Multi-objective Optimization of Long-run Average and Total Rewards

Tim Quatmann, Joost-Pieter Katoen

MOVES Seminar

March 16, 2021

Introduction

Multi-objective Model Checking

Study tradeoffs between objectives

Introduction

Multi-objective Model Checking

Study tradeoffs between objectives

Example

Can the car drive fast, safe, **and** cost-efficient?

Models

Markov decision processes (MDP)

Markov automata (MA)

probabilistic branching nondeterminism rewards/costs

MDP + continuous time

Introduction

Multi-objective Model Checking

Study tradeoffs between objectives

Example

Can the car drive fast, safe, **and** cost-efficient?

Models

Markov decision processes (MDP)

Markov automata (MA)

probabilistic branching nondeterminism rewards/costs

MDP + continuous time

Objectives

- Expected total rewards
- Expected long-run average rewards

•

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Multiple reward assignments $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$

- State rewards collected over time
- One-off transition rewards

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Multiple reward assignments $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$

- State rewards collected over time
- One-off transition rewards

Expected maintenance cost per day: $\frac{1}{0} \cdot 1 \approx 0.11$

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Multiple reward assignments $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$

- State rewards collected over time
- One-off transition rewards

Expected maintenance cost per day: $^{1}/_{9} \cdot 1 \approx 0.11$

Expected number of produced units per day: $100 \cdot {}^8/_9 \approx 88.9$

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Multiple reward assignments $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$

- State rewards collected over time
- One-off transition rewards

Two types of transitions

Markovian: exponentially distributed time delay

Probabilistic: nondeterminism + branching

Multiple reward assignments $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$

- State rewards collected over time
- One-off transition rewards

Path: alternating sequence of states and durations/actions

finite
$$\pi = \left(w_1 \xrightarrow{1} f_1 \xrightarrow{\text{rep}} r_1 \xrightarrow{1}\right)^{\omega}$$

$$\hat{\pi} = w_1 \xrightarrow{7.2} f_1 \xrightarrow{\text{sw}} s \xrightarrow{\tau} r_2 \xrightarrow{3.2} w_2 \xrightarrow{4.8} f_2$$

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$

finite
$$\pi = \left(w_1 \xrightarrow{1} f_1 \xrightarrow{\text{rep}} r_1 \xrightarrow{1}\right)^{\omega}$$

$$\hat{\pi} = w_1 \xrightarrow{7.2} f_1 \xrightarrow{\text{SW}} s \xrightarrow{\tau} r_2 \xrightarrow{3.2} w_2 \xrightarrow{4.8} f_2$$

$$\mathcal{R}_1(\hat{\pi}) = 100 \cdot 7.2 + 150 \cdot 4.8 = 1440$$

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$
- Strategy σ : Paths_{fin} \rightarrow Distr(Act) \longrightarrow resolves nondeterminism

finite
$$\pi = \left(\mathbf{w}_1 \xrightarrow{1} \mathbf{f}_1 \xrightarrow{\text{rep}} \mathbf{r}_1 \xrightarrow{1}\right)^{\omega}$$

$$\hat{\pi} = \mathbf{w}_1 \xrightarrow{7.2} \mathbf{f}_1 \xrightarrow{\text{sw}} \mathbf{s} \xrightarrow{\tau} \mathbf{r}_2 \xrightarrow{3.2} \mathbf{w}_2 \xrightarrow{4.8} \mathbf{f}_2$$

$$\mathcal{R}_1(\hat{\pi}) = 100 \cdot 7.2 + 150 \cdot 4.8 = 1440$$

$$\sigma(\hat{\pi}) = \left\{\text{rep} \mapsto \frac{1}{3}, \text{ sw} \mapsto \frac{2}{3}\right\}$$

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$
- Strategy $\sigma \colon \operatorname{Paths}_{\operatorname{fin}} \to \operatorname{Distr}(\operatorname{Act})$ resolves nondeterminism
- \bullet Probability measure \Pr_{σ} on paths

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$
- Strategy $\sigma \colon \operatorname{Paths}_{\operatorname{fin}} \to \operatorname{Distr}(\operatorname{Act})$ resolves nondeterminism
- \bullet Probability measure \Pr_{σ} on paths
- Expected value $\operatorname{Ex}_{\sigma}(f) := \int f(\pi) \, d \operatorname{Pr}_{\sigma}(\pi)$
 - ... for objective f: Paths_{inf} $\rightarrow \mathbb{R} \cup \{-\infty, +\infty\}$

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$
- Strategy $\sigma \colon \operatorname{Paths}_{\operatorname{fin}} \to \operatorname{Distr}(\operatorname{Act})$ resolves nondeterminism
- \bullet Probability measure \Pr_{σ} on paths
- Expected value $\operatorname{Ex}_{\sigma}(f) := \int f(\pi) \, d \operatorname{Pr}_{\sigma}(\pi)$
 - ... for objective f: Paths_{inf} $\rightarrow \mathbb{R} \cup \{-\infty, +\infty\}$

