
HALLO
Jurriaan Rot, Radboud University
joint work with Gerco van Heerdt, Clemens Kupke, Alexandra Silva

MOVES seminar, 14 May 2020

Learning Weighted Automata
over Principal Ideal Domains
Jurriaan Rot, Radboud University
joint work with Gerco van Heerdt, Clemens Kupke, Alexandra Silva

MOVES seminar, 14 May 2020

1/24

Overview

Background

• Active learning: infer automaton through membership and
equivalence queries

• Weighted automata: quantitative type of automata

Problem

What type of weighted automata can we learn?

2/24

L? setup for DFAs

Finite alphabet A

System behaviour captured by a regular language L ⊆ A∗

L? learns minimal DFA for L

• Membership queries

w ∈ L?
• Equivalence queries

L(H) = L?

Negative result =⇒ counterexample

3/24

L? setup for DFAs

Finite alphabet A

System behaviour captured by a regular language L ⊆ A∗

L? learns minimal DFA for L assuming an oracle that answers

• Membership queries

w ∈ L?

• Equivalence queries

L(H) = L?

Negative result =⇒ counterexample

3/24

L? setup for DFAs

Finite alphabet A

System behaviour captured by a regular language L ⊆ A∗

L? learns minimal DFA for L assuming an oracle that answers

• Membership queries

w ∈ L?
• Equivalence queries

L(H) = L?

Negative result =⇒ counterexample

3/24

L? algorithm (variation) for DFAs

S ,E ⊆ A∗ induce a table
E︷ ︸︸ ︷

ε a

S

 ε 1 0
a 0 1
aa 1 0

S · A aaa 0 1

L = {an | n is even}

aa · a 6∈ L

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

4/24

L? algorithm (variation) for DFAs

S ,E ⊆ A∗ induce a table
E︷ ︸︸ ︷

ε a

S

 ε 1 0
a 0 1
aa 1 0

S · A aaa 0 1

L = {an | n is even}

aa · a 6∈ L

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

4/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

5/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

ε
ε 1
a 0

1// bb

Counterexample: aaa

5/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

ε
ε 1
a 0
aa 0

1// //a // 0 a
hh

Counterexample: aaa

5/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

ε
ε 1
a 0
aa 0

1// //a // 0 a
hh

Counterexample: aaa

5/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

ε a aa aaa
ε 1 0 0 1
a 0 0 1 0
aa 0 1 0 0

1//
a // 0

``

5/24

L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa

ε a aa aaa
ε 1 0 0 1
a 0 0 1 0
aa 0 1 0 0
aaa 1 0 0 1

1//
a // 0

a // 0

a

aa

5/24

DFAs vs WFAs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA

initial state in Q initial state in FQ

Q Q

2× QA S× (FQ)A

Interpretation: weighted language A∗ → S
• multiply weights along paths and with final output
• sum over paths

6/24

DFAs vs WFAs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA

initial state in Q initial state in FQ

Q Q

2× QA S× (FQ)A

Interpretation: weighted language A∗ → S
• multiply weights along paths and with final output
• sum over paths

6/24

WFA example over Q

0//

1a

		
1a // 1

2a

		

L(ε) = 0
L(a) = 1 · 0+ 1 · 1 = 1
L(aa) = 1 · 1 · 0+ 1 · 1 · 1+ 1 · 2 · 1 = 3
L(aaa) = 1 · 1 · 1 · 0+ 1 · 1 · 1 · 1+ 1 · 1 · 2 · 1+ 1 · 2 · 2 · 1 = 7

L(an) = 2n − 1

In fact: this is a weighted automaton over N as well.

7/24

WFA example over Q

0//

1a

		
1a // 1

2a

		

L(ε) = 0
L(a) = 1 · 0+ 1 · 1 = 1
L(aa) = 1 · 1 · 0+ 1 · 1 · 1+ 1 · 2 · 1 = 3
L(aaa) = 1 · 1 · 1 · 0+ 1 · 1 · 1 · 1+ 1 · 1 · 2 · 1+ 1 · 2 · 2 · 1 = 7

L(an) = 2n − 1

In fact: this is a weighted automaton over N as well.

7/24

WFA example over Q

0//

1a

		
1a // 1

2a

		

L(ε) = 0
L(a) = 1 · 0+ 1 · 1 = 1
L(aa) = 1 · 1 · 0+ 1 · 1 · 1+ 1 · 2 · 1 = 3
L(aaa) = 1 · 1 · 1 · 0+ 1 · 1 · 1 · 1+ 1 · 1 · 2 · 1+ 1 · 2 · 2 · 1 = 7

L(an) = 2n − 1

In fact: this is a weighted automaton over N as well.

7/24

WFA example over Q

0//

1a

		
1a // 1

2a

		

L(ε) = 0
L(a) = 1 · 0+ 1 · 1 = 1
L(aa) = 1 · 1 · 0+ 1 · 1 · 1+ 1 · 2 · 1 = 3
L(aaa) = 1 · 1 · 1 · 0+ 1 · 1 · 1 · 1+ 1 · 1 · 2 · 1+ 1 · 2 · 2 · 1 = 7

L(an) = 2n − 1

In fact: this is a weighted automaton over N as well.

