Learning Weighted Automata over Principal Ideal Domains

Jurriaan Rot, Radboud University joint work with Gerco van Heerdt, Clemens Kupke, Alexandra Silva MOVES seminar, 14 May 2020

Overview

Background

- Active learning: infer automaton through membership and equivalence queries
- Weighted automata: quantitative type of automata

Problem

What type of weighted automata can we learn?

L* setup for DFAs

Finite alphabet A
System behaviour captured by a regular language $\mathcal{L} \subseteq A^{*}$
L^{\star} learns minimal DFA for \mathcal{L}

L* setup for DFAs

Finite alphabet A

System behaviour captured by a regular language $\mathcal{L} \subseteq A^{*}$
L^{\star} learns minimal DFA for \mathcal{L} assuming an oracle that answers

- Membership queries

$$
w \in \mathcal{L} ?
$$

L* setup for DFAs

Finite alphabet A

System behaviour captured by a regular language $\mathcal{L} \subseteq A^{*}$
L^{\star} learns minimal DFA for \mathcal{L} assuming an oracle that answers

- Membership queries

$$
w \in \mathcal{L} ?
$$

- Equivalence queries

$$
\mathcal{L}(H)=\mathcal{L} ?
$$

Negative result \Longrightarrow counterexample
L^{*} algorithm (variation) for DFAs
$S, E \subseteq A^{*}$ induce a table

L* algorithm (variation) for DFAs

$S, E \subseteq A^{*}$ induce a table

Initially $S=E=\{\varepsilon\}$
Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

	ε
ε	1
a	0

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

	ε
ε	1
a	0
$a a$	0

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

	ε
ε	1
a	0
$a a$	0

Counterexample: aaa

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

	ε	a	aa	aaa
ε	1	0	0	1
a	0	0	1	0
$a a$	0	1	0	0

L* for DFAs, example

$$
a^{n} \in \mathcal{L} \Longleftrightarrow n \equiv 0 \quad(\bmod 3)
$$

	ε	a	$a a$	$a a a$
ε	1	0	0	1
a	0	0	1	0
$a a$	0	1	0	0
aaa	1	0	0	1

DFAs vs WFAs

\mathbb{S} semiring (e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}, 2$), $F Q$ free semimodule over Q

DFA

initial state in Q

WFA

initial state in $F Q$

$$
\begin{gathered}
Q \\
\downarrow \\
\mathbb{S} \times(F Q)^{A}
\end{gathered}
$$

DFAs vs WFAs

\mathbb{S} semiring (e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}, 2$), $F Q$ free semimodule over Q

DFA

initial state in Q

WFA

$$
\text { initial state in } F Q
$$

Interpretation: weighted language $A^{*} \rightarrow \mathbb{S}$

- multiply weights along paths and with final output
- sum over paths

WFA example over \mathbb{Q}

WFA example over \mathbb{Q}

$$
\begin{aligned}
\mathcal{L}(\varepsilon) & =0 \\
\mathcal{L}(a) & =1 \cdot 0+1 \cdot 1=1 \\
\mathcal{L}(a a) & =1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1=3 \\
\mathcal{L}(a a a) & =1 \cdot 1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 2 \cdot 1+1 \cdot 2 \cdot 2 \cdot 1=7
\end{aligned}
$$

WFA example over \mathbb{Q}

$$
\begin{aligned}
\mathcal{L}(\varepsilon) & =0 \\
\mathcal{L}(a) & =1 \cdot 0+1 \cdot 1=1 \\
\mathcal{L}(a a) & =1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1=3 \\
\mathcal{L}(a a a) & =1 \cdot 1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 2 \cdot 1+1 \cdot 2 \cdot 2 \cdot 1=7
\end{aligned}
$$

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

WFA example over \mathbb{Q}

$$
\begin{aligned}
\mathcal{L}(\varepsilon) & =0 \\
\mathcal{L}(a) & =1 \cdot 0+1 \cdot 1=1 \\
\mathcal{L}(a a) & =1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1=3 \\
\mathcal{L}(a a a) & =1 \cdot 1 \cdot 1 \cdot 0+1 \cdot 1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 2 \cdot 1+1 \cdot 2 \cdot 2 \cdot 1=7
\end{aligned}
$$

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

In fact: this is a weighted automaton over \mathbb{N} as well.