Total reward objective:

$$tot(\mathcal{R}): \pi \mapsto \lim_{k \to \infty} \mathcal{R}\left(pref(\pi, k)\right)$$

- Path: alternating sequence of states and durations/actions
- Accumulated reward $\mathcal{R}(\hat{\pi})$ for finite path $\hat{\pi}$
- Strategy $\sigma \colon \operatorname{Paths}_{\operatorname{fin}} \to \operatorname{Distr}(\operatorname{Act})$ resolves nondeterminism
- \bullet Probability measure \Pr_{σ} on paths
- Expected value $\operatorname{Ex}_{\sigma}(f) := \int f(\pi) \, d \Pr_{\sigma}(\pi)$
 - ... for objective f: Paths_{inf} $\rightarrow \mathbb{R} \cup \{-\infty, +\infty\}$

Total reward objective:

$$tot(\mathcal{R}): \pi \mapsto \lim_{k \to \infty} \mathcal{R}\left(pref(\pi, k)\right)$$

$$lra(\mathcal{R}): \pi \mapsto \lim_{k \to \infty} \frac{\mathcal{R}(pref(\pi, k))}{time(pref(\pi, k))}$$

Set of achievable points for
$$\Phi = \langle f_1, ..., f_{\ell} \rangle$$
:
$$Ach(\Phi) := \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \exists \sigma \colon \mathbf{p} \leq \left\langle \operatorname{Ex}_{\sigma}(f_1), ..., \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle \right\}$$

Set of achievable points for
$$\Phi = \langle f_1, ..., f_{\ell} \rangle$$
:
$$Ach(\Phi) := \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \exists \sigma \colon \mathbf{p} \leq \left\langle \operatorname{Ex}_{\sigma}(f_1), ..., \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle \right\}$$

Set of achievable points for
$$\Phi = \langle f_1, ..., f_{\ell} \rangle$$
:
 $Ach(\Phi) := \{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \exists \sigma \colon \mathbf{p} \leq \langle \operatorname{Ex}_{\sigma}(f_1), ..., \operatorname{Ex}_{\sigma}(f_{\ell}) \rangle \}$

- Point ${f p}$ is achievable if there is a single strategy σ yielding expected values at least as large as ${f p}$
- Assumption: Large expected values $\operatorname{Ex}_{\sigma}(f_i)$ are "good"

Set of achievable points for
$$\Phi = \langle f_1, ..., f_{\ell} \rangle$$
:
 $Ach(\Phi) := \{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \exists \sigma \colon \mathbf{p} \leq \langle \operatorname{Ex}_{\sigma}(f_1), ..., \operatorname{Ex}_{\sigma}(f_{\ell}) \rangle \}$

- ullet Point ullet is achievable if there is a single strategy σ yielding expected values at least as large as ullet
- Assumption: Large expected values $\operatorname{Ex}_{\sigma}(f_i)$ are "good"

Set of achievable points for
$$\Phi = \langle f_1, ..., f_{\ell} \rangle$$
:
 $Ach(\Phi) := \{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \exists \sigma \colon \mathbf{p} \leq \langle \operatorname{Ex}_{\sigma}(f_1), ..., \operatorname{Ex}_{\sigma}(f_{\ell}) \rangle \}$

- Point ${f p}$ is achievable if there is a single strategy σ yielding expected values at least as large as ${f p}$
- Assumption: Large expected values $\operatorname{Ex}_{\sigma}(f_i)$ are "good"

negate minimizing objectives: $tot(\mathcal{R}) \leadsto tot(-\mathcal{R})$ $lra(\mathcal{R}) \leadsto lra(-\mathcal{R})$

Task: Compute an (approximation of) $Ach(\Phi)$.

 $\cdot Ach(\Phi)$ is downward closed

 $\cdot Ach(\Phi)$ is downward closed

 $\cdot Ach(\Phi)$ is downward closed

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\operatorname{Ex}_{\sigma}(\Phi) := \left\langle \operatorname{Ex}_{\sigma}(f_1), \dots, \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle$

• For all $\mathbf{w} \in (\mathbb{R}_{\geq 0})^{\ell}$: $Ach(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \sup_{\sigma} \left(\mathbf{w} \cdot \operatorname{Ex}_{\sigma}(\Phi) \right) \right\}$

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\operatorname{Ex}_{\sigma}(\Phi) := \left\langle \operatorname{Ex}_{\sigma}(f_1), \dots, \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle$

• For all $\mathbf{w} \in (\mathbb{R}_{\geq 0})^{\ell}$: $Ach(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \sup_{\sigma} \left(\mathbf{w} \cdot \operatorname{Ex}_{\sigma}(\Phi) \right) \right\}$

