Derived Automata and an Application to Markov Reward Chains

MOVES Seminar
Tobias Winkler
25.06.2020

Outline

1. Derivatives of weighted automata
2. Markov chains with rewards
3. Expected values of ratios

RWTHAACHEN

Semirings

Definition

A semiring $(A,+, \cdot, 0,1)$ is a ring where existence of negative elements is optional.

Examples:

- Every ring
- \mathbb{N} and $\mathbb{R}_{\geq 0}$
- $\mathbb{N} \cup\{\infty\}$ and $\mathbb{R}_{\geq 0} \cup\{\infty\}$ (with $\infty \cdot 0=0$)
$\cdot(\mathbb{N} \cup\{\infty\}, \min ,+, \infty, 0)$ the tropical semiring
$\cdot\left(2^{\Sigma^{*}}, \cup, \cdot, \varnothing,\{\epsilon\}\right)$ the semiring of formal languages

Let A be a semiring.

Definition

An A-weighted automaton \mathfrak{A} consists of

- a finite index set S (states)
- a transition matrix $T \in A^{S \times S}$
- an initial vector $I \in A^{S}$
- a final vector $F \in A^{S}$

The behaviour of automaton \mathfrak{A} is defined* as

$$
|\mathfrak{A}|=I T^{0} F+I T^{1} F+\ldots=I T^{*} F \in A
$$

RWTHAACHEN

You all know weighted automata!

A Markov chain with reach property $\diamond B$ is an $\mathbb{R}_{\geq 0}$-weighted automaton:

- T is the transition probability matrix*
- I is the initial distribution
- F is the characteristic vector of set B

$$
|\mathfrak{A}|=\operatorname{Pr}(\diamond B)
$$

*outgoing transitions of states in B removed

Derivatives in semirings

Definition

A mapping $\partial: A \rightarrow A$ in semiring A is called derivation if

- $\partial(x+y)=\partial x+\partial y$
- $\partial(x y)=\partial x \cdot y+x \cdot \partial y$

Examples:

- Polynomials over a semiring with their usual differentiation:

$$
\partial\left(3 x^{2}+5 x+2\right)=6 x+5
$$

- Formal power series ("infinite polynomials")
- Matrix semirings with pointwise extension of ∂

The "derived" automaton $\partial \mathfrak{Q}$ (

Let A be a semiring with derivation ∂.

Definition

Let $\mathfrak{A}=(I, T, F)$ be an A-automaton. Its derivation $\partial \mathfrak{A}$ has

- Transition matrix $\left(\begin{array}{cc}T & 0 \\ \partial T & T\end{array}\right)$
- Initial vector (0 $\quad I$)
- Final vector $\left(\begin{array}{ll}F & 0\end{array}\right)$

```
Theorem
\[
|\partial \mathfrak{A}|=\partial|\mathfrak{A}|
\]
```

Example
Definition (from previous slide)
Let $\mathfrak{A}=(I, T, F)$ be an A-automaton. Its derivation $\partial \mathfrak{Y}$ has

- Transition matrix $\left(\begin{array}{cc}T & 0 \\ \partial T & T\end{array}\right)$
- Initial vector ($0 \quad I$)
- Final vector $\left(\begin{array}{ll}F & 0\end{array}\right)$

Homomorphism applied to automaton

Let A, B be semirings, $\phi: A \rightarrow B$ a semiring-homomorphism

Definition

Let $\mathfrak{A}=(I, T, F)$ be an A-automaton. Define $\phi \mathfrak{U}$ as the B-automaten

- Transition matrix ϕT
- Initial vector ϕI
- Final vector ϕF
(all these applications are pointwise)

Proposition

$$
|\phi \mathfrak{H}|=\phi|\mathfrak{M}|
$$

RWIHAACHEN

The general principle

Fact

Applying operations like ∂, ϕ (and others) to the behaviour $|\mathfrak{Z}| \mid$ often yields useful information.

Outline

1. Derivatives of weighted automata
2. Markov chains with rewards
3. Expected values of ratios

RWTHAACHEN

Markov chains with rewards

- Transitions carry a probability and a reward $r: S \times S \rightarrow \mathbb{Z}_{\geq 0}$
- Now: Expected reward until reaching a target $B \subseteq S$

- Is this a weighted automaton? If yes, what is the underlying semiring?

Encoding probabilities and rewards

Transitions carry two kinds of quantitative information:

- probabilities are multiplied along a path
- rewards are added along a path

This can be encoded as multiplication of polynomials:

$$
p_{1} x^{r_{1}} \cdot p_{2} x^{r_{2}}=p_{1} \cdot p_{2} x^{r_{1}+r_{2}}
$$

What is the behaviour of the resulting weighted automaton?

