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Semirings

Definition 
A semiring  is a ring where existence of negative elements is 
optional.

(A, + , ⋅ ,0,1)
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Examples: 

• Every ring 
•  and   
•  and   (with  ) 
•  the tropical semiring 
•  the semiring of formal languages

ℕ ℝ≥0
ℕ ∪ {∞} ℝ≥0 ∪ {∞} ∞ ⋅ 0 = 0
(ℕ ∪ {∞}, min , + ,∞,0)
(2Σ*, ∪ , ⋅ ,∅, {ϵ})



Weighted Automata                                                                  [W. Kuich]

4

Definition 
An -weighted automaton  consists of 
• a finite index set  (states) 
• a transition matrix  
• an initial vector  
• a final vector 

A 𝔄
S

T ∈ AS×S

I ∈ AS

F ∈ AS

Let  be a semiring.A

The behaviour of automaton  is defined* as 

                         

*under a few additional conditions

𝔄

|𝔄 | = IT0F + IT1F + … = IT*F ∈ A



You all know weighted automata!

A Markov chain with reach property  is an -weighted automaton: 
•  is the transition probability matrix* 
•  is the initial distribution 
•  is the characteristic vector of set 

◊B ℝ≥0
T
I
F B
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|𝔄 | = Pr(◊B)

*outgoing transitions of states in  removedB



Derivatives in semirings
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Definition 
A mapping  in semiring  is called derivation if 
•  
•

∂ : A → A A
∂(x + y) = ∂x + ∂y
∂(xy) = ∂x ⋅ y + x ⋅ ∂y

Examples: 

• Polynomials over a semiring with their usual differentiation: 
                          

• Formal power series (“infinite polynomials”) 
• Matrix semirings with pointwise extension of 

∂(3x2 + 5x + 2) = 6x + 5

∂



The “derived” automaton ∂𝔄

7

Definition 
Let  be an -automaton. Its derivation  has 

• Transition matrix  

• Initial vector  
• Final vector 

𝔄 = (I, T, F) A ∂𝔄

( T 0
∂T T)

(0 I)
(F 0)

Let  be a semiring with derivation .A ∂

Theorem 
                                                      |∂𝔄 | = ∂ |𝔄 |



Example
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Definition (from previous slide) 
Let  be an -automaton. Its derivation  has 

• Transition matrix  

• Initial vector  
• Final vector 

𝔄 = (I, T, F) A ∂𝔄

( T 0
∂T T)

(0 I)
(F 0)

|∂𝔄 | = ∂ |𝔄 |



Homomorphism applied to automaton
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Definition 
Let  be an -automaton. Define  as the -automaten 

• Transition matrix  
• Initial vector  
• Final vector  

(all these applications are pointwise)

𝔄 = (I, T, F) A ϕ𝔄 B

ϕT
ϕI
ϕF

Let ,  be semirings,  a semiring-homomorphismA B ϕ : A → B

Proposition 
                                                      |ϕ𝔄 | = ϕ |𝔄 |



The general principle
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Automaton 𝔄 Modified automaton 
(e.g. ,…)∂𝔄, ϕ𝔄

Behaviour  of |𝔄 | 𝔄 Information 
(e.g. ,…)∂ |𝔄 | , ϕ |𝔄 |

Extract 
behaviour

Extract 
behaviour

Extract 
information 
( )∂, ϕ, . . .

Apply operation 
( )∂, ϕ, . . .

can be very complicated

 as complicated as ≈ 𝔄

Fact 
Applying operations like  (and others) to the behaviour  often yields 
useful information.

∂, ϕ |𝔄 |
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Markov chains with rewards

• Transitions carry a probability and a reward  

• Now: Expected reward until reaching a target 

r : S × S → ℤ≥0

B ⊆ S
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• Is this a weighted automaton? If yes, what is the underlying semiring?



Encoding probabilities and rewards

Transitions carry two kinds of quantitative information: 

• probabilities are multiplied along a path 
• rewards are added along a path 

This can be encoded as multiplication of polynomials: 

   =  p1xr1 ⋅ p2xr2 p1 ⋅ p2 xr1+r2
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What is the behaviour of the resulting weighted automaton?