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\operatorname{Ex}_{\sigma}(\Phi) := \left\langle \operatorname{Ex}_{\sigma}(f_1), \dots, \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle$

• For all $\mathbf{w} \in (\mathbb{R}_{\geq 0})^{\ell}$: $Ach(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \sup_{\sigma} \left(\mathbf{w} \cdot \operatorname{Ex}_{\sigma}(\Phi) \right) \right\}$

 $\cdot Ach(\Phi)$ is downward closed and convex

 $\operatorname{Ex}_{\sigma}(\Phi) := \left\langle \operatorname{Ex}_{\sigma}(f_1), \dots, \operatorname{Ex}_{\sigma}(f_{\ell}) \right\rangle$

- For all $\mathbf{w} \in (\mathbb{R}_{\geq 0})^{\ell}$: $Ach(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \sup_{\sigma} \left(\mathbf{w} \cdot \operatorname{Ex}_{\sigma}(\Phi) \right) \right\}$
- $Ach(\Phi)$ is **closed**—assuming that $\forall f_i$:
 - • $f_i \in \{tot(\mathcal{R}_i), lra(\mathcal{R}_i)\}$ and ...
 - $\forall \sigma \colon \operatorname{Ex}_{\sigma}(f_i) \leq +\infty$

 $\cdot Ach(\Phi)$ is downward closed and convex

- For all $\mathbf{w} \in (\mathbb{R}_{\geq 0})^{\ell}$: $Ach(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \sup_{\sigma} \left(\mathbf{w} \cdot \operatorname{Ex}_{\sigma}(\Phi) \right) \right\}$
- $Ach(\Phi)$ is **closed**—assuming that $\forall f_i$:
 - • $f_i \in \{tot(\mathcal{R}_j), lra(\mathcal{R}_j)\}$ and ...
 - $\forall \sigma \colon \operatorname{Ex}_{\sigma}(f_i) \leq +\infty$

convex multi-objective optimization

MDP + total rewards

$$ightharpoonup \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}$$

$$= \underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=:\mathbf{p}_{\mathbf{w}}}$$

$$= \underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=:P_{\mathbf{w}}}$$

$$\underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=: P_{\mathbf{w}}}$$

$$= \underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=:P_{\mathbf{w}}}$$

$$\underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=:P_{\mathbf{w}}}$$

$$= \underbrace{\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}}_{=:P_{\mathbf{w}}}$$

• Invariant:

$$down\Big(conv\Big(\bigcup_{\mathbf{w}}\{\mathbf{p}_{\mathbf{w}}\}\Big)\Big) \subseteq Ach(\Phi) \subseteq \bigcap_{\mathbf{w}} H_{\mathbf{w}}$$

$$= \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \in \operatorname{Ach}(\Phi) \subseteq \left\{ \mathbf{p} \in \mathbb{R}^{\ell} \mid \mathbf{w} \cdot \mathbf{p} \leq \mathbf{w} \cdot \operatorname{Ex}_{\sigma_{\mathbf{w}}}(\Phi) \right\}$$

$$= : p_{\mathbf{w}}$$

• Invariant:

$$down\Big(conv\Big(\bigcup_{\mathbf{w}}\{\mathbf{p}_{\mathbf{w}}\}\Big)\Big) \subseteq Ach(\Phi) \subseteq \bigcap_{\mathbf{w}} H_{\mathbf{w}}$$

• Stop when approximation of $Ach(\Phi)$ is sufficiently precise

• Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle, \quad f_i \colon \operatorname{Paths}_{\inf} \to \mathbb{R} \cup \{-\infty, +\infty\}$

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle, \quad f_i \colon \operatorname{Paths}_{\inf} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle$, $f_i : \text{Paths}_{\text{inf}} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$
- Problem: The product $\mathbf{w} \cdot \mathbf{E} \mathbf{x}_{\sigma}(\Phi)$ might be $\pm \infty$ or undefined (" $\infty \infty$ ") ... however ...

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle$, $f_i : Paths_{inf} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$
- Problem: The product $\mathbf{w} \cdot \mathbf{E} \mathbf{x}_{\sigma}(\Phi)$ might be $\pm \infty$ or undefined (" $\infty \infty$ ") ... however ...
 - If $\operatorname{Ex}_{\sigma}(f_i) = -\infty$, no point $\mathbf{p} \in \mathbb{R}^{\ell}$ will be achieved by σ
 - \sim Ignore such strategies σ needs to be enforced algorithmically

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle$, $f_i : Paths_{inf} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$
- Problem: The product $\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi)$ might be $\pm \infty$ or undefined (" $\infty \infty$ ") ... however ...
 - If $\operatorname{Ex}_{\sigma}(f_i) = -\infty$, no point $\mathbf{p} \in \mathbb{R}^{\ell}$ will be achieved by σ and σ lgnore such strategies σ needs to be enforced algorithmically
 - If $\operatorname{Ex}_{\sigma}(f_i) = +\infty$, mimic σ with a small prob. $\varepsilon > 0$; focus on remaining objectives with prob. 1ε gnore such objectives f_i

