Programmatic Strategy Synthesis

Resolving Nondeterminism in Probabilistic Programs

Tobias Winkler

with Kevin Batz, Tom Jannik Biskup, and Joost-Pieter Katoen

POPL 2024 — 18.01.2024

• Two coins with bias q(1£) and p(2£)

- Two coins with bias q(1£) and p(2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)

- Two coins with bias q(1£) and p(2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)
- Start with $x \\mathbb{L}$

- Two coins with bias q(1£) and p(2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)
- Start with $x \, \pounds$
- Win once we have at least $N \mathfrak{L}$

- Two coins with bias q (1£) and p (2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)
- Start with $x \, \pounds$
- Win once we have at least $N \mathfrak{L}$
- Task: maximize winning probability

- Two coins with bias q(1£) and p(2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)
- Start with $x \, \pounds$
- Win once we have at least $N \mathfrak{L}$
- Task: maximize winning probability

```
tails = false ;
while (x<N ∧ !tails) ->
    if (true)
    -> {x = x+1} [q] {tails = true}
    [] (true)
    -> {x = x+2} [p] {tails = true}
    end
end
```


- Two coins with bias q(1£) and p(2£)
- Repeatedly select a coin and flip it
 - → Get £ (heads) or game over (tails)
- Start with $x \, \pounds$
- Win once we have at least N £
- Task: maximize winning probability

```
tails ≔ false ;
while (x<N \( \text{!tails} \) ->
    if (true)
    -> {x = x+1} [q] {tails = true}
     [] (true)
    -> {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```



```
tails = false ;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```

Optimal Solution

Goal: find these predicates

```
tails ≔ false ;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```


- Goal: find these predicates
- Transformed program = strategy

```
tails ≔ false ;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
|| [x \ge N \land \neg tails]|
```


- Goal: find these predicates
- Transformed program = strategy
- Strategies are permissive & parametric

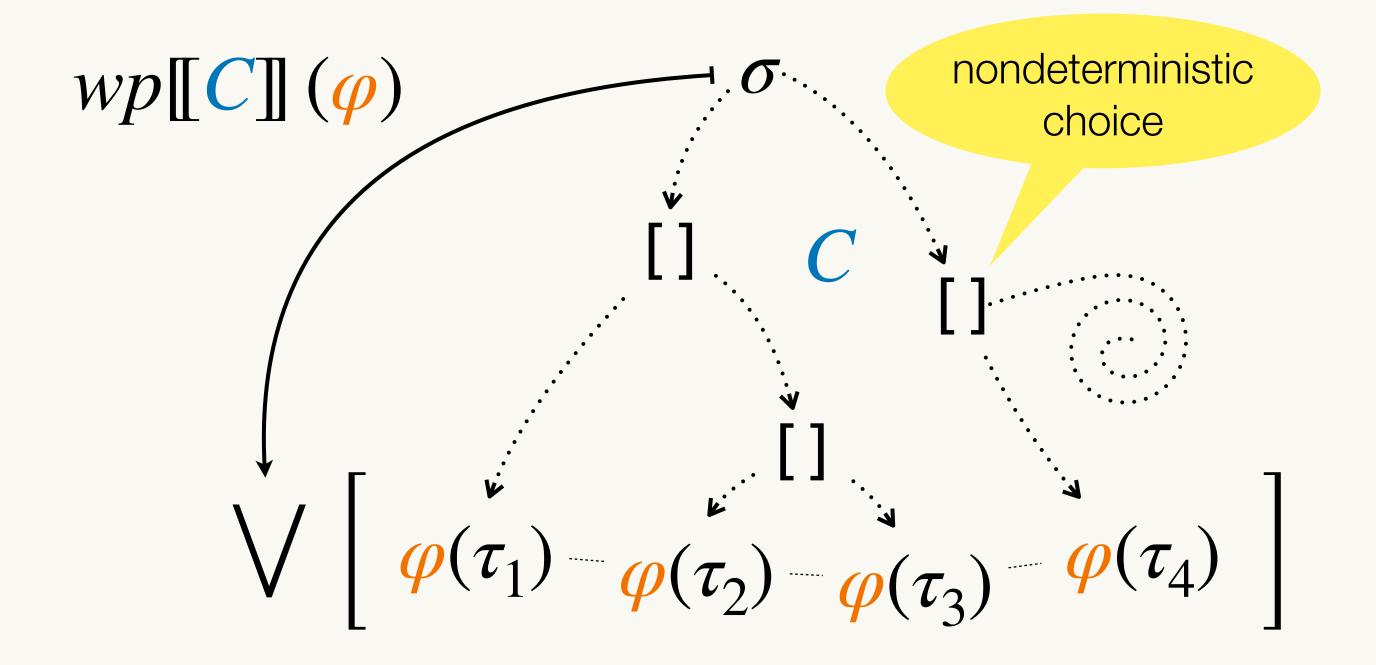
```
tails ≔ false ;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
|| [x \ge N \land \neg tails]|
```


- Goal: find these predicates
- Transformed program = strategy
- Strategies are permissive & parametric
- Loops: rely on @invariant annotations

