Programmatic Strategy Synthesis

Resolving Nondeterminism in Probabillistic Programs

Tobias Winkler
with Kevin Batz, Tom Jannik Biskup, and Joost-Pieter Katoen

. ; :“:;‘;.!tif;: ‘
. . ‘ iq%.‘,g“.‘.:
0 | RWTI'I DFG Research Training Group RS
Software Modeling ‘ ‘1“:i'.'e rC
‘ Bl and Verification Chair 2236 "‘::f oo
Treseteests

POPL 2024 — 18.01.2024

A Gamble with Two Coins

A Gamble with Two Coins

e [wo coins with bias ¢ (1£) and p (2£

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

e Repeatedly select a coin and flip it
= Get £ (heads) or game over (talls)

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

e Repeatedly select a coin and flip it
= Get £ (heads) or game over (talls)

o Start with x £

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

e Repeatedly select a coin and flip it
= Get £ (heads) or game over (talls)

o Start with x £

e \Win once we have at least NV £

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

e Repeatedly select a coin and flip it
= Get £ (heads) or game over (talls)

o Start with x £

e \Win once we have at least NV £

e Task: maximize winning_probability

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

tails = false ;
 Repeatedly select a coin and flip it while (x<N A !tails) —>

= Get £ (heads) or game over (tails) 1T (true) |
—> {x = x+1} [0] {tails = true}
. [1 (true)
o Start with x £ —> {x = x+2} [p] {tails = true}
end

e \Win once we have at least NV £ end

e Task: maximize winning_probability

A Gamble with Two Coins

e WO coins with bias ¢/ (1£) and p (2£)

tails = false ;
 Repeatedly select a coin and flip it while (x<N A !tails) —>

= Get £ (heads) or game over (tails) 1T (true) |
—> {x = x+1} [0] {tails = true}
. [1 (true)
o Start with x £ —> {x = x+2} [p] {tails = true}
end

e \Win once we have at least NV £ end

e Task: maximize winning_probability

A Gamble with Two Coins

Optimal Solution

tails = false ;

while (x<N A 'tails) ->
if (p=o?2 v (02<p<g A N=x is odd))
—> {x = x+1} [0] {tails = true}
[1 (g=sp v p=02 v (02<p<i A N-x=2))
-> {x = x+2} [p] {tails = true}
end

end

A Gamble with Two Coins

Optimal Solution

e (Goal: find these predicates

tails = false ;

while (x<N A 'tails) ->
if (p=o?2 v (02<p<g A N=x is odd))
—> {x = x+1} [0] {tails = true}
[1 (g=sp v p=02 v (02<p<i A N-x=2))
-> {x = x+2} [p] {tails = true}
end

end

A Gamble with Two Coins

Optimal Solution

e (Goal: find these predicates

tails = false ;

while (x<N A 'tails) ->
if (p=o?2 v (02<p<g A N=x is odd))
—> {x = x+1} [0] {tails = true}
[1 (g=sp v p=02 v (02<p<i A N-x=2))
-> {x = x+2} [p] {tails = true}
end

e [ransformed program = strategy

end

A Gamble with Two Coins

Optimal Solution

e (Goal: find these predicates

tails = false ;
while (x<N A !tails) —>
if (p=o?2 v (02<p<g A N=x is odd))
e Strategies are permissive & parametric > {x = x+1} [0] {tails = truel
[] (0=p v p=02 v (02<p<t A N-x=2))
-> {x = x+2} [p] {tails = true}
end

e [ransformed program = strategy

end

A Gamble with Two Coins

Optimal Solution

e (Goal: find these predicates
tails = false ,;
while (x<N A 'tails) —>

| o | if (p=g? v (02<p< A N-x is odd))
o Strategies are permissive & parametric > Ix = x+1} [0] {tails = true?

| [1 (0sp v p=02 v (02<p<g A N-x=2))
e Loops: rely on @invariant annotations > {x = x+2} [p] {tails = true}

end

e [ransformed program = strategy

end

Weakest Preconditions

Wp[[C]] () 40 nondsaiﬁrg]einistic
0. ¢ %
/ | []

[Dijkstra ’75]

lllustration based on [Batz et al. OOPSLA ’22]

Weakest Preconditions

[Dijkstra ’75]

=1 0. nondeterministic
Wp [[C]] () choice = wp[[C] ()
....... if (y =z) —=> {x = 1}
°°°° 3 [1 (y =2 z) — {x = 2}
.x. end

lllustration based on [Batz et al. OOPSLA ’22]