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle$, $f_i : \text{Paths}_{\text{inf}} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$
- Problem: The product $\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi)$ might be $\pm \infty$ or undefined (" $\infty \infty$ ") ... however ...
 - If $\operatorname{Ex}_{\sigma}(f_i) = -\infty$, no point $\mathbf{p} \in \mathbb{R}^{\ell}$ will be achieved by σ
 - \sim Ignore such strategies σ needs to be enforced algorithmically

- If $\operatorname{Ex}_{\sigma}(f_i) = +\infty$, mimic σ with a small prob. $\varepsilon > 0$; focus on remaining objectives with prob. 1ε
 - \sim Ignore such objectives f_i

 $Ach(\Phi)$ is not necessarily closed anymore

- Approach is applicable to all kinds of objectives $\Phi = \langle f_1, ..., f_\ell \rangle$, $f_i : Paths_{inf} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- Core: an algorithm to compute $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$
- Problem: The product $\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi)$ might be $\pm \infty$ or undefined (" $\infty \infty$ ") ... however ...
 - If $\operatorname{Ex}_{\sigma}(f_i) = -\infty$, no point $\mathbf{p} \in \mathbb{R}^{\ell}$ will be achieved by σ
 - ightharpoonup Ignore such strategies σ needs to be enforced algorithmically

- If $\operatorname{Ex}_{\sigma}(f_i) = +\infty$, mimic σ with a small prob. $\varepsilon > 0$; focus on remaining objectives with prob. 1ε
 - \sim Ignore such objectives f_i

 $Ach(\Phi)$ is not necessarily closed anymore

From now assume that $\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi) \in \mathbb{R}$ is well-defined.

[Forejt, Kwiatkowska, & Parker'12]

For
$$\Phi_{tot} = \langle tot(\mathcal{R}_1), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Push the weighted sum to the rewards: $\mathbf{w} \cdot \mathbf{E} \mathbf{x}_{\sigma}(\Phi_{tot}) = \mathbf{E} \mathbf{x}_{\sigma}(tot(\sum_{i=1}^{\ell} \mathbf{w}[i] \cdot \mathcal{R}_i))$

 $extsimu Use single objective methods to get <math>\sigma_{\mathbf{w}} \in \arg\max_{\sigma} \left(\mathrm{Ex}_{\sigma}(tot(\mathscr{R}_{\mathbf{w}})) \right)$

[Forejt, Kwiatkowska, & Parker'12]

For
$$\Phi_{tot} = \langle tot(\mathcal{R}_1), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Push the weighted sum to the rewards: $\mathbf{w} \cdot \mathbf{E} \mathbf{x}_{\sigma}(\Phi_{tot}) = \mathbf{E} \mathbf{x}_{\sigma}(tot(\sum_{i=1}^{\ell} \mathbf{w}[i] \cdot \mathcal{R}_i))$

 $extsimu Use single objective methods to get <math>\sigma_{\mathbf{w}} \in \arg\max_{\sigma} \left(\mathrm{Ex}_{\sigma}(tot(\mathscr{R}_{\mathbf{w}})) \right)$

For
$$\Phi_{lra} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_{\ell}) \rangle$$
:

Ditto:
$$\mathbf{w} \cdot \mathbf{Ex}_{\sigma}(\Phi_{lra}) = \mathbf{Ex}_{\sigma}(lra(\mathcal{R}_{\mathbf{w}}))$$

 $extstyle Use single objective methods to get <math>\sigma_{\mathbf{w}} \in \arg\max_{\sigma} \left(\mathrm{Ex}_{\sigma} (lra(\mathscr{R}_{\mathbf{w}})) \right)$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

Four End Components:

- $\{w_i, f_i, r_i\}$ for i = 1,2,3
- {s} $\cup \bigcup_{i=1}^{3} \{w_i, f_i, r_i\}$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- $\{w_i, f_i, r_i\}$ for i = 1, 2, 3
- $\{s\} \cup \bigcup_{i=1}^{3} \{w_i, f_i, r_i\}$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

Three End Components:

•
$$\{w_i, f_i, r_i\}$$
 for $i = 1,2,3$

•
$$\{s\} \cup \bigcup_{i=1}^{3} \{w_i, f_i, r_i\}$$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

$$\mathbf{w} = \langle {}^{1}/_{25}, 50 \rangle \sim \mathscr{R}_{\mathbf{w}} = {}^{1}/_{25} \cdot \mathscr{R}_{1} + 50 \cdot (-\mathscr{R}_{2})$$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

$$\mathbf{w} = \langle {}^{1}/_{25}, 50 \rangle \sim \mathscr{R}_{\mathbf{w}} = {}^{1}/_{25} \cdot \mathscr{R}_{1} + 50 \cdot (-\mathscr{R}_{2})$$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

$$\mathbf{w} = \langle {}^{1}/_{25}, 50 \rangle \sim \mathscr{R}_{\mathbf{w}} = {}^{1}/_{25} \cdot \mathscr{R}_{1} + 50 \cdot (-\mathscr{R}_{2})$$

