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Overview

Background

• Active learning: infer automaton through membership and
equivalence queries

• Weighted automata: quantitative type of automata

Problem

What type of weighted automata can we learn?
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L? setup for DFAs

Finite alphabet A

System behaviour captured by a regular language L ⊆ A∗

L? learns minimal DFA for L

• Membership queries

w ∈ L?
• Equivalence queries

L(H) = L?

Negative result =⇒ counterexample
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L? algorithm (variation) for DFAs

S ,E ⊆ A∗ induce a table
E︷ ︸︸ ︷

ε a

S

 ε 1 0
a 0 1
aa 1 0

S · A aaa 0 1

L = {an | n is even}

aa · a 6∈ L

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E
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L? for DFAs, example

an ∈ L ⇐⇒ n ≡ 0 (mod 3)
// a // a //

a

aa
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a // 0
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DFAs vs WFAs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA

initial state in Q initial state in FQ

Q Q

2× QA S× (FQ)A

Interpretation: weighted language A∗ → S
• multiply weights along paths and with final output
• sum over paths

6/24



DFAs vs WFAs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA

initial state in Q initial state in FQ

Q Q

2× QA S× (FQ)A

Interpretation: weighted language A∗ → S
• multiply weights along paths and with final output
• sum over paths

6/24



WFA example over Q

0//

1a

		
1a // 1

2a

		

L(ε) = 0
L(a) = 1 · 0+ 1 · 1 = 1
L(aa) = 1 · 1 · 0+ 1 · 1 · 1+ 1 · 2 · 1 = 3
L(aaa) = 1 · 1 · 1 · 0+ 1 · 1 · 1 · 1+ 1 · 1 · 2 · 1+ 1 · 2 · 2 · 1 = 7

L(an) = 2n − 1

In fact: this is a weighted automaton over N as well.
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Learning algorithm for WFAs

Membership queries:
return output value associated with word

Equivalence queries:
submit hypothesis WFA,
counterexample = word on which outputs differ

Table cells:
output values in S instead of 0, 1

Closedness:
each lower row a linear combination of upper rows
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General (weighted) L?

Initially S = E = {ε}

Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

Requirement on semiring S: solving linear systems of equations should be
computable.
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Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε
ε 0
a 1

0//
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Counterexample: aaa
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Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a aa aaa
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31

0//
1a // 1

dd hh

10/24



Example over Q

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a aa aaa
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31

0//
1a // 1

−2a

dd
3a

hh

10/24



Does it terminate?

The algorithm terminates for some known cases of semirings S, if the
input language is recognised by a WFA over S:

• any field; (variation on algorithm by Bergadano and Varricchio
(1996))

• the Boolean semiring 2 (WFA are non-deterministic automata;
variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

No.
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The natural numbers

Recall the automaton:

0//

1a

		
1a // 1

2a

		

When learning over Q, we get an automaton with a negative coefficient:

0//
1a // 1

dd hh

−2a

dd
3a

hh

If we learn over N, the algorithm doesn’t terminate.
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WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3

0//
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WFAs over N: termination issue

L(an) = 2n − 1
0//

1a

		
1a // 1

2a

		

ε a
ε 0 1
a 1 3
aa 3 7
aaa 7 15

0// //1a // 1
1a // 3
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Approximating the Hankel matrix

The algorithm approximates the Hankel matrix of the language. Linear
combinations of rows in:

ε a aa aaa . . .
ε 0 1 3 7
a 1 3 7 15
aa 3 7 15 31 . . .
aaa 7 15 31 63
. . . . . .

This is not finitely generated.
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Termination of the general algorithm

Algorithm terminates assuming

• progress measure with bound

Number, increases when rows separate via extra column

• ascending chain condition on Hankel matrix (table (A∗,A∗))

Subsemimodule chains converge: if

S1 ⊆ S2 ⊆ · · · ⊆ H

are subsemimodules, then there exists n ∈ N s.t.

Sn = Sn+1 = Sn+2 = · · ·
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Termination argument

Assume

• progress measure with bound
• ascending chain condition on Hankel matrix

Modules generated by (Sn,A
∗) form chain below Hankel matrix

• Converges, from that point on closedness guaranteed

Abstract result =⇒ counterexample leads to either

• closedness defect or

• rows distinguished by new column

Bounded progress measure =⇒ finitely many counterexamples
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Main ingredients for effective terminating
algorithm

1. Progress measure with bound
2. Ascending chain condition on Hankel matrix
3. Procedure to determine/fix closedness:

solvability of finite system of linear equations
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WFAs over field: no problem

1. Progress measure and bound
– Dimension of vector space spanned by table
– ≤ minimal WFA size

2. Ascending chain condition
– Vector space dimension increases with strict inclusion
– Minimal WFA size = Hankel matrix dimension

3. Procedure to determine/fix closedness
– Gaussian elimination
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WFAs over finite semiring: naive algorithm

1. Progress measure and bound
– Set size of semimodule spanned by table
– ≤ determinisation of correct automaton

2. Ascending chain condition
– Hankel matrix size ≤ determinisation of correct automaton

3. Procedure to determine/fix closedness
– Try all linear combinations of rows
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WFAs over PID

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring,
ab = 0 =⇒ a = 0 ∨ b = 0

All ideals principal: generated by one element

Examples: Z, Z[i ], K [x ] for K a field
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PID free module properties

A module is free if and only if it is torsion free:
pm = 0 =⇒ p = 0 ∨m = 0

A submodule of a free and finitely generated module is

• free and finitely generated
• with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is
smaller or equal
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Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Bound: Hankel matrix rank

Progress (general fact): for X , Y finite sets and

• FX
f−→ FY a surjective homomorphism

• that identifies some elements

we have |X | > |Y |
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Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)
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Learning WFAs over PIDs

1. Progress measure and bound
– Rank of the module spanned by the table
– ≤ rank of the Hankel matrix

2. Ascending chain condition
– Yes :)

3. Procedure to determine/fix closedness
– Solve equations via Smith normal form (exists for PIDs), some

further assumptions on computability (hold for integers)

So: the learning algorithm terminates for the integers!
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Conclusion

Learning weighted automata

• Works for fields, finite semirings (known)
• also works for Z
• does not terminate for N.
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