Weakest Pre-expectations

For Probabilistic Programs [Kozen ‘83, Mclver & Morgan 05, Kaminski ‘19]

lllustration based on [Batz et al. OOPSLA ’22]

Weakest Pre-expectations

For Probabilistic Programs [Kozen ‘83, Mclver & Morgan 05, Kaminski ‘19]

expected value of X
after termination

= wp| Cll (x)
{x = 4x} [.5] {x = 0}

lllustration based on [Batz et al. OOPSLA ’22]

Weakest Pre-expectations

For Probabillistic Programs with Nondeterminism [Mclver & Morgan ‘05]

wpllCT (/) O

5] -
C 1
Slo;p E.Xp (T 1) """" (TZ) (T3) """" (T4)
strategies

aka schequlers, policies

6 lllustration based on [Batz et al. OOPSLA ’22]

Weakest Pre-expectations

For Probabilistic Programs with Nondeterminism [Mclver & Morgan ‘05]
wplLCT (/) e
i " if (y = z) —> {x = 0}
[5] C E] [] (y = Z) —> '{X = 1}'
P end ;
' : L ; ix = 4xy [.5] {x = 0}
Exp | f(7.) -)
PR T@) () p(gy) (W)
strategies o

aka schequlers, policies

6 lllustration based on [Batz et al. OOPSLA 22|

Inductive Definition of wp

[Mclver & Morgan ‘05]

C wpllCT (/)
X = Expr
¢, ; G

{Cl} [p] {CZ}

1T ¢ —> C
[] qu —> C2 end

while o —> (' end

Inductive Definition of wp

[Mclver & Morgan ‘05]

C wpllCT (/)
X = Expr ‘substitute x by Exprin [~
G 7 G

1C,} [pl {G,}

[] §02 —> C2 end

while ¢ —> C’ end

Inductive Definition of wp

[Mclver & Morgan ‘05]

¢ wpllCT (/)
X = Expr ‘substitute x by Exprin [~
¢ ;5 G wpl[Cill (wpl CII())

1C,} [pl {G,}

[] §02 —> C2 end

while ¢ —> C’ end

Inductive Definition of wp

[Mclver & Morgan ‘05]

C wpl[CT (/)

X = Expr ‘substitute x by Exprin /7

C, ; G wp[C T (wpLGI()))

1Cir Ipl 16} p-wpllC1(/) + (1=p)-wplCDl (/)
it ¢, —> C,

[] qﬂz —> C2 end

while ¢ —> C’ end

Inductive Definition of wp

[Mclver & Morgan ‘05]

C wpllCT (/)

X = Expr ‘substitute x by Exprin [~

C, ; G wp[C, T (wplCII()))

1G,} [pl 1G} p-wplC1 (/) + (1—=p)-wplGI (/)
if ¢, —> C max { [¢,]- wp[C{1(/),

[1 ¢, = C, end (0] - wpll G (/) §

while ¢ —> C’ end

Inductive Definition of wp

[Mclver & Morgan ‘03]

C wpllCT (/)

X = Expr ‘substitute x by Exprin [~

C, ; G wp[C, T (wplCII()))

1G,} [pl 1G} p-wplC1 (/) + (1—=p)-wplGI (/)
if ¢, —> C max { [¢,] - wp[C,1(/),

[1 ¢, = C, end (0] - wpll G (/) §

while ¢ —> C’' end Ifp Y. [@] - wpllC'I(Y) + [@]-

Computing wp

Computing wp

Computing wp

Computing wp

Computing wp

Computing wp

Computing wp

Computing wp

Computing wp

// max { [true] - 2y , |true] - 2z}

if (true) > { /2y x=1vy /2 }

[] (true) — { /27 x Z / 2x }

end ;

Il 2x

/05 -4x+0.5-0

{ /4x x =4x /x ¥} [.5] { /70 x =0 /x }
Il x

Computing wp

/2 -max{y,z}
// max { [true] - 2y , [true] - 2z}

if (true) > { /2y x=1vy /2 }

[] (true) — { /27 x Z / 2x }

end ;

Il 2x

/05 -4x+0.5-0

{ /4x x =4x /x ¥} [.5] { /70 x =0 /x }
Il x

From wp Computation to Strategies O

W

if |) > { /2y x =y h
[]) — { /22 X = Z +
end

{ X = 4x } [.5] { X = 0 }

From wp Computation to Strategies Q

W

if (2y = 2z) > { /2y x =y }
[] () —> { /22 X = Z +
end

{ X = 4x } [.5] { X = 0 }

From wp Computation to Strategies Q

W

if (2y = 2z) > { /2y x =y }
[1 (2y = 22) —= { /22 x = 2 }
end ;