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

End component (EC):

Strongly connected sub-model that under some strategy—will never be left

- Only states within ECs can be visited infinitely often
- For $lra(\mathcal{R})$, only rewards within ECs are relevant

Computing single-objective long-run average rewards:

- Analyze $lra(\mathcal{R})$ within each (maximal) EC in isolation
- Fuse EC results together via a total reward analysis on a slightly modified model

lra: -2

$$\arg\max_{\sigma} \left(\operatorname{Ex}_{\sigma}(tot(\mathcal{R}_{lra})) \right) = \left\{ \operatorname{EC}_{1}, \operatorname{EC}_{2} \mapsto \operatorname{sw}, \operatorname{EC}_{3} \mapsto \operatorname{stay} \right\}$$

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

• Analyze objective
$$lra(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathcal{R}_i)$$
 in maximal ECs

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

- Analyze objective $lra(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathcal{R}_i)$ in maximal ECs
 - Avoid $\operatorname{Ex}_{\sigma_{\mathbf{w}}}(\operatorname{tot}(\mathscr{R}_{i})) = \pm \infty$: Restrict to ECs without total rewards

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

$$-\frac{1}{\sqrt{\sum_{k}}}$$

- Analyze objective $lra\Big(\sum_{i=1}^k \mathbf{w}[i]\cdot \mathscr{R}_i\Big)$ in maximal ECs
 - Avoid $\operatorname{Ex}_{\sigma_{\operatorname{w}}}(tot(\mathcal{R}_j)) = \pm \infty$: Restrict to ECs without total rewards

$$\Phi = \langle lra(\mathcal{R}_1), lra(-\mathcal{R}_2), tot(-\mathcal{R}_3) \rangle$$

$$\mathbf{w} = \langle {}^{1}/_{25}, 50, \mathbf{1} \rangle \quad \sim \quad \mathcal{R}_{\mathbf{w}}^{lra} = {}^{1}/_{25} \cdot \mathcal{R}_1 + 50 \cdot (-\mathcal{R}_2)$$

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

• Analyze objective $lra(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathcal{R}_i)$ in maximal ECs

• Avoid $\operatorname{Ex}_{\sigma_{\operatorname{w}}}(tot(\mathcal{R}_j)) = \pm \infty$: Restrict to ECs without total rewards

$$\Phi = \langle lra(\mathcal{R}_1), lra(-\mathcal{R}_2), tot(-\mathcal{R}_3) \rangle$$

$$\mathbf{w} = \langle {}^{1}/_{25}, 50, \mathbf{1} \rangle \sim \mathcal{R}_{\mathbf{w}}^{lra} = {}^{1}/_{25} \cdot \mathcal{R}_1 + 50 \cdot (-\mathcal{R}_2)$$

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

• Analyze objective $lra(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathcal{R}_i)$ in maximal ECs

- Avoid $\operatorname{Ex}_{\sigma_{\operatorname{w}}}(tot(\mathcal{R}_j)) = \pm \infty$: Restrict to ECs without total rewards
- When fusing EC results together, also incorporate total rewards, i.e. consider $tot(\mathcal{R}_{\mathbf{w}}^{lra} + \sum_{i=k+1}^{\ell} \mathbf{w}[i] \cdot \mathcal{R}_i)$

$$\Phi = \langle lra(\mathcal{R}_1), lra(-\mathcal{R}_2), tot(-\mathcal{R}_3) \rangle$$

$$\mathbf{w} = \langle {}^{1}/_{25}, 50, \mathbf{1} \rangle \quad \sim \quad \mathcal{R}_{\mathbf{w}}^{lra} = {}^{1}/_{25} \cdot \mathcal{R}_1 + 50 \cdot (-\mathcal{R}_2)$$

Computing $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

- Analyze objective $lraig(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathscr{R}_iig)$ in maximal ECs
 - Avoid $\operatorname{Ex}_{\sigma_{\operatorname{w}}}(tot(\mathcal{R}_j)) = \pm \infty$: Restrict to ECs without total rewards
- When fusing EC results together, also incorporate total rewards, i.e. consider $tot(\mathcal{R}_{lra} + \sum_{i=k+1}^{\ell} \mathbf{w}[i] \cdot \mathcal{R}_i)$

Computing $\sigma_{\mathbf{w}} \in \arg\max_{\sigma} (\mathbf{w} \cdot \mathrm{Ex}_{\sigma}(\Phi))$

For
$$\Phi_{lra+tot} = \langle lra(\mathcal{R}_1), ..., lra(\mathcal{R}_k), tot(\mathcal{R}_{k+1}), ..., tot(\mathcal{R}_{\ell}) \rangle$$
:

Idea:

- Analyze objective $lraig(\sum_{i=1}^k \mathbf{w}[i] \cdot \mathscr{R}_iig)$ in maximal ECs
 - Avoid $\operatorname{Ex}_{\sigma_{\operatorname{w}}}(tot(\mathcal{R}_j)) = \pm \infty$: Restrict to ECs without total rewards
- When fusing EC results together, also incorporate total rewards, i.e. consider $tot(\mathcal{R}_{lra} + \sum_{i=k+1}^{\ell} \mathbf{w}[i] \cdot \mathcal{R}_i)$

$$\arg\max_{\sigma} \left(\operatorname{Ex}_{\sigma}(tot(\mathcal{R}_{lra} + 1 \cdot (-\mathcal{R}_{3}))) \right) = \left\{ \operatorname{EC}_{1} \mapsto \operatorname{stay}, \dots \right\}$$

Evaluation

Implementation

Supports MDP and MA models specified in PRISM or JANI

- $lra(\cdot)$ via value iteration [Butkova, Wimmer, & Hermanns'17; Ashok et al.'17]
- $tot(\cdot)$ via sound value iteration [Quatmann & Katoen'18]
- Also supports time- and step-bounded objectives

Evaluation

Implementation

Supports MDP and MA models specified in PRISM or JANI

- $tot(\cdot)$ via sound value iteration [Quatmann & Katoen'18]
- Also supports time- and step-bounded objectives

Experiments

- Comparison with MultiGain [Brázdil et al.'15]
 - Supports "only" long-run average reward objectives for MDP
 - Employs linear programming; using LP solver Gurobi
- 10 case studies × 3 instances → 12 MA and 18 MDP models
- Resource limits: 2 hours / 32 GB RAM

Storm vs. MultiGain

Storm is often several orders of magnitude faster

MultiGain is often stuck in expensive LP solving

Model	Par.	$\# ext{lra-}\# ext{tot}$	S	MS	arDelta	$\#\mathrm{EC}$	$ S_{ m EC} $	$\# { m iter}$	Storm runtime
			1 1			, ,			
csn	3	3-0	177		427	38	158	9	1.23
csn	4	4-0	945		2753	176	880	30	109
csn	5	5-0	4833		$2 \cdot 10^4$	782	4622		ТО
mut	3	2-0	3.10^{4}		5.10^{4}	1	3.10^{4}	15	3.7
mut	4	2-0	$7 \cdot 10^5$		1.10^{6}	1	$7 \cdot 10^{5}$	14	91.4
mut	5	2-0	$1 \cdot 10^7$		3.10^{7}	1	$1 \cdot 10^7$	12	3197
clu	8-3	2-0	$2 \cdot 10^5$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	11	287
clu	16-4	2-0	$2 \cdot 10^{6}$	$9 \cdot 10^{5}$	$4 \cdot 10^6$	5	$2 \cdot 10^{6}$	10	4199
clu	32-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$5 \cdot 10^6$	4	$2 \cdot 10^{6}$		TO
clu	8-3	1-1	$2 \cdot 10^5$	$1 \cdot 10^{5}$	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	7	163
clu	16-4	1-1	$2 \cdot 10^{6}$	9.10^{5}	4.10^{6}	5	$2 \cdot 10^{6}$	9	3432
clu	32-3	1-1	$2 \cdot 10^{6}$	$1 \cdot 10^6$	$5 \cdot 10^6$	4	$2 \cdot 10^{6}$	7	3328
rqs	2-2	2-0	1619	628	2296	1	1618	63	4.52
rqs	3-3	2-0	9.10^{4}	$4 \cdot 10^4$	1.10^{5}	1	9.10^{4}	106	162
rqs	5-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$4 \cdot 10^{6}$	1	$2 \cdot 10^{6}$	97	4345
rqs	2-2	1-1	2805	1039	4159	1	1618	3	< 1
rqs	3-3	1-1	$1{\cdot}10^5$	$6 \cdot 10^4$	$3 \cdot 10^5$	1	9.10^{4}	3	4.51
rqs	5-3	1-1	$3 \cdot 10^6$	$2 \cdot 10^6$	$7 \cdot 10^6$	1	$2 \cdot 10^6$	3	182

