Theorem 9.46. Number of Regions

The number of clock regions is bounded from below and above as follows:

$$|C|! * \prod_{x \in C} c_x \le |Eval(C)/\cong| \le |C|! * 2^{|C|-1} * \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x \geqslant 1$ for all $x \in C$.

Proof: The lower and upper bounds are determined by considering a representation of clock regions such that there is a one-to-one relationship between the representation of a clock region and the clock region itself. This representation allows derivation of the bounds.

Let C be a set of clocks and $\eta \in Eval(C)$. Every clock region r can be represented by a tuple $\langle J, \wp, D \rangle$ where J is a family of intervals, \wp is a permutation of a subset of clocks in C, and $D \subseteq C$ is a set of clocks such that

•
$$J = (J_x)_{x \in C}$$
 is a family of intervals with
$$J_x \in \Big\{ [0,0], \]0,1[, \ [1,1], \]1,2[, \ \dots, \]c_x-1,c_x[, \ [c_x,c_x], \]c_x,\infty[\Big\},$$

such that $\eta(x) \in J_x$ for all clocks $x \in C$ and clock evaluations $\eta \in r$.

• Let C_{open} be the set of clocks $x \in C$ such that J_x is an open interval, i,e,

$$C_{open} = \left\{ x \in C \mid J_x \in \{]0,1[,]1,2[, \ldots,]c_x-1,c_x[,]c_x,\infty[\} \right\}.$$

 $\wp = \{x_{i_1}, \dots, x_{i_k}\}\$ is a permutation of $C_{open} = \{x_1, \dots, x_k\}$ such that for any $\eta \in r$ the clocks are ordered according to their fractional parts, i.e.,

$$i_h < i_j$$
 imples $frac(\eta(x_{i_h})) \leq frac(\eta(x_{i_j}))$.

• $D \subseteq C_{open}$ contains all clocks in C_{open} such that for all clock evaluations $\eta' \in [\eta]$ the fractional part for clock x_{i_j} corresponds to the fractional part for its predecessor $x_{i_{j-1}}$ in the permutation \wp :

$$x_{i_j} \in D \text{ implies } frac(\eta(x_{i_{j-1}})) = frac(\eta(x_{i_j})).$$

There is a one-to-one relation between the clock regions and triples $\langle J, \wp, D \rangle$.

The indicated upper bound for the number of clock regions is obtained by the following combinatorial observation that there are

- exactly $\prod_{x \in C} (2c_x + 2)$ different interval families J,
- maximally $|C_{open}|! \leq |C|!$ different permutations over C_{open} , and
- maximally $2^{|C_{open}|-1} \leq 2^{|C|-1}$ different choices for $D \subseteq C \setminus \{x_1\}$.

The indicated lower bound is obtained when all clocks have a value in an open interval (though not the unbounded interval $]c_x, \infty[$), and all have different fractional parts. In this case $D = \emptyset$, and

$$J_x \in \{]0,1[,]1,2[, ...,]c_x-1,c_x[\}.$$

As there are exactly $\prod_{x \in C} c_x$ possibilities for J and maximally |C|! different permutations, the lower bound follows.