{ X = 4x } [.5] { X = 0 }

From wp Computation to Strategies Q

W

z) > 1 /2y X =Y }
z) —=> {1 /272 X = Z }

AN IV

{ X = 4x } [.5] { X = 0 }

From wp Computation to Strategies Q

W

[y > Z] [y < Z]
if(y= 2z)-—=>{/2yx=y }
[1 (v = z) = A{ /272 x = Z s
end ;

From wp Computation to Strategies Q

W

[y > Z] [y < Z]
if(y= 2z)-—=>{/2yx=y }
[1 (v = z) = A{ /272 x = Z s
end ;

From wp Computation to Strategies Q

W

same as before!

[y > 7] [y < 7]
if (y= z) >{/2yx=y ¥
[1 (v = z) = A{ /272 x = Z ¥
end ;

Strategy Synthesis as a Program Transform

C trans(C, [)
X = Expr
C, 7 G

1C,} [pl {GC,}

Strategy Synthesis as a Program Transform

“objective function”

C trans(C, [)
X = Expr
C, 7 G

1C,} [pl {GC,}

Strategy Synthesis as a Program Transform

“objective function”

C trans(C, [)
X = Expr X = Expr
v G

1C,} [pl {GC,}

Strategy Synthesis as a Program Transform

“objective function”

C trans(C, 1)
X = Expr X = Expr
C, ; G tmns(Cl,wp[[Cz]]()) , trans(Csy,)

1C,} [pl {GC,}

Strategy Synthesis as a Program Transform

“objective function”

C trans(C, 1)
X = Expr X = Expr
C, ; G tmns(Cl,wp[[Cz]]()) , trans(Csy,)

1+ [pl {G} 1trans(Cy, N} [pl Atrans(C,, 1)}

10

Strategy Synthesis as a Program Transform

“objective function”

C trans(C, 1)
X = Expr X = Expr
C, ; G tmns(Cl,wp[[Cz]]()) , trans(Csy,)

1+ [pl {G} 1trans(Cy, N} [pl Atrans(C,, 1)}

if @ —> C, if @ A (¢, = wpllC (/) = wpllGl(f)) => trans(Cy, f)
[] ¢, —> G, [1 @, A (@, = wpllC 1)) <wplGlI(f)) => trans(C,, [)
end end

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

11

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C,) arbitrarily ... Vields maximum expected value of | after termination.

11

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C,) arbitrarily ... Vields maximum expected value of | after termination.
if(y=2z) >{/72yx=y }
trans(C, |)
[] (y = 2) —> { /22 X = Z } end ; ..

11

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C,) arbitrarily ... Vields maximum expected value of | after termination.
Cif(yzz)—>{//2yx==y }
[] (y <2z) = { /22 Xx = 2 } end ; ..

11

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C,) arbitrarily ... Vields maximum expected value of | after termination.
Cif(y>z)—>{//2yx==y }
[] (y =2) = { /22 x = Z } end ; ..

11

Soundness of Loop-free Transformation

f C is loop-free, then

V determinizations C of trans(C, 1) - wp[CT(/) = wp[CIL(/) .

Resolving the remaining nondeterminism in trans(C,) arbitrarily ... Vields maximum expected value of | after termination.
Cif(y>z)—>{//2yx==y +
[] (y = 2) —>{ /22 x = Z } end ;

Moreover, trans(C, |) is effectively constructible*.

*If we fix a suitable syntax to represent expectations, e.g. [Batz et al. POPL "21].

Probabilistic Loop Invariants

Al C i}

, (classic partial correctness)
(1} while ¢ —> C end {@Al)

Probabilistic Loop Invariants

lonIl} C {I} A termination
(1} while ¢ —> C end {@Al)

(classic total correctness)

Probabilistic Loop Invariants

lonIl} C {I} A termination
(1} while ¢ —> C end {@Al)

(classic total correctness)

o Nl = wp|CIJ(]) A termination

I = wpllwhile ¢ —> C end| (@A)

13

Probabilistic Loop Invariants

lonIl} C {I} A termination
(1} while ¢ —> C end {@Al)

o Nl = wp|CIJ(]) A termination

(classic total correctness)

I = wpllwhile ¢ —> C end| (@A)