									Storm
Model	Par.	$\# ext{lra-} \# ext{tot}$	S	MS	$ \Delta $	$\#\mathrm{EC}$	$ S_{ m EC} $	$\# \mathrm{iter}$	$\operatorname{runtime}$
csn	3	3-0	177		427	38	158	9	1.23
csn	4	4-0	945		2753	176	880	30	109
csn	5	5-0	4833		$2 \cdot 10^4$	782	4622		TO
mut	3	2-0	3.10^{4}		$5 \cdot 10^4$	1	3.10^{4}	15	3.7
mut	4	2-0	7.10^{5}		1.10^{6}	1	$7 \cdot 10^{5}$	14	91.4
mut	5	2-0	$1 \cdot 10^7$		$3 \cdot 10^7$	1	$1 \cdot 10^7$	12	3197
clu	8-3	2-0	$2 \cdot 10^5$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	11	287
clu	16-4	2-0	$2 \cdot 10^{6}$	$9 \cdot 10^{5}$	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	10	4199
clu	32-3	2-0	$2 \cdot 10^6$	1.10^{6}	$5 \cdot 10^{6}$	4	$2 \cdot 10^{6}$		TO
clu	8-3	1-1	$2 \cdot 10^{5}$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	7	163
clu	16-4	1-1	$2 \cdot 10^{6}$	9.10^{5}	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	9	3432
clu	32-3	1-1	$2 \cdot 10^6$	1.10^{6}	5.10^{6}	4	$2 \cdot 10^6$	7	3328
rqs	2-2	2-0	1619	628	2296	1	1618	63	4.52
rqs	3-3	2-0	9.10^{4}	$4 \cdot 10^4$	1.10^{5}	1	9.10^{4}	106	162
rqs	5-3	2-0	$2 \cdot 10^6$	1.10^{6}	4.10^{6}	1	$2 \cdot 10^{6}$	97	4345
rqs	2-2	1-1	2805	1039	4159	1	1618	3	< 1
rqs	3-3	1-1	$1\cdot10^5$	6.10^{4}	3.10^{5}	1	9.10^{4}	3	4.51
rqs	5-3	1-1	$3\cdot10^6$	$2 \cdot 10^6$	$7 \cdot 10^6$	1	$2 \cdot 10^6$	3	182

- Storm can handle
 - millions of states

									Storm
Model	Par.	$\# ext{lra-} \# ext{tot}$	S	MS	$ \Delta $	$\#\mathrm{EC}$	$ S_{ m EC} $	$\# { m iter}$	$\operatorname{runtime}$
csn	3	3-0	177		427	38	158	9	1.23
csn	4	4-0	945		2753	176	880	30	109
csn	5	5-0	4833		$2 \cdot 10^4$	782	4622		TO
mut	3	2-0	$3\cdot10^4$		$5 \cdot 10^4$	1	$3\cdot10^4$	15	3.7
mut	4	2-0	$7 \cdot 10^5$		1.10^{6}	1	$7 \cdot 10^{5}$	14	91.4
mut	5	2-0	$1 \cdot 10^7$		$3 \cdot 10^7$	1	$1 \cdot 10^7$	12	3197
clu	8-3	2-0	$2 \cdot 10^{5}$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	11	287
clu	16-4	2-0	$2 \cdot 10^{6}$	9.10^{5}	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	10	4199
clu	32-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$5 \cdot 10^{6}$	4	$2 \cdot 10^{6}$		TO
clu	8-3	1-1	$2 \cdot 10^{5}$	$1 \cdot 10^{5}$	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	7	163
clu	16-4	1-1	$2 \cdot 10^{6}$	9.10^{5}	4.10^{6}	5	$2 \cdot 10^{6}$	9	3432
clu	32-3	1-1	$2 \cdot 10^6$	1.10^{6}	$5 \cdot 10^6$	4	$2 \cdot 10^6$	7	3328
rqs	2-2	2-0	1619	628	2296	1	1618	63	4.52
rqs	3-3	2-0	9.10^{4}	$4 \cdot 10^4$	1.10^{5}	1	9.10^{4}	106	162
rqs	5-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	4.10^{6}	1	$2 \cdot 10^{6}$	97	4345
rqs	2-2	1-1	2805	1039	4159	1	1618	3	< 1
rqs	3-3	1-1	1.10^{5}	6.10^{4}	3.10^{5}	1	9.10^{4}	3	4.51
rqs	5-3	1-1	3.10^{6}	$2 \cdot 10^{6}$	$7 \cdot 10^{6}$	1	$2 \cdot 10^{6}$	3	182

