
Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Towards efficient automated analysis of probabilistic programs
MOVES Workshop

Marcin Szymczak

July 9, 2020

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Abandon all hope ye who enter here...

I have absolutely no concrete results to present.
I will present my previous failed attempts and outline new ideas.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Motivation

We want to automatically and efficiently check properties of probabilistic
programs. We focus in particular on termination complexity.

Existing incomplete techniques (Kaminski et al.1) apply to general
programs, but require custom invariants for while-loops, which are difficult
to find.

Automatic invariant generation (Katoen et al.2) works only in restricted
settings.

Automatic, efficiently decidable analysis methods only apply to a very
restricted class of programs (Giesl et al.3)

1Benjamin Lucien Kaminski et al. “Weakest Precondition Reasoning for Expected Runtimes of
Randomized Algorithms”. In: J. ACM 65.5 (2018), 30:1–30:68.

2Joost-Pieter Katoen et al. “Linear-Invariant Generation for Probabilistic Programs:” in: Static
Analysis. Ed. by Radhia Cousot and Matthieu Martel. Springer Berlin Heidelberg, 2010.

3Jürgen Giesl, Peter Giesl, and Marcel Hark. “Computing Expected Runtimes for Constant
Probability Programs”. In: Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings. Vol. 11716. 2019.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Termination of probabilistic programs via pVASS

Original idea (Presented in Kleinwalsertal this year):

Find a complete and fully automated way of analysing termination
complexity of some restricted (but as broad as possible) class of programs.

Use recent results on deciding linear termination of probabilistic vector
addition systems (pVASS).

Translate probabilistic programs to pVASS and apply existing results

This was more difficult than expected. I will now explain why.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

What are VASS?

A vector addition system with states (VASS) is a transition system consisting
of:

A finite set Q of control states

n integer-valued counters v = (v1, . . . , vn)
configuration pv = control state p + counter values v

A finite set of transitions (q, u, p) which update the configuration qv to
p(v + u)

We assume that a VASS terminates when at least one counter becomes
negative.
VASS ⇐⇒ Petri nets

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

VASS Fast Termination

Bràzdil et al.4 showed the following result:

Theorem

The problem of whether a strongly connected VASS terminates (under demonic
nondeterminism) in linear time can be reduced to a linear programming
problem, solvable in polynomial time.

4Tomás Brázdil et al. “Efficient Algorithms for Asymptotic Bounds on Termination Time in
VASS”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018. 2018.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Probabilistic VASS

Probabilistic VASS (pVASS) include probabilistic as well as nondeterministic
transitions. Can model probabilistic programs.

while((k>0)&&(l>0)) {

u = flip();

if (u) {

k-=2;

l++;

}

else {

l-=2;

k++;

}

}

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Termination in Probabilistic VASS5

Decidability of linear termination in strongly connected VASS extends to pVASS
Terminology:

A strategy is Markov Deterministic (MD) if each nondeterministic state
has a fixed successor

A strongly connected component (SCC) S is a set of states s.t. for all
s, s ′ ∈ S there is a path from s to s ′ which does not leave S.

A Bottom Strongly Connected Components (BSCC) B (for a given
strategy) is a SCC s.t. there is no path leaving B in the resulting Markov
chain.

Observations:

For each MD strategy (in a strongly-connected pVASS), execution finally
reaches a BSCC (potentially multiple BSCCs reachable)

In every such BSCC we can compute the average counter change per
transition

5Tomás Brázdil et al. “Deciding Fast Termination for Probabilistic VASS with
Nondeterminism”. In: Automated Technology for Verification and Analysis - 17th International
Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings. 2019.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

BSCCs and average changes: Example

Example:

Strategy 1: q1 always goes to q2;
One BSCC: {q1, q2}
Average counter change:
( 1

4
,− 3

4
)

Strategy 2: q1 always goes to q3;
One BSCC: {q1, q3}
Average counter change:
(− 1

2
, 1

2
)

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Termination in Probabilistic VASS6

Take a strongly-connected pVASS. Let i1, . . . , ik be average counter changes
corresponding to all BSCCs induced by MD strategies.

Theorem

The given pVASS terminates in linear time iff there exists a positive vector
w ∈ Rk

+ such that il · w < 0 for all l ∈ 1..k.
Otherwise complexity at least quadratic.

Example:
i1 = ( 1

4
,− 3

4
), i2 = (− 1

2
, 1

2
)

Take w = (2, 1). Then i1 · w = − 1
4

and i2 · w = − 1
2
.

Hence the pVASS terminates in linear time.