```
tails ≔ false ;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```

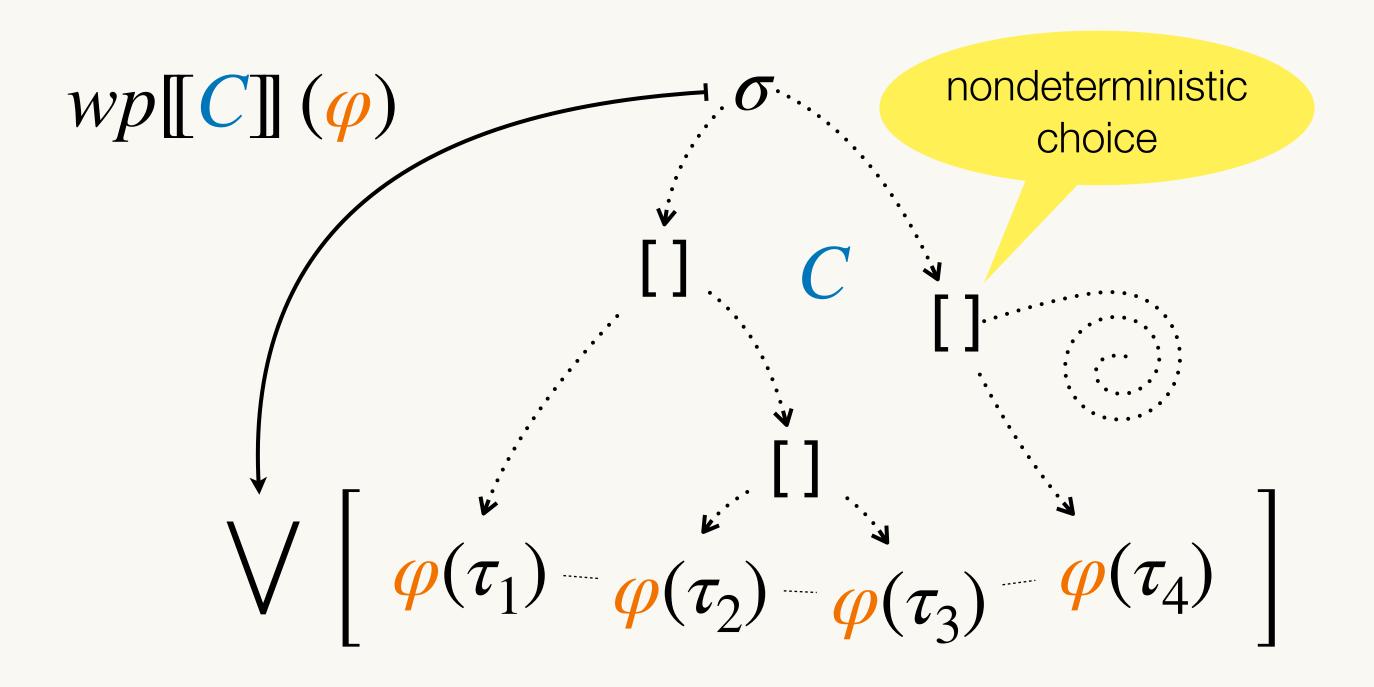
Weakest Preconditions

[Dijkstra '75]



Weakest Preconditions

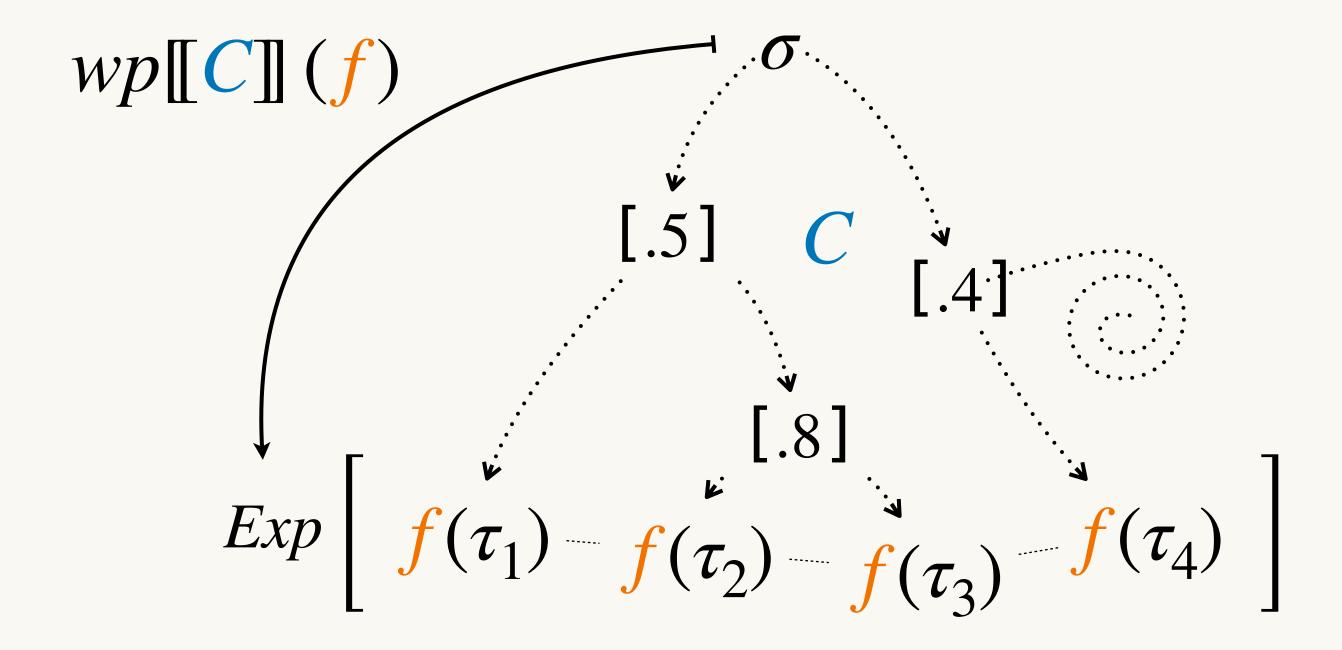
[Dijkstra '75]



```
||y| \ge z = wp[C](x = 2)
if (y \le z) \to \{x = 1\}
[] (y \ge z) \to \{x = 2\}
end
||x| = 2
```

