Theorem 9.46. Number of Regions

The number of clock regions is bounded from below and above as follows:

$$|C|! \prod_{x \in C} c_x \leq |\text{Eval}(C)| \leq |C|! \cdot 2^{|C|-1} \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x \geq 1$ for all $x \in C$.

Proof: The lower and upper bounds are determined by considering a representation of clock regions such that there is a one-to-one relationship between the representation of a clock region and the clock region itself. This representation allows derivation of the bounds.

Let C be a set of clocks and $\eta \in \text{Eval}(C)$. Every clock region r can be represented by a tuple (J, φ, D) where J is a family of intervals, φ is a permutation of a subset of clocks in C, and $D \subseteq C$ is a set of clocks such that

- $J = (J_x)_{x \in C}$ is a family of intervals with
 $$J_x \in \{ [0,0], [0,1[, [1,1[, [1,2[, \ldots, [c_x-1,c_x[, [c_x,c_x[, [c_x,\infty[\}.$$
such that $\eta(x) \in J_x$ for all clocks $x \in C$ and clock evaluations $\eta \in r$.

- Let C_{open} be the set of clocks $x \in C$ such that J_x is an open interval, i.e.,
 \[C_{\text{open}} = \left\{ x \in C \mid J_x \in \left\{ \left[0, \; 1[, \; 1, \; 2[, \; \ldots, \; \lfloor c_x - 1, \; c_x[, \; \lfloor c_x, \; \infty[\right\} \right\}. \]

$\varphi = \{ x_{i_1}, \ldots, x_{i_k} \}$ is a permutation of $C_{\text{open}} = \{ x_1, \ldots, x_k \}$ such that for any $\eta \in r$ the clocks are ordered according to their fractional parts, i.e.,

\[i_h < i_j \implies \text{frac}(\eta(x_{i_h})) \leq \text{frac}(\eta(x_{i_j})). \]

- $D \subseteq C_{\text{open}}$ contains all clocks in C_{open} such that for all clock evaluations $\eta' \in [\eta]$ the fractional part for clock $x_{i_{j-1}}$ corresponds to the fractional part for its predecessor x_{i_j} in the permutation φ:
 \[x_{i_j} \in D \implies \text{frac}(\eta(x_{i_{j-1}})) = \text{frac}(\eta(x_{i_j})). \]

There is a one-to-one relation between the clock regions and triples (J, φ, D).

The indicated upper bound for the number of clock regions is obtained by the following combinatorial observation that there are

- exactly $\prod_{x \in C} (2c_x + 2)$ different interval families J,
- maximally $|C_{\text{open}}|! \leq |C|!$ different permutations over C_{open}, and
- maximally $2^{|C_{\text{open}}| - 1} \leq 2^{|C| - 1}$ different choices for $D \subseteq C \setminus \{ x_1 \}$.

The indicated lower bound is obtained when all clocks have a value in an open interval (though not the unbounded interval $\lfloor c_x, \infty[\right\}$, and all have different fractional parts. In this case $D = \varnothing$, and

\[J_x \in \left\{ \left[0, \; 1[, \; 1, \; 2[, \; \ldots, \; \lfloor c_x - 1, \; c_x[, \right\}. \]

As there are exactly $\prod_{x \in C} c_x$ possibilities for J and maximally $|C|!$ different permutations, the lower bound follows. \hfill \blacksquare