7/24

Learning algorithm for WFAs

Membership queries:
return output value associated with word

Equivalence queries:
submit hypothesis WFA,
counterexample = word on which outputs differ

Table cells:
output values in S instead of 0, 1

Closedness:
each lower row a linear combination of upper rows

8/24

Learning algorithm for WFAs

Membership queries:
return output value associated with word

Equivalence queries:
submit hypothesis WFA,
counterexample = word on which outputs differ

Table cells:
output values in S instead of 0, 1

Closedness:
each lower row a linear combination of upper rows

8/24

Learning algorithm for WFAs

Membership queries:
return output value associated with word

Equivalence queries:
submit hypothesis WFA,
counterexample = word on which outputs differ

Table cells:
output values in S instead of 0, 1

Closedness:
each lower row a linear combination of upper rows

8/24

Learning algorithm for WFAs

Membership queries:
return output value associated with word

Equivalence queries:
submit hypothesis WFA,
counterexample = word on which outputs differ

Table cells:
output values in S instead of 0, 1

Closedness:
each lower row a linear combination of upper rows

8/24

General (weighted) L?

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

Requirement on semiring S: solving linear systems of equations should be
computable.

9/24

General (weighted) L?

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

Requirement on semiring S: solving linear systems of equations should be
computable.

9/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε
ε 0
a 1

0//

10/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε
ε 0
a 1

0//

10/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε
ε 0
a 1
aa 3

0//
1a // 1 hh

10/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε
ε 0
a 1
aa 3

0// //1a // 1 3a
hh

Counterexample: aaa

10/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a aa aaa
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31

0//
1a // 1

dd hh

10/24

Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a aa aaa
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31

0//
1a // 1

−2a

dd
3a

hh

10/24

Does it terminate?

The algorithm terminates for some known cases of semirings S, if the
input language is recognised by a WFA over S:

• any field; (variation on algorithm by Bergadano and Varricchio
(1996))

• the Boolean semiring 2 (WFA are non-deterministic automata;
variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

No.

11/24

Does it terminate?

The algorithm terminates for some known cases of semirings S, if the
input language is recognised by a WFA over S:

• any field; (variation on algorithm by Bergadano and Varricchio
(1996))

• the Boolean semiring 2 (WFA are non-deterministic automata;
variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

No.

11/24

Does it terminate?

The algorithm terminates for some known cases of semirings S, if the
input language is recognised by a WFA over S:

• any field; (variation on algorithm by Bergadano and Varricchio
(1996))

• the Boolean semiring 2 (WFA are non-deterministic automata;
variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

No.

11/24

The natural numbers

Recall the automaton:

0//

1a

		
1a // 1

2a

		

When learning over Q, we get an automaton with a negative coefficient:

0//
1a // 1

dd hh

−2a

dd
3a

hh

If we learn over N, the algorithm doesn’t terminate.

12/24

WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3

0//

13/24

WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3

0//

13/24

WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3
aa 3 7

0//
1a // 1 //

13/24

WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3
aa 3 7
aaa 7 15

0// //1a // 1
1a // 3

13/24

Approximating the Hankel matrix

The algorithm approximates the Hankel matrix of the language. Linear
combinations of rows in:

ε a aa aaa . . .
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31 . . .
aaa 7 15 31 63
.

This is not finitely generated.

14/24

Termination of the general algorithm

Algorithm terminates assuming

• progress measure with bound

Number, increases when rows separate via extra column

• ascending chain condition on Hankel matrix (table (A∗,A∗))

Subsemimodule chains converge: if

S1 ⊆ S2 ⊆ · · · ⊆ H

are subsemimodules, then there exists n ∈ N s.t.

Sn = Sn+1 = Sn+2 = · · ·

15/24

Termination of the general algorithm

Algorithm terminates assuming

• progress measure with bound

Number, increases when rows separate via extra column
• ascending chain condition on Hankel matrix (table (A∗,A∗))

Subsemimodule chains converge: if

S1 ⊆ S2 ⊆ · · · ⊆ H

are subsemimodules, then there exists n ∈ N s.t.