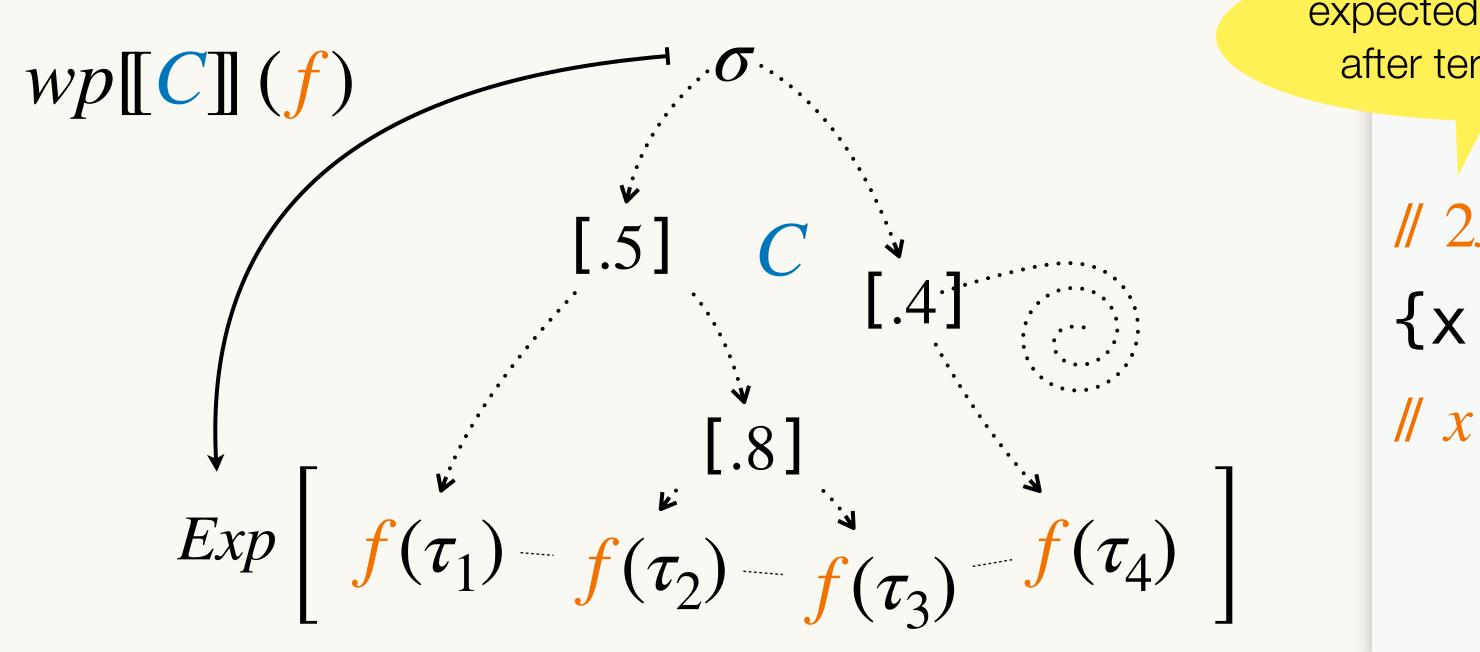
For Probabilistic Programs

[Kozen '83, McIver & Morgan '05, Kaminski '19]