(0] -1 < wp[[CI(I) A side conditions
I < wp[[while o —> C endﬂ([@]-l)

(lower bound on Wp) [Mclver & Morgan ‘05]

Program Transformation with Loops

C trans(C,)

externally provided
INnvariant annotation

while ¢ —> C’ @I end

Program Transformation with Loops

C trans(C, 1)

externally provided
INnvariant annotation

while ¢ —> C’ @/ enca while ¢ —> trans(C’, 1) end

14

Program Transformation with Loops

C trans(C,)

externally provided
INnvariant annotation

while ¢ —> C’ @/ enca while ¢ —> trans(C’, 1) end

& generate V/Cs: (0] -1 < wp[[C'I(])
A lpl-1 <
A Side conditions

Soundness of Transformation with Loops

Main Result

let C =while ¢ —> C’' @/ end.
If all VCs generated during construction of trans(C, /) are satisfied, then

V determinizations C of trans(C,) —> wpl[CT() > I .

15

Soundness of Transformation with Loops

Main Result

let C =while ¢ —> C’' @/ end.

If all VCs generated during construction of trans(C, /) are satisfied, then

V determinizations C of trans(C, 1)

Resolving the remaining nondeterminism in trans(C, |) arbitrarily

—> wpllCT(/) > 1 .

vields at least the expected value “promised” by the invarant.

15

Soundness of Transformation with Loops

Main Result

let C =while ¢ —> C’' @/ end.
If all VCs generated during construction of trans(C, /) are satisfied, then

V determinizations C of trans(C,) —> wpl[CT() > I .

Resolving the remaining nondeterminism in trans(C, [) arbitrarily ... Vields at least the expected value “oromised” by the invariant.

If a suitable / is given, then trans(C, /) is effectively constructible.

16

Summary

tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [g] {tails = true}
[1 (0=p v p=02 v (g2<p<c A N-x=2))

x+2} [p] {tails = true}

—> {x
end

end

Il [x >N A —tails]

16

Summary

M We derive strategies for optimizing expected
values after termination

tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [0] {tails = true}
[1 (osp v p=02 v (g2<p<i A N-x=2))

x+2} [p] {tails = true}

s {x
end
end

16

Summary

M We derive strategies for optimizing expected
values after termination

M Loop-free programs: fully mechanizable

tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [0] {tails = true}
[1 (osp v p=02 v (g2<p<i A N-x=2))

x+2} [p] {tails = true}

s {x
end
end

16

Summary

M \We derive strategies for optimizing expected
values after termination

M Loop-free programs: fully mechanizable

M Loopy program

S: strategy synthesis reduces

to invariant syn

‘hesis

tails = false;
while (x<N A

ltails) —>

if (p=g2 v (02<p<g A N-x 1is odd))

—> X =
[1 (g=p v
—> {X =
end

end
Il [x >N A —tails]

x+1} [g] {tails = true}
p=02 v (02<p< A N-x=2))
x+2} [p] {tails = true}

16

Summary

M We derive strategies for optimizing expected
values after termination

M Loop-free programs: fully mechanizable

M Loopy programs: strategy synthesis reduces
to invariant synthesis

M Ir

18

paper: connection to MDP theory,
inimization, upper bounds

tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [0] {tails = true}
[1 (osp v p=02 v (g2<p<i A N-x=2))

x+2} [p] {tails = true}

s {x
end
end

16

Summary

M We derive strategies for optimizing expected
values after termination

M Loop-free programs: fully mechanizable

M Loopy programs: strategy synthesis reduces
to invariant synthesis

™ |In paper: connection to MDP theory,
Minimization, upper bounds

(1 Stochastic 2-player games

tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [0] {tails = true}
[1 (osp v p=02 v (g2<p<i A N-x=2))

x+2} [p] {tails = true}

s {x
end
end

16

Summary

M We derive strategies for optimizing expected

values after termination -
tails = false;

while (x<N A !tails) —>
if (p=g2 v (02<p<g A N-x 1is odd))
-> {x = x+1} [g] {tails = true}
[1 (osp v p=02 v (g2<p<i A N-x=2))
-> {x = x+2} [p] {tails = true}

M Loop-free programs: fully mechanizable

M Loopy programs: strategy synthesis reduces
to invariant synthesis

end
™ In paper: connection to MDP theory, o
Minimization, upper bounds

(1 Stochastic 2-player games

Thank you! tobias.winkler@cs.rwth-aachen.de

mailto:tobias.winkler@cs.rwth-aachen.de