Sn = Sn+1 = Sn+2 = · · ·

15/24

Termination argument

Assume

• progress measure with bound
• ascending chain condition on Hankel matrix

Modules generated by (Sn,A
∗) form chain below Hankel matrix

• Converges, from that point on closedness guaranteed

Abstract result =⇒ counterexample leads to either

• closedness defect or

• rows distinguished by new column

Bounded progress measure =⇒ finitely many counterexamples

16/24

Termination argument

Assume

• progress measure with bound
• ascending chain condition on Hankel matrix

Modules generated by (Sn,A
∗) form chain below Hankel matrix

• Converges, from that point on closedness guaranteed

Abstract result =⇒ counterexample leads to either

• closedness defect or

• rows distinguished by new column

Bounded progress measure =⇒ finitely many counterexamples

16/24

Termination argument

Assume

• progress measure with bound
• ascending chain condition on Hankel matrix

Modules generated by (Sn,A
∗) form chain below Hankel matrix

• Converges, from that point on closedness guaranteed

Abstract result =⇒ counterexample leads to either

• closedness defect or

• rows distinguished by new column

Bounded progress measure =⇒ finitely many counterexamples

16/24

Termination argument

Assume

• progress measure with bound
• ascending chain condition on Hankel matrix

Modules generated by (Sn,A
∗) form chain below Hankel matrix

• Converges, from that point on closedness guaranteed

Abstract result =⇒ counterexample leads to either

• closedness defect or

• rows distinguished by new column

Bounded progress measure =⇒ finitely many counterexamples

16/24

Main ingredients for effective terminating
algorithm

1. Progress measure with bound
2. Ascending chain condition on Hankel matrix
3. Procedure to determine/fix closedness:

solvability of finite system of linear equations

17/24

WFAs over field: no problem

1. Progress measure and bound
– Dimension of vector space spanned by table
– ≤ minimal WFA size

2. Ascending chain condition
– Vector space dimension increases with strict inclusion
– Minimal WFA size = Hankel matrix dimension

3. Procedure to determine/fix closedness
– Gaussian elimination

18/24

WFAs over field: no problem

1. Progress measure and bound
– Dimension of vector space spanned by table
– ≤ minimal WFA size

2. Ascending chain condition
– Vector space dimension increases with strict inclusion
– Minimal WFA size = Hankel matrix dimension

3. Procedure to determine/fix closedness
– Gaussian elimination

18/24

WFAs over field: no problem

1. Progress measure and bound
– Dimension of vector space spanned by table
– ≤ minimal WFA size

2. Ascending chain condition
– Vector space dimension increases with strict inclusion
– Minimal WFA size = Hankel matrix dimension

3. Procedure to determine/fix closedness
– Gaussian elimination

18/24

WFAs over finite semiring: naive algorithm

1. Progress measure and bound
– Set size of semimodule spanned by table
– ≤ determinisation of correct automaton

2. Ascending chain condition
– Hankel matrix size ≤ determinisation of correct automaton

3. Procedure to determine/fix closedness
– Try all linear combinations of rows

19/24

WFAs over finite semiring: naive algorithm

1. Progress measure and bound
– Set size of semimodule spanned by table
– ≤ determinisation of correct automaton

2. Ascending chain condition
– Hankel matrix size ≤ determinisation of correct automaton

3. Procedure to determine/fix closedness
– Try all linear combinations of rows

19/24

WFAs over finite semiring: naive algorithm

1. Progress measure and bound
– Set size of semimodule spanned by table
– ≤ determinisation of correct automaton

2. Ascending chain condition
– Hankel matrix size ≤ determinisation of correct automaton

3. Procedure to determine/fix closedness
– Try all linear combinations of rows

19/24

WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring,
ab = 0 =⇒ a = 0 ∨ b = 0

All ideals principal: generated by one element

Examples: Z, Z[i], K [x] for K a field

20/24

WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring,
ab = 0 =⇒ a = 0 ∨ b = 0

All ideals principal: generated by one element

Examples: Z, Z[i], K [x] for K a field

20/24

WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring,
ab = 0 =⇒ a = 0 ∨ b = 0

All ideals principal: generated by one element

Examples: Z, Z[i], K [x] for K a field

20/24

PID free module properties

A module is free if and only if it is torsion free:
pm = 0 =⇒ p = 0 ∨m = 0

A submodule of a free and finitely generated module is

• free and finitely generated
• with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is
smaller or equal

21/24

PID free module properties

A module is free if and only if it is torsion free:
pm = 0 =⇒ p = 0 ∨m = 0

A submodule of a free and finitely generated module is

• free and finitely generated
• with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is
smaller or equal

21/24

PID free module properties

A module is free if and only if it is torsion free:
pm = 0 =⇒ p = 0 ∨m = 0

A submodule of a free and finitely generated module is

• free and finitely generated
• with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is
smaller or equal

21/24

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress (general fact): for X , Y finite sets and

• FX
f−→ FY a surjective homomorphism

• that identifies some elements

we have |X | > |Y |

22/24

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress (general fact): for X , Y finite sets and

• FX
f−→ FY a surjective homomorphism

• that identifies some elements

we have |X | > |Y |

22/24

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress (general fact): for X , Y finite sets and

• FX
f−→ FY a surjective homomorphism

• that identifies some elements

we have |X | > |Y |

22/24

Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)

23/24

Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)

23/24

Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)

23/24

Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)

So: the learning algorithm terminates for the integers!

23/24

Conclusion

Learning weighted automata

• Works for fields, finite semirings (known)
• also works for Z
• does not terminate for N.

24/24