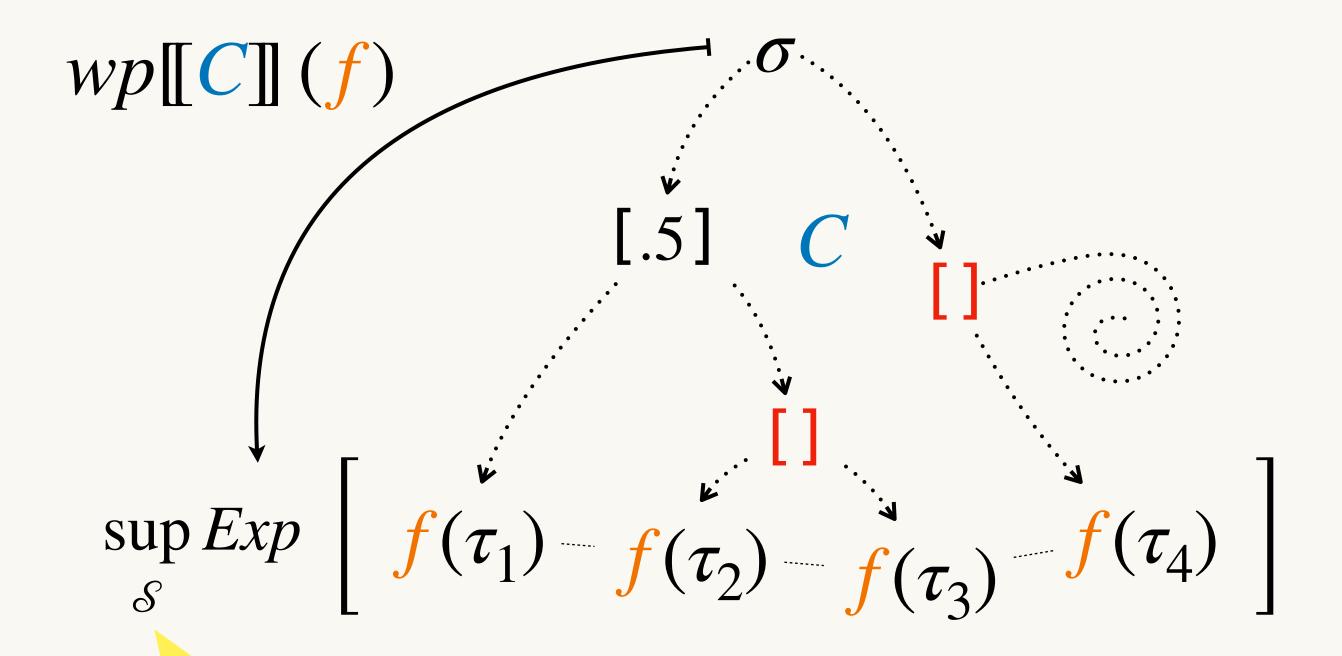
For Probabilistic Programs

[Kozen '83, McIver & Morgan '05, Kaminski '19]



For Probabilistic Programs with Nondeterminism

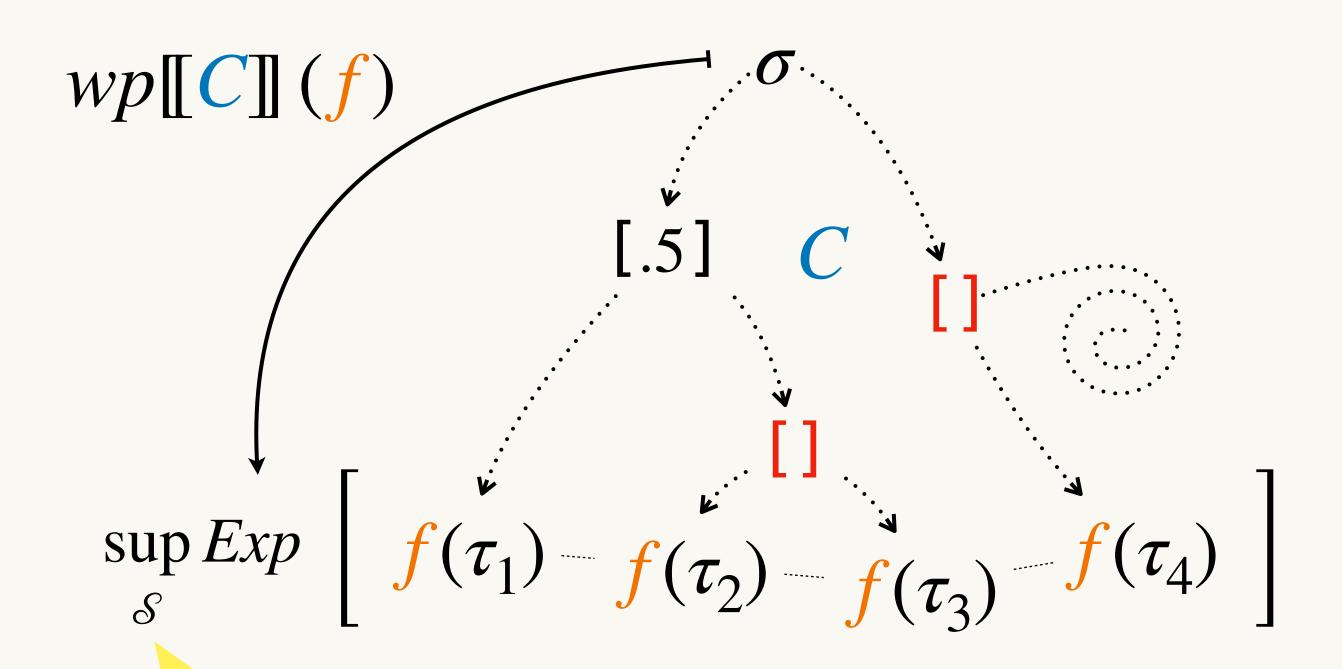
[McIver & Morgan '05]