The Probability Generating Function

$$
\begin{aligned}
|\mathfrak{A}| & =\sum_{k \geq 0} I T^{k} F \\
& =0+\sum_{k \geq 1} I T^{k} F \\
& =0+\frac{1}{2} x+\sum_{k \geq 2} I T^{k} F \\
\frac{1}{2} x^{1} & \\
=1 x^{\circ} & \\
& \\
& \\
& =0+\frac{1}{2} x+\frac{1}{4} x^{2}+\sum_{k \geq 3} I T^{k} F \\
&
\end{aligned}
$$

This infinite power series is the probability generating function (PGF) (of the RV modelling total reward until reaching the target)

Extracting information from a PGF

- PGF:

$$
|\mathfrak{A}|=\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\ldots
$$

- Expected value:

$$
\mathbb{E}=\sum_{k \geq 0} k \cdot \mathbb{P}(k)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots=\phi \partial|\mathfrak{A}|
$$

where ϕ is the homomorphism that substitutes $x=1$.

An automaton for the expected reward

Expected value: $\mathbb{E}=\phi \partial|\boldsymbol{\mathfrak { A }}|$

$$
\phi \partial|\mathfrak{A}|=|\phi \partial \mathfrak{A}|
$$

RWIHAACHEN

Fixpoint iteration for expected rewards

In general $|\phi \partial \mathfrak{U}|$ is the least fixpoint of

$$
\mathbb{E}_{s}= \begin{cases}0 & \text { if } s \in B \\ \sum_{s^{\prime}} p_{s, s^{\prime}}\left(r_{s, s^{\prime}} \cdot \mathbb{P}_{s^{\prime}}+\mathbb{E}_{s^{\prime}}\right) & \text { else } .\end{cases}
$$

We automatically get fixpoint operators for higher moments too, e.g.

$$
\mathbb{E}_{s}\left(R^{2}\right)= \begin{cases}0 & \text { if } s \in B \\ \sum_{s^{\prime}} p_{s, s^{\prime}}\left(r_{s, s^{\prime}}^{2}+2 r_{s, s^{\prime}} \mathbb{E}_{s^{\prime}}(R)+\mathbb{E}_{s^{\prime}}\left(R^{2}\right)\right) & \text { else. }\end{cases}
$$

(if all states reach B almost-surely)

Some observations

Conjectures

- There is a linear fixpoint operator for $\mathbb{E}(f(R))$ for every polynomial f.
- This can be generalised to multiple reward functions.
- $\mathbb{E}\left(f\left(R_{1}, \ldots, R_{n}\right)\right)$ is a rational number (if transitions prob's/coeff's are rational).

RWIHAACHEN UNIVERSITY

Outline

1. Derivatives of weighted automata
2. Markov chains with rewards
3. Expected values of ratios

RWTHAACHEN

A probabilistic program

```
\(x=0 ;\)
flag = true;
while(flag) \{
        x++;
        \{ skip; \} [1/2] \{ flag=false; \}
\}
\(\{y=1 ;\}[1 / x]\{y=0 ;\}\)
```

What is the probability that $y=1$ after termination?

$$
\mathbb{E}\left(\frac{1}{x}\right)=\ln (2) \approx 0.69 \ldots
$$

This quantity is not rational (not even algebraic), so expected values of rational functions are fundamentally different from polynomials.

Model checking expected ratios

Can we recover $\mathbb{E}\left(\frac{1}{R}\right)$ from the PGF $|\boldsymbol{A}|$?

$$
\mathbb{E}\left(\frac{1}{R}\right)=\sum_{k \geq 0} \frac{1}{k} \cdot \mathbb{P}(k)=\int_{0}^{1} \frac{1}{x} \cdot|\mathfrak{\mathfrak { A }}| d x
$$

Assume $\mathbb{P}(R=0)=0$ for now.

Integrating the generating function

$$
\mathbb{E}\left(\frac{1}{R}\right)=\int_{0}^{1} \frac{1}{x}|\mathfrak{A}| d x
$$

- Want compute sound upper/lower bounds on this
- Use standard numeric integration techniques
- Evaluate the PGF using "value iteration" from above/below

```
Lemma
The function }\frac{1}{x}|\mathscr{A}|\mathrm{ is convex on [0,1].
```


Numeric integration of a convex function

Summary

We have applied this principle to

- expected rewards and polynomial combinations thereof
- expected values of reward ratios

