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A Gamble with Two Coins

Optimal Solution

e (Goal: find these predicates
tails = false ,;
while (x<N A 'tails) —>

| o | if (p=g? v (02<p< A N-x is odd))
o Strategies are permissive & parametric > Ix = x+1} [0] {tails = true?

| [1 (0sp v p=02 v (02<p<g A N-x=2))
e Loops: rely on @invariant annotations >  {x = x+2} [p] {tails = true}

end

e [ransformed program = strategy

end
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Inductive Definition of wp

[Mclver & Morgan ‘03]

C wpllCT (/)

X = Expr ‘substitute x by Exprin [~

C, ; G wp[C, T (wplCII()))

1G,} [pl 1G} p-wplC1 (/) + (1—=p)-wplGI (/)
if ¢, —> C max { [¢,] - wp[C,1(/),

[1 ¢, = C, end (0] - wpll G (/) §

while ¢ —> C’' end Ifp Y. [@] - wpllC'I(Y) + [@]-
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/2 -max{y,z}
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[] ( true ) — { /27 x Z / 2x }

end ;

Il 2x
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end ;

{ X = 4x } [.5] { X = 0 }




From wp Computation to Strategies Q

W

z) > 1 /2y X =Y }
z) —=> {1 /272 X = Z }

AN IV
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[y > Z] [y < Z]
if(y= 2z)-—=>{/2yx=y }
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From wp Computation to Strategies Q

W

same as before!

[y > 7] [y < 7]
if (y= z) >{/2yx=y ¥
[1 (v = z) = A{ /272 x = Z ¥
end ;
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Strategy Synthesis as a Program Transform

“objective function”

C trans(C, 1)
X = Expr X = Expr
C, ; G tmns(Cl,wp[[Cz]]( )) , trans(Csy, )

1+ [pl {G} 1trans(Cy, N} [pl Atrans(C,, 1)}

if @ —> C, if @ A (¢, = wpllC (/) = wpllGl(f)) => trans(Cy, f)
[] ¢, —> G, [1 @, A (@, = wpllC 1)) <wplGlI(f)) => trans(C,, [)
end end
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Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C, ) arbitrarily ... Vields maximum expected value of | after termination.
Cif(y>z)—>{//2yx==y +
[] (y = 2) —>{ /22 x = Z } end ;

Moreover, trans(C, |) is effectively constructible*.

*If we fix a suitable syntax to represent expectations, e.g. [Batz et al. POPL "21].
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Probabilistic Loop Invariants

lonIl} C {I} A termination
(1} while ¢ —> C end {@Al)

o Nl = wp|CIJ(]) A termination

(classic total correctness)

I = wpllwhile ¢ —> C end| (@A)

(0] -1 < wp[[CI(I) A  side conditions
I < wp[[while o —> C endﬂ([@]-l)

(lower bound on Wp) [Mclver & Morgan ‘05]
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Program Transformation with Loops

C trans(C, )

externally provided
INnvariant annotation

while ¢ —> C’ @/ enca while ¢ —> trans(C’, 1) end

& generate V/Cs: (0] -1 < wp[[C'I(])
A lpl-1 <
A Side conditions
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Soundness of Transformation with Loops

Main Result

let C =while ¢ —> C’' @/ end.
If all VCs generated during construction of trans(C, /) are satisfied, then

V determinizations C of trans(C, ) —> wpl[CT() > I .

Resolving the remaining nondeterminism in trans(C, [) arbitrarily ... Vields at least the expected value “oromised” by the invariant.

If a suitable / is given, then trans(C, /) is effectively constructible.
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to invariant syn
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tails = false;
while (x<N A

ltails) —>

if (p=g2 v (02<p<g A N-x 1is odd))

—> X =
[1 (g=p v
—>  {X =
end

end
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Summary
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values after termination -
tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
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end
™ In paper: connection to MDP theory, o
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