strategies aka schedulers, policies

For Probabilistic Programs with Nondeterminism

[McIver & Morgan '05]



```
/\!\!/ [y \ge z] \cdot 2 + [y < z] \cdot 0
if (y \le z) \rightarrow \{x = 0\}
[] (y \ge z) \rightarrow \{x = 1\}
end;
\{x = 4x\} [.5] \{x = 0\}
/\!\!/ x
```

strategies aka schedulers, policies

wp[[C]](f)

[McIver & Morgan '05]

x = Expr C_1 ; C_2 $\{C_1\}$ [p] $\{C_2\}$ if $\varphi_1 \to C_1$ [] $\varphi_2 \to C_2$ end while $\varphi \rightarrow C'$ end

[McIver & Morgan '05]

C

wp[[C]](f)

```
x = Expr
```

"substitute x by Expr in f"

$$C_1$$
 ; C_2

$$\{C_1\}$$
 $[p]$ $\{C_2\}$

if
$$\varphi_1 \rightarrow C_1$$

[] $\varphi_2 \rightarrow C_2$ end

while
$$\phi \rightarrow C'$$
 end

while $\varphi \rightarrow C'$ end

\boldsymbol{C}	$wp[\![C]\!](f)$
x = Expr	"substitute x by $Expr$ in f "
C_1 ; C_2	$wp[\hspace{-0.04cm}[C_1]\hspace{-0.04cm}] \big(wp[\hspace{-0.04cm}[C_2]\hspace{-0.04cm}](f)\big)$
$\{C_1\} [p] \{C_2\}$	
if $\varphi_1 \rightarrow C_1$ [] $\varphi_2 \rightarrow C_2$ end	

\boldsymbol{C}	$wp[\![C]\!](f)$
x = Expr	"substitute x by $Expr$ in f "
C_1 ; C_2	$wp[\hspace{-0.04cm}[C_1]\hspace{-0.04cm}] \big(wp[\hspace{-0.04cm}[C_2]\hspace{-0.04cm}](f)\big)$
$\{C_1\} [p] \{C_2\}$	$p \cdot wp[[C_1]](f) + (1-p) \cdot wp[[C_2]](f)$
if $\varphi_1 \rightarrow C_1$ [] $\varphi_2 \rightarrow C_2$ end	
while φ -> C' end	

\boldsymbol{C}	$wp[\![C]\!](f)$
x = Expr	"substitute x by $Expr$ in f "
C_1 ; C_2	$wp[\hspace{-0.04cm}[C_1]\hspace{-0.04cm}] \big(wp[\hspace{-0.04cm}[C_2]\hspace{-0.04cm}](f)\big)$
$\{C_1\}$ $[p]$ $\{C_2\}$	$p \cdot wp[[C_1]](f) + (1-p) \cdot wp[[C_2]](f)$
if $\varphi_1 \rightarrow C_1$ [] $\varphi_2 \rightarrow C_2$ end	$\max \left\{ \begin{bmatrix} \varphi_1 \end{bmatrix} \cdot wp \llbracket C_1 \rrbracket \left(f \right), \\ \left[\varphi_2 \end{bmatrix} \cdot wp \llbracket C_2 \rrbracket \left(f \right) \right\}$
while φ -> C' end	

\boldsymbol{C}	$wp[\![C]\!](f)$
x = Expr	"substitute x by $Expr$ in f "
C_1 ; C_2	$wp[\hspace{-0.04cm}[C_1]\hspace{-0.04cm}] \big(wp[\hspace{-0.04cm}[C_2]\hspace{-0.04cm}](f)\big)$
$\{C_1\} [p] \{C_2\}$	$p \cdot wp[[C_1]](f) + (1-p) \cdot wp[[C_2]](f)$
if $\varphi_1 \rightarrow C_1$ [] $\varphi_2 \rightarrow C_2$ end	$\max \left\{ \begin{bmatrix} \varphi_1 \end{bmatrix} \cdot wp \llbracket C_1 \rrbracket \begin{pmatrix} f \end{pmatrix}, \\ [\varphi_2] \cdot wp \llbracket C_2 \rrbracket \begin{pmatrix} f \end{pmatrix} \right\}$
while φ -> C' end	$\mathrm{lfp}\ Y.\ [\varphi]\cdot wp[\![C']\!](Y)\ +\ [\overline{\varphi}]\cdot f$

```
[] (true) -> { x = z }
end;
   x = 4x \qquad \} \quad [.5] \quad x = 0
```

```
[] (true) -> { x = z }
end;
   x = 4x \qquad \} \quad [.5] \quad x = 0
/\!\!/ x
```

```
[] (true) -> { x = z }
end;
  x = 4x // x  [.5] { x = 0 // x }
/\!\!/ x
```

```
[] (true) -> { x = z }
end;
/\!\!/ x
```

```
[] (true) -> { x = z }
end;
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```

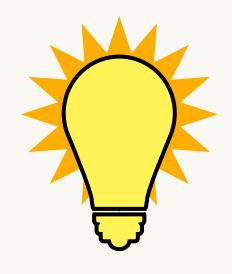
```
[] (true) -> { x = z }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```

```
if (true) \rightarrow { x = y // 2x }
[] (true) -> { x = z // 2x}
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```