- Storm can handle
 - millions of states
 - four objectives

									Storm
Model	Par.	$\# ext{lra-} \# ext{tot}$	S	MS	$ \Delta $	$\#\mathrm{EC}$	$ S_{ m EC} $	$\# \mathrm{iter}$	runtime
csn	3	3-0	177		427	38	158	9	1.23
csn	4	4-0	945		2753	176	880	30	109
csn	5	5-0	4833		$2 \cdot 10^4$	782	4622		ТО
mut	3	2-0	3.10^{4}		5.10^{4}	1	$3\cdot10^4$	15	3.7
mut	4	2-0	$7 \cdot 10^5$		1.10^{6}	1	$7 \cdot 10^5$	14	91.4
mut	5	2-0	$1 \cdot 10^7$		$3 \cdot 10^7$	1	$1 \cdot 10^7$	12	3197
clu	8-3	2-0	$2 \cdot 10^{5}$	1.10^{5}	$4 \cdot 10^{5}$	4	$2 \cdot 10^{5}$	11	287
clu	16-4	2-0	$2 \cdot 10^{6}$	9.10^{5}	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	10	4199
clu	32-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$5 \cdot 10^{6}$	4	$2 \cdot 10^{6}$		ТО
clu	8-3	1-1	$2 \cdot 10^5$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^5$	7	163
clu	16-4	1-1	$2 \cdot 10^{6}$	9.10^{5}	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	9	3432
clu	32-3	1-1	$2 \cdot 10^{6}$	1.10^{6}	5.10^{6}	4	$2 \cdot 10^{6}$	7	3328
rqs	2-2	2-0	1619	628	2296	1	1618	63	$\boxed{4.52}$
rqs	3-3	2-0	9.10^{4}	$4 \cdot 10^4$	1.10^{5}	1	9.10^{4}	106	162
rqs	5-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	4.10^{6}	1	$2 \cdot 10^{6}$	97	4345
rqs	2-2	1-1	2805	1039	4159	1	1618	3	< 1
rqs	3-3	1-1	1.10^{5}	6.10^{4}	3.10^{5}	1	9.10^{4}	3	4.51
rqs	5-3	1-1	$3\cdot10^6$	$2 \cdot 10^6$	$7 \cdot 10^6$	1	$2\cdot10^6$	3	182

- Storm can handle
 - millions of states
 - four objectives
- Similar runtimes for
 - MA vs. MDP

									Storm
Model	Par.	$\# ext{lra-} \# ext{tot}$	S	MS	$ \Delta $	$\#\mathrm{EC}$	$ S_{ m EC} $	$\# \mathrm{iter}$	$\operatorname{runtime}$
csn	3	3-0	177		427	38	158	9	1.23
csn	4	4-0	945		2753	176	880	30	109
csn	5	5-0	4833		$2 \cdot 10^{4}$	782	4622		TO
mut	3	2-0	$3 \cdot 10^4$		5.10^{4}	1	3.10^{4}	15	3.7
mut	4	2-0	7.10^{5}		1.10^{6}	1	$7 \cdot 10^{5}$	14	91.4
mut	5	2-0	$1 \cdot 10^7$		$3 \cdot 10^7$	1	$1 \cdot 10^7$	12	3197
clu	8-3	2-0	$2 \cdot 10^5$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	11	287
clu	16-4	2-0	$2 \cdot 10^{6}$	9.10^{5}	$4 \cdot 10^{6}$	5	$2 \cdot 10^{6}$	10	4199
clu	32-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$5 \cdot 10^{6}$	4	$2 \cdot 10^{6}$		TO
clu	8-3	1-1	$2 \cdot 10^5$	1.10^{5}	$4 \cdot 10^5$	4	$2 \cdot 10^{5}$	7	163
clu	16-4	1-1	$2 \cdot 10^{6}$	9.10^{5}	4.10^{6}	5	$2 \cdot 10^{6}$	9	3432
clu	32-3	1-1	$2 \cdot 10^{6}$	1.10^{6}	$5 \cdot 10^{6}$	4	$2 \cdot 10^{6}$	7	3328
rqs	2-2	2-0	1619	628	2296	1	1618	63	4.52
rqs	3-3	2-0	9.10^{4}	$4 \cdot 10^4$	1.10^{5}	1	9.10^{4}	106	162
rqs	5-3	2-0	$2 \cdot 10^{6}$	1.10^{6}	$4 \cdot 10^{6}$	1	$2 \cdot 10^{6}$	97	4345
rqs	2-2	1-1	2805	1039	4159	1	1618	3	< 1
rqs	3-3	1-1	$1 \cdot 10^5$	6.10^{4}	3.10^{5}	1	9.10^{4}	3	4.51
rqs	5-3	1-1	3.10^{6}	$2 \cdot 10^6$	$7 \cdot 10^{6}$	1	$2 \cdot 10^6$	3	182

- Storm can handle
 - millions of states
 - four objectives
 - Similar runtimes for
 - MA vs. MDP
 - pure LRA queries vs. mixtures

Conclusion

Anytime algorithm for approximating the set of achievable points

- Allows reusing single-objective techniques
- Applicable to all kinds of objectives, in particular mixtures of
 - long-run average rewards and
 - total rewards

Conclusion

Anytime algorithm for approximating the set of achievable points

- Allows reusing single-objective techniques
- Applicable to all kinds of objectives, in particular mixtures of
 - long-run average rewards and
 - total rewards

Implementation outperforms existing LP-based approach

Conclusion

Anytime algorithm for approximating the set of achievable points

- Allows reusing single-objective techniques
- Applicable to all kinds of objectives, in particular mixtures of
 - long-run average rewards and
 - total rewards

Implementation outperforms existing LP-based approach

Future work:

- Partially observable models
- Stochastic games