6Brázdil et al., “Deciding Fast Termination for Probabilistic VASS with Nondeterminism”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Termination in Probabilistic VASS

How do we check if there is such a w?

Definition

A vector v is achievable in a pVASS iff for some strategy σ and initial state p0,
Eσp0

[lim infn→∞
1
n

∑n
i=1 ui ] ≥ v.

where lim infn→∞
1
n

∑n
i=1 ui is the expected mean-payoff of an infinite path

p0, u1, p1, u2, . . . with counter updates u1, u2 . . . .
Known result: Achievability of a rational vector is decidable in polynomial
time.
Brázdil et al.7 prove the following lemma:

Lemma

In any strongly-connected pVASS, the vector 0 is achievable iff there is no
w > 0 such that il · w < 0 for all l ∈ 1..k.

The theorem can be extended to DAG-like pVASS.

7Brázdil et al., “Deciding Fast Termination for Probabilistic VASS with Nondeterminism”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Original Project Roadmap

We were planning to:

Find a class of probabilistic programs which can be (exactly) represented
as pVASS

Try to extend the theory of pVASS

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Translation - first attempt

Start with the following:

〈C〉 ::= skip no-operation
| x+ = c constant increment
| C1;C2 sequential composition
| if(x > 0){C1} else{C2} conditional
| while(x > 0){C} guarded loop
| 〈p1 : C1, . . . , pk : Ck〉 probabilistic choice

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Translation - first attempt

Most rules straightforward:

x+ = c: C1;C2: 〈p1 : C1, . . . , pk : Ck〉:

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Translation - first attempt

What about control flow? We cannot test counter values!
Can try abstracting by nondeterminism:

if(x > 0){C1} else{C2}: while(x > 0){C}:

Idea: demonic nondeterminism should try to take longer branches and execute
loops to the end.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Problems

Demonic nondeterminism may overapproximate loop runtime:

while(x>0) {

x++;

while(x>0) {

x--;

}

}

Linear termination

Never terminates!

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea 1: Extend to VASS with zero-tests

Finkel and Sangnier8 proved that termination for VASS with one counter
tested for zero is decidable

Bràzdil et al.9 proved that almost-sure termination for pVASS with one
counter tested for zero is decidable (in non-degenerous cases) (tested
counter not causing termination). But no efficient algorithm

No known results on linear termination

8Alain Finkel and Arnaud Sangnier. “Mixing Coverability and Reachability to Analyze VASS
with One Zero-Test”. In: SOFSEM 2010: Theory and Practice of Computer Science, 36th
Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn,
Czech Republic, January 23-29, 2010. Proceedings. 2010.

9Tomás Brázdil et al. “Zero-reachability in probabilistic multi-counter automata”. In: Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. 2014.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea 2: Consider (bounded) structural counters as parts of control states

x = 2;

while(x>0) {

x--;

}

...

Problem: Algorithm from (Brázdil et al.10) only applicable to fixed pVASS

10Brázdil et al., “Deciding Fast Termination for Probabilistic VASS with Nondeterminism”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea 3a: Add an opposite counter x ′ to each “structural” counter x
(x + x ′ = N)

while(x>0) {

x--;

}

...

Limitation: counter x must be bounded
by initial value N

Problem: increments depend on N, so
algorithm from (Brázdil et al.) not
applicable

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea 3b: Use idea from (Czerwiński et al.11) to translate zero-tests to programs
with constant increments:

Initially: d = c · R, x + x ′ = R, at termination required: d = 0, c ≥ 0.
Idea: x = 0 iff we can execute each loop R times. Initial and termination
condition guarantee we executed R iteration of each of c loops.

11Wojciech Czerwinski et al. “The reachability problem for Petri nets is not elementary”. In:
June 2019, pp. 24–33.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Problems:

This approach requires a specific initial configuration (d = c · R) and
specific condition on final values (d = 0, c ≥ 0)

Theory from (Bràzdil et al.12) not applicable, difficult to extend

And that is before we even consider probabilities!

12Brázdil et al., “Deciding Fast Termination for Probabilistic VASS with Nondeterminism”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea 4: Use a result from (Leroux13):

where:

i.e. total scheme displacement nonnegative and negative indexes from one
cycle are positive in full scheme

13Jérôme Leroux. “Polynomial Vector Addition Systems With States”. In: 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 2018.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Example:

(p, (−1, 2, 0), p), (q, (2,−1, 0), q) iteration scheme with displacement (1, 1, 0)

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

How to fix this?

Idea: Reuse the idea with opposite
counters

If VASS has no iteration scheme
for all N, runtime polynomial in N!

But...