```
if (true) -> { \frac{y}{2y} x = y \frac{y}{2x} }
[] (true) \rightarrow { //2z x = z //2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```

```
/\!/ \max \{ [true] \cdot 2y, [true] \cdot 2z \}
if (true) -> { //2y \times = y //2x }
[] (true) -> { //2z x = z //2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```

```
// 2 \cdot \max\{y, z\}
/\!/ \max \{ [true] \cdot 2y, [true] \cdot 2z \}
if (true) -> { //2y \times = y //2x }
[] (true) \rightarrow { //2z x = z //2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```



```
if ( ) -> \{ // 2y \times = y // 2x \}
[] ( ) -> { //2z \times = z //2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```



```
if (2y \ge 2z) \rightarrow { \%2y \times = y \%2x }
[] ( ) -> { //2z \times = z //2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```



```
if (2y \ge 2z) \rightarrow { \%2y \times = y \%2x }
[] (2y \le 2z) \rightarrow { \%2z } x = z \%2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```



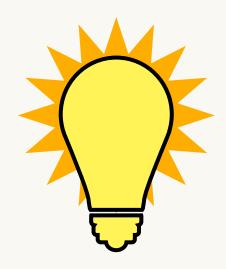
```
if (y \ge z) -> \{ // 2y \times = y // 2x \}
[] (y \le z) \rightarrow { // 2z } x = z // 2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ x
```



```
/\!/ \max \left\{ [y \ge z] \cdot 2y, [y \le z] \cdot 2z \right\}
if (y \ge z) -> \{ // 2y x = y // 2x \}
[] (y \le z) -> \{ // 2z \times = z // 2x \}
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ \chi
```



```
//2 \cdot \max\{y, z\}
/\!/ \max \left\{ [y \ge z] \cdot 2y, [y \le z] \cdot 2z \right\}
if (y \ge z) -> \{ // 2y x = y // 2x \}
[] (y \le z) \rightarrow { // 2z } x = z // 2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ \chi
```



same as before!

```
// 2 \cdot \max\{y, z\}
/\!/ \max \left\{ [y \ge z] \cdot 2y, [y \le z] \cdot 2z \right\}
if (y \ge z) -> \{ // 2y x = y // 2x \}
[] (y \le z) \rightarrow { // 2z } x = z // 2x }
end;
// 2x
// 0.5 \cdot 4x + 0.5 \cdot 0
/\!\!/ \chi
```

trans(C, f)

```
x = Expr
C_1; C_2
\{C_1\} [p] \{C_2\}
if \varphi_1 \rightarrow C_1
end
```

"objective function" trans(C, f)

```
x = Expr
C_1; C_2
\{C_1\} [p] \{C_2\}
if \varphi_1 \rightarrow C_1
end
```

"objective function"

C

trans(C, f)

$$x = Expr$$

$$x = Expr$$

$$C_1$$
; C_2

$$\{C_1\}$$
 $[p]$ $\{C_2\}$

if
$$\varphi_1$$
 -> C_1 [] φ_2 -> C_2 end

"objective function" trans(C, f)x = Exprx = Expr $trans(C_1, wp[[C_2]](f))$; $trans(C_2, f)$ C_1 ; C_2 $\{C_1\}$ [p] $\{C_2\}$ if $\varphi_1 \rightarrow C_1$

end

"objective function" trans(C, f)x = Exprx = Expr $trans(C_1, wp[[C_2]](f))$; $trans(C_2, f)$ C_1 ; C_2 $\{trans(C_1, f)\}\ [p]\ \{trans(C_2, f)\}$ $\{C_1\}$ [p] $\{C_2\}$ if $\varphi_1 \rightarrow C_1$ end

"objective function" trans(C, f)x = Exprx = Expr $trans(C_1, wp[[C_2]](f))$; $trans(C_2, f)$ C_1 ; C_2 $\{trans(C_1, f)\}\ [p]\ \{trans(C_2, f)\}$ $\{C_1\}$ [p] $\{C_2\}$ if $\varphi_1 \land (\varphi_2 \implies wp[[C_1]](f) \ge wp[[C_2]](f)) \longrightarrow trans(C_1, f)$ if $\varphi_1 \rightarrow C_1$ [] $\varphi_2 \wedge (\varphi_1 \implies wp[[C_1]](f) \leq wp[[C_2]](f)) \longrightarrow trans(C_2, f)$ $[\] \varphi_2 -> C_2$ end end

If C is loop-free, then

 \forall determinizations \tilde{C} of trans(C, f) \Longrightarrow

$$wp[\![\tilde{C}]\!](f) = wp[\![C]\!](f).$$

If C is loop-free, then

 \forall determinizations \tilde{C} of trans(C, f)

 \Longrightarrow

$$wp[\![\tilde{C}\,]\!](f) = wp[\![C\,]\!](f).$$

Resolving the remaining nondeterminism in trans(C, f) arbitrarily

yields maximum expected value of f after termination.

If C is loop-free, then

