on how a debugger for prob-

18 A. Hoppen, T. Noll

@® ® B Corona.sl
Code bool aliceInfectious = true
bool bobInfected = false
bool alicelnfectious = true while aliceInfectious {
bool boblInfected = false prob 0.1 {
v while alicelnfectious { bobInfected = true
» Iteration 1 [}Jrob 0.6 {
v Iteration 2 aliceInfectious = false
» prob 0.1{
» prob 0.6 { ¥
End
> /teratl.on 3 ~ v UX
> Iteration 4
» Iteration 5 Variable Average Values
» Iteration 6 alicelnfectious 0.4 true: 40.0%, false: 60.0%
» Iteration 7 bobInfected 0.19 false: 81.0%, true: 19.0%
» Iteration 8
» Iteration 9
» Iteration 10
» Iteration 11
» Iteration 12
End

Fig. 4. Screenshot of the debugger’s graphical user interface.

abilistic programs should operate, including the introduction of the new Step
Into True and Step Into Fualse debugger commands, we defined a weakest pre-
expectation operator that is not only able to compute variable values after the
execution of the entire program but can also compute these values at interme-
diate execution states by using execution histories.

To mitigate the problem that this operator is not computable due to its
use of fixed point operators, we introduced loop iteration bounds that can be
determined using sampling-based program execution. This yields a computable
weakest preexpectation operator whose approximation error could be quantified
by means of a careful analysis. A prototypical implementation of the approach
shows that it offers a nice and intuitive way of exploring a program’s semantics.

Regarding future work, there are several possible ways to improve both the
expressivity of the programming language and the usability of the debugging
framework. The first concerns the type of distributions: Our framework cur-
rently only supports discrete distributions generated through prob-statements.
An extension to continuous distributions, which are also supported in the Depp
approach [16], should be straightforward. Another possible enhancement are
(possibly recursive) user-defined functions, which would require a limitation of
the recursion depth similarly to loop iteration bounds as discussed in Section 5.

Moreover, a very common debugger feature is being able to place breakpoints
that halt program execution at a certain statement [19]. In our setting, imple-
menting breakpoints should be possible by generating all execution histories that
hit the breakpoint and performing WP-inference (as described in Section 6.2)
for all of them.

A Debugger for Probabilistic Programs 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Aggarwal, S.K., Kumar, M.S.: Debuggers for programming languages. In: The
Compiler Design Handbook, pp. 297-329. CRC Press (2002)

. Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic debugging of Java pro-

grams. Electronic Notes in Theoretical Computer Science 177, 75-89 (2007).
https://doi.org/10.1016/j.entcs.2007.01.005

Chesley, O.C., Ren, X., Ryder, B.G.: Crisp: a debugging tool for Java programs.
In: 21st IEEE International Conference on Software Maintenance (ICSM’05). pp.
401-410. IEEE (2005). https://doi.org/10.1109/ICSM.2005.37

Corporation, M.: Mozilla rr debugger. https://rr-project.org (2020)

Dijkstra, E.W.: A discipline of programming. Prentice-Hall (1976)

Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: program reduction for
testing and debugging probabilistic programming systems. In: ESEC/FSE 2019.
pp. 729-739. ACM (2019). https://doi.org/10.1145/3338906.3338972

Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering (FOSE 2014). pp. 167-181. ACM
(2014). https://doi.org/10.1145/2593882.2593900

Gretz, F., Katoen, J.P., Mclver, A.: Operational versus weakest pre-expectation se-
mantics for the probabilistic guarded command language. Performance Evaluation
73, 110-132 (2014). https://doi.org/https://doi.org/10.1016/j.peva.2013.11.004
Grotker, T., Holtmann, U., Keding, H., Wloka, M.: The Developer’s Guide to
Debugging. Springer (2008)

Hoppen, A., Noll, T.: ppdb — a debugger for probabilistic programs (November
2020), https://github.com/ahoppen/probabilistic-debugger

Kaminski, B.L.: Advanced weakest precondition calculi for proba-
bilistic programs. Ph.D. thesis, RWTH Aachen University (2019).
https://doi.org/http://doi.org/10.18154/RWTH-2019-01829

Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5) (2018).
https://doi.org/10.1145,/3208102

Law, R.: An overview of debugging tools. SIGSOFT Softw. Eng. Notes 22(2),
43-47 (1997). https://doi.org/10.1145/251880.251926

Lopez, C.T., Singh, R.G., Marr, S., Boix, E.G., Scholliers, C.: Multiverse de-
bugging: Non-deterministic debugging for non-deterministic programs. In: 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). LIPIcs,
vol. 134, pp. 27:1-27:30. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019).
https://doi.org/10.4230/LIPIcs. ECOOP.2019.27

Mclver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic sys-
tems. Springer Science & Business Media (2005)

Nandi, C., Grossman, D., Sampson, A., Mytkowicz, T., McKinley, K.S.: De-
bugging probabilistic programs. In: MAPL 2017. pp. 18-26. ACM (2017).
https://doi.org/10.1145/3088525.3088564

Nath, A., Domingos, P.M.: Learning tractable probabilistic models for fault local-
ization. CoRR abs/1507.01698 (2015), http://arxiv.org/abs/1507.01698

Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource
analysis for probabilistic programs. SIGPLAN Not. 53(4), 496-512 (2018).
https://doi.org/10.1145/3296979.3192394

Park, C.S., Sen, K.: Concurrent breakpoints. SIGPLAN Not. 47(8), 331-332
(2012). https://doi.org/10.1145/2370036.2145880

20

20.

21.
22.
23.
24.

23.

A. Hoppen, T. Noll

Santelices, R., Harrold, M.J.: Probabilistic slicing for predictive impact anal-
ysis. Tech. Rep. GIT-CERCS-10-10, Georgia Institute of Technology (2010),
http://hdl.handle.net/1853/36917

Telles, M., Hsieh, Y.: The Science of Debugging. Coriolis (2001)

Teorey, T.J., Ford, A.R.: Practical Debugging in C++. Prentice Hall (2002)

Xu, Z., Ma, S., Zhang, X., Zhu, S., Xu, B.: Debugging with intelli-
gence via probabilistic inference. In: ICSE2018. pp. 1171-1181. ACM (2018).
https://doi.org/10.1145/3180155.3180237

Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier Science
(2009)

Zhang, Y., Santelices, R.: Prioritized static slicing and its application to
fault localization. Journal of Systems and Software 114, 38-53 (2016).
https://doi.org/10.1016//j.js5.2015.10.052