The Probability Generating Function

 

         

         

         

         … 

        

|𝔄 | = ∑
k≥0

ITkF

= 0 + ∑
k≥1

ITkF

= 0 +
1
2

x + ∑
k≥2

ITkF

= 0 +
1
2

x +
1
4

x2 + ∑
k≥3

ITkF

= 0 +
1
2

x +
1
4

x2 +
1
8

x3 + . . .
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This infinite power series is the probability generating function (PGF) 
(of the RV modelling total reward until reaching the target)



Extracting information from a PGF
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• Expected value: 

 

where  is the homomorphism that substitutes .

𝔼 = ∑
k≥0

k ⋅ ℙ(k) = 1 ⋅
1
2

+ 2 ⋅
1
4

+ 3 ⋅
1
8

+ . . . = ϕ∂ |𝔄 |

ϕ x = 1

• PGF: 

 |𝔄 | =
1
2

x +
1
4

x2 +
1
8

x3 + . . .



An automaton for the expected reward
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Expected value:   𝔼 = ϕ∂ |𝔄 |

 ϕ∂ |𝔄 | = |ϕ∂𝔄 |

ϕ∂𝔄 :𝔄 :



Fixpoint iteration for expected rewards

In general  is the least fixpoint of  

                   

We automatically get fixpoint operators for higher moments too, e.g. 

   

(if all states reach  almost-surely)

|ϕ∂𝔄 |

𝔼s = {
0 if s ∈ B
∑s′ ps,s′ (rs,s′ ⋅ ℙs′ + 𝔼s′ ) else.

𝔼s(R2) = {
0 if s ∈ B
∑s′ ps,s′ (r2

s,s′ + 2rs,s′ 𝔼s′ (R) + 𝔼s′ (R2)) else.

B
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Some observations
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Conjectures 
• There is a linear fixpoint operator for  for every polynomial . 
• This can be generalised to multiple reward functions. 
•  is a rational number (if transitions prob’s/coeff’s are rational). 

𝔼( f(R)) f

𝔼( f(R1, …, Rn))
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A probabilistic program

x = 0; 
flag = true; 
while(flag) { 

x++; 
{ skip; } [1/2] { flag=false; } 

} 
{ y = 1; } [1/x] { y = 0; } 

What is the probability that y = 1 after termination?
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𝔼 ( 1
x ) = ln(2) ≈ 0.69…

This quantity is not rational (not even algebraic), so expected values of rational 
functions are fundamentally different from polynomials.



Model checking expected ratios

Can we recover  from the PGF ?𝔼 ( 1
R ) |𝔄 |
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𝔼 ( 1
R ) = ∑

k≥0

1
k

⋅ ℙ(k) = ∫
1

0

1
x

⋅ |𝔄 |dx

Assume  for now.ℙ(R = 0) = 0



Integrating the generating function

• Want compute sound upper/lower bounds on this 
• Use standard numeric integration techniques 
• Evaluate the PGF using “value iteration” from above/below 
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Lemma 

The function  is convex on [0,1]. 
1
x

|𝔄 |

𝔼 ( 1
R ) = ∫

1

0

1
x

|𝔄 |dx



Numeric integration of a convex function
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Trapezoidal rule 
Midpoint rule

IMidpoint ≤ Iexact ≤ ITrapezoidal



Summary
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Automaton 𝔄 Modified automaton 
(e.g. ,…)∂𝔄, ϕ𝔄

Behaviour  of |𝔄 | 𝔄 Information 
(e.g. ,…)∂ |𝔄 | , ϕ |𝔄 |

Extract 
behaviour

Extract 
behaviour

Extract 
information 
( )∂, ϕ, . . .

Apply operation 
( )∂, ϕ, . . .

can be very complicated

 as complicated as ≈ 𝔄

We have applied this principle to 
• expected rewards and polynomial combinations thereof 
• expected values of reward ratios Thank you!