```
\forall determinizations \tilde{C} of trans(C, f) \implies wp[\![\tilde{C}\,]\!](f) = wp[\![C\,]\!](f).
```

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ... yields maximum expected value of f after termination.

```
trans(C, f) if (y \ge z) \rightarrow \{ \frac{||2y|}{2x} = y \frac{||2x|}{2x} \}
[] (y \le z) \rightarrow \{ \frac{||2y|}{2z} = z \frac{||2x|}{2x} \} end; ...
```

If C is loop-free, then

```
\forall determinizations \tilde{C} of trans(C, f) \implies wp[\![\tilde{C}\,]\!](f) = wp[\![C\,]\!](f).
```

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ... yields maximum expected value of f after termination.

```
\tilde{C} \quad \text{if } (y \ge z) -> \{ \ /\!\!/ \ 2y \ x = y \ /\!\!/ \ 2x \ \} \\ [] (y < z) -> \{ \ /\!\!/ \ 2z \ x = z \ /\!\!/ \ 2x \ \} \text{ end } ; \dots
```

If C is loop-free, then

```
\forall determinizations \tilde{C} of trans(C, f) \implies wp[\![\tilde{C}\,]\!](f) = wp[\![C\,]\!](f).
```

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ... yields maximum expected value of f after termination.

```
\tilde{C} = \begin{cases} \text{if } (y > z) -> \{ \frac{||}{2y} \times = y \frac{||}{2x} \} \\ [] (y \le z) -> \{ \frac{||}{2z} \times = z \frac{||}{2x} \} \text{ end } ; \dots \end{cases}
```

If C is loop-free, then

```
\forall determinizations \tilde{C} of trans(C, f) \implies wp[\![\tilde{C}\,]\!](f) = wp[\![C\,]\!](f).
```

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ... yields maximum expected value of f after termination.

```
\tilde{C} = \begin{cases} \text{if } (y > z) -> \{ \frac{1}{2}y \times = y \frac{1}{2}x \} \\ [] (y \le z) -> \{ \frac{1}{2}z \times = z \frac{1}{2}x \} \text{ end }; \dots \end{cases}
```

Moreover, trans(C, f) is effectively constructible*.

*If we fix a suitable syntax to represent expectations, e.g. [Batz et al. POPL '21].

```
\frac{\{\varphi \land I\} \quad C \quad \{I\}\}}{\{I\} \quad \text{while } \varphi \rightarrow C \quad \text{end} \quad \{\overline{\varphi} \land I\}} \quad \text{(classic partial correctness)}
```

```
\frac{\{\varphi \land I\} \quad C \quad \{I\} \quad \land \quad termination}{\{I\} \quad \text{while } \varphi \quad -> \quad C \quad \text{end} \quad \{\overline{\varphi} \land I\}} \text{ (classic total correctness)}
```

Program Transformation with Loops

C

 C_1 ; C_2 $\{C_1\}$ [p] $\{C_2\}$ $\{C_1\}$ [p] $\{C_2\}$ $\{C_1\}$ $\{C_2\}$ $\{C_2\}$ $\{C_1\}$ $\{C_2\}$ $\{C_2\}$ $\{C_1\}$ $\{C_2\}$ $\{C_2\}$ $\{C_3\}$ $\{C_4\}$ $\{C_$