Whether VASS has iteration
scheme actually depends on N

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Loop acceleration (Frohn14)

Consider the loop:

while φ(x) do x← a(x)

where x = (x1, . . . , xn) integer-valued. Write x→n x′ if x becomes x′ in n
iterations.

Definition

A sound (underapproximating) acceleration technique computes a formula
ψ(x, x′, n) over x, x′, n > 0 such that:

ψ(x, x′, n) =⇒ x→n x′

If we also have ψ(x, x′, n)⇐⇒ x→n x′, the technique is exact.

Idea: describe the behaviour of the loop by a single parametric formula
Overapproximating technique: ψ(x, x′, n)⇐= x→n x′

14Florian Frohn. “A Calculus for Modular Loop Acceleration”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Dublin,
Ireland. 2020.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Loop acceleration

Well-studied technique for deterministic programs.

Example (Frohn15):

while ((x1 > 0) ∧ (x2 > 0)) do

x1 ← x1 − 1

x2 ← x2 + 1

The formula:

(x ′1 = x1 − n) ∧ (x ′2 = x2 + n) ∧ (x2 > 0) ∧ (x1 − n + 1 > 0)

is computed by an exact acceleration of the loop.

15Frohn, “A Calculus for Modular Loop Acceleration”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Loop acceleration via VASS

Idea from (Silverman and Kincaid16) using rational-valued vector addition
systems with states and resets (Q-VASRS);
Compute Q-VASRS V and linear transformation S ∈ Qn×m overapproximating
loop’s reachability relation:

x→∗ x′ =⇒ Sx→∗V Sx′

We can prove e.g. 2x ≤ i .
16Jake Silverman and Zachary Kincaid. “Loop Summarization with Rational Vector Addition

Systems”. In: Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II. 2019.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Loop acceleration via VASS

(V , S) computable in polynomial size

(V , S) guaranteed to be the best Q-VASRS approximation

Reachability in Q-VASRS computable in polynomial time by (Haase and
Halfon17)

Question: can we extend it to probabilistic loops?
Problem: Question: can we extend it to probabilistic loops?

17Christoph Haase and Simon Halfon. “Integer Vector Addition Systems with States”. In:
Reachability Problems - 8th International Workshop, RP 2014, Oxford, UK, September 22-24,
2014. Proceedings. 2014.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Reachability in probabilistic loops

Possible definition of reachability:

Preach(x, S) ,
∑

x
p′−→x′,x′∈S

p′

where S set of states.

Quantitative reachability: find p′ (or a bound in p′)

Qualitative reachability: check if p′ = 1.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Reachability in probabilistic loops

Example:

while(*) {

x++ [1/2] skip;

k++;

}

Let S = {(s, k) | s = k = 3}. Then Preach((0, 0),S) ≤ 1
8

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Reachability in probabilistic loops

Idea 1: use pVASS?

Problem: no known results on reachability in pVASS, not covered by
(Bràzdil et al.18)

18Brázdil et al., “Deciding Fast Termination for Probabilistic VASS with Nondeterminism”.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Reachability in probabilistic loops

Idea 2: use Markov chains?

Represent loop as MC with countablty infinite state space (state= control
state + variable values)

Synthesise a finite-state MC simulating the loop MC (Baier19)
Need to aggregate states, approximation specific to S

Finite-state MC overapproximates reachability relation

In finite-state MCs, reachability polynomial in # states (=
|control states| · Bk for k variables with B values)

19Christel Baier et al. “Comparative branching-time semantics for Markov chains”. In:
Information and Computation 200.2 (2005), pp. 149–214.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

Reachability in probabilistic loops

Idea 3: use probabilistic PDA or probabilistic one-counter automata (pOC)20

quantitative reachability in PSPACE

qualitative reachability polynomial for pOC

20Tomás Brázdil, Stefan Kiefer, and Antonin Kucera. “Efficient Analysis of Probabilistic
Programs with an Unbounded Counter”. In: J. ACM 61.6 (2014), 41:1–41:35.

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs



Introduction Recap: The theory of pVASS Translating programs to pVASS Control flow in pVASS Probabilistic loop acceleration Conclusions

To sum up

Translating programs to pVASS with equivalent termination complexity
seems very difficult (if not impossible)

Computing loop summaries using pVASS as a subcomponent seems more
promising, but we are at a very early stage.

What are your thoughts?

Marcin Szymczak

Towards efficient automated analysis of probabilistic programs


	Introduction
	Recap: The theory of pVASS
	Translating programs to pVASS
	Control flow in pVASS
	Probabilistic loop acceleration
	Conclusions