```
trans(C, f)
```

```
 \begin{aligned} & x \coloneqq Expr \\ & trans \big( C_1, wp \llbracket C_2 \rrbracket (f) \big) \; ; \; trans (C_2, f) \\ & \{ trans (C_1, f) \} \; [p] \; \{ trans (C_2, f) \} \\ & \text{if} \; \; \varphi_1 \wedge \big( \varphi_2 \implies wp \llbracket C_1 \rrbracket (f) \leq wp \llbracket C_2 \rrbracket (f) \big) \; -> \; trans (C_1, f) \\ & [] \; \; \varphi_2 \wedge \big( \varphi_1 \implies wp \llbracket C_1 \rrbracket (f) \geq wp \llbracket C_2 \rrbracket (f) \big) \; -> \; trans (C_2, f) \\ & \text{end} \end{aligned}
```

Program Transformation with Loops

trans(C, f)x = Exprx = Expr $trans(C_1, wp[[C_2]](f))$; $trans(C_2, f)$ C_1 ; C_2 $\{C_1\}$ [p] $\{C_2\}$ $\{trans(C_1, f)\}\ [p]\ \{trans(C_2, f)\}$ externally provided if $\varphi_1 \rightarrow C_1$ if $\varphi_1 \wedge (\varphi_2 \Longrightarrow wp[\![C_1]\!](f) \leq wp[\![C_2]\!](f)) \longrightarrow trans(C_1, f)$ invariant annotation $[] \varphi_2 \longrightarrow C_2$ $[] \varphi_2 \wedge (\varphi_1 \Longrightarrow wp[[C_1]](f) \ge wp[[C_2]](f)) \longrightarrow trans(C_2, f)$ end end while $\varphi \rightarrow C'$ @I end while $\varphi \rightarrow trans(C', I)$ end

Program Transformation with Loops

```
trans(C, f)
x = Expr
                                                            x = Expr
C_1; C_2
                                                           trans(C_1, wp[[C_2]](f)); trans(C_2, f)
\{C_1\} [p] \{C_2\}
                                                            \{trans(C_1, f)\}\ [p]\ \{trans(C_2, f)\}
                            externally provided
if \varphi_1 \rightarrow C_1
                                                            if \varphi_1 \wedge (\varphi_2 \Longrightarrow wp[\![C_1]\!](f) \leq wp[\![C_2]\!](f)) \longrightarrow trans(C_1, f)
                           invariant annotation
[] \varphi_2 \longrightarrow C_2
                                                            [] \varphi_2 \wedge (\varphi_1 \Longrightarrow wp[[C_1]](f) \ge wp[[C_2]](f)) \longrightarrow trans(C_2, f)
end
                                                            end
while \varphi \rightarrow C' @I end
                                                           while \varphi \rightarrow trans(C', I) end
                                                                & generate VCs: [\varphi] \cdot I \leq wp[[C']](I)
                                                                                                ∧ side conditions
```

Soundness of Transformation with Loops Main Result

Let $C = \text{while } \varphi \rightarrow C' \otimes I \text{ end.}$

If all VCs generated during construction of trans(C, f) are satisfied, then

 \forall determinizations \tilde{C} of trans(C, f) \Longrightarrow $wp[\![\tilde{C}\,]\!](f) \geq I$.

$$\Longrightarrow$$

$$wp[\![\tilde{C}\,]\!](f) \geq I.$$

Soundness of Transformation with Loops Main Result

Let $C = \text{while } \varphi \rightarrow C' \otimes I \text{ end.}$

If all VCs generated during construction of trans(C, f) are satisfied, then

 \forall determinizations \tilde{C} of $trans(C, f) \Longrightarrow$

 $wp[\![C]\!](f) \geq I.$

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ...

yields at least the expected value "promised" by the invariant.

Soundness of Transformation with Loops Main Result

Let $C = \text{while } \varphi \rightarrow C' \otimes I \text{ end.}$

If all VCs generated during construction of trans(C, f) are satisfied, then

$$\forall$$
 determinizations \tilde{C} of $trans(C, f) \implies wp[\![\tilde{C}\,]\!](f) \geq I$.

Resolving the remaining nondeterminism in trans(C, f) arbitrarily ... yields at least the expected value "promised" by the invariant.

If a suitable I is given, then trans(C, f) is effectively constructible.


```
tails = false;
while (x<N ∧ !tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
     [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```

We derive strategies for optimizing expected values after termination

```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    -> {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    -> {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```

- We derive strategies for optimizing expected values after termination
- ☑ Loop-free programs: fully mechanizable


```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
    [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```

- We derive strategies for optimizing expected values after termination
- ☑ Loop-free programs: fully mechanizable
- Loopy programs: strategy synthesis reduces to invariant synthesis

```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
     [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```


- We derive strategies for optimizing expected values after termination
- ☑ Loop-free programs: fully mechanizable
- Loopy programs: strategy synthesis reduces to invariant synthesis
- In paper: connection to MDP theory, minimization, upper bounds

```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
     [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```


- We derive strategies for optimizing expected values after termination
- ☑ Loop-free programs: fully mechanizable
- Loopy programs: strategy synthesis reduces to invariant synthesis
- In paper: connection to MDP theory, minimization, upper bounds
- ☐ Stochastic 2-player games

```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
     [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```


- We derive strategies for optimizing expected values after termination
- Loop-free programs: fully mechanizable
- Loopy programs: strategy synthesis reduces to invariant synthesis
- In paper: connection to MDP theory, minimization, upper bounds
- ☐ Stochastic 2-player games

```
tails ≔ false;
while (x<N \( \)!tails) ->
    if (p \le q^2 \lor (q^2 
    \rightarrow {x = x+1} [q] {tails = true}
     [] (q \le p \ V \ p = q^2 \ V \ (q^2 
    \rightarrow {x = x+2} [p] {tails = true}
    end
end
//[x \ge N \land \neg tails]
```