Learning algorithm for WFAs

Membership queries:

return output value associated with word

Learning algorithm for WFAs

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA, counterexample $=$ word on which outputs differ

Learning algorithm for WFAs

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA,
counterexample $=$ word on which outputs differ

Table cells:
output values in \mathbb{S} instead of 0,1

Learning algorithm for WFAs

Membership queries:

return output value associated with word

Equivalence queries:

submit hypothesis WFA,
counterexample $=$ word on which outputs differ

Table cells:
output values in \mathbb{S} instead of 0,1

Closedness:
each lower row a linear combination of upper rows

General (weighted) L*

Initially $S=E=\{\varepsilon\}$
Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

General (weighted) L*

Initially $S=E=\{\varepsilon\}$
Repeat until no more counterexamples:

1. Close table
2. Query equivalence for corresponding hypothesis
3. Add suffixes of counterexample to E

Requirement on semiring \mathbb{S} : solving linear systems of equations should be computable.

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε
ε	0
a	1

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε
ε	0
a	1
$a a$	3

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε
ε	0
a	1
$a a$	3

Counterexample: aaa

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε	a	aa	aaa
ε	0	1	3	7
a	1	3	7	15
$a a$	3	7	15	31

Example over \mathbb{Q}

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε	a	aa	aaa
ε	0	1	3	7
a	1	3	7	15
$a a$	3	7	15	31

Does it terminate?

The algorithm terminates for some known cases of semirings \mathbb{S}, if the input language is recognised by a WFA over \mathbb{S} :

- any field; (variation on algorithm by Bergadano and Varricchio (1996))
- the Boolean semiring 2 (WFA are non-deterministic automata; variation on algorithm by Bollig et al (2009)).

Does it terminate?

The algorithm terminates for some known cases of semirings \mathbb{S}, if the input language is recognised by a WFA over \mathbb{S} :

- any field; (variation on algorithm by Bergadano and Varricchio (1996))
- the Boolean semiring 2 (WFA are non-deterministic automata; variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

Does it terminate?

The algorithm terminates for some known cases of semirings \mathbb{S}, if the input language is recognised by a WFA over \mathbb{S} :

- any field; (variation on algorithm by Bergadano and Varricchio (1996))
- the Boolean semiring 2 (WFA are non-deterministic automata; variation on algorithm by Bollig et al (2009)).

Burning question

Does it terminate for any semiring?

No.

The natural numbers

Recall the automaton:

When learning over \mathbb{Q}, we get an automaton with a negative coefficient:

If we learn over \mathbb{N}, the algorithm doesn't terminate.

WFAs over \mathbb{N} : termination issue

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

WFAs over \mathbb{N} : termination issue

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε	a
ε	0	1
a	1	3

WFAs over \mathbb{N} : termination issue

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε	a
ε	0	1
a	1	3
$a a$	3	7

WFAs over \mathbb{N} : termination issue

$$
\mathcal{L}\left(a^{n}\right)=2^{n}-1
$$

	ε	a
ε	0	1
a	1	3
aa	3	7
aaa	7	15

Approximating the Hankel matrix

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

	ε	a	aa	aaa	\ldots
ε	0	1	3	7	
a	1	3	7	15	
aa	3	7	15	31	\ldots
$a a a$	7	15	31	63	
\ldots			\ldots		

This is not finitely generated.

Termination of the general algorithm

Algorithm terminates assuming

- progress measure with bound

Number, increases when rows separate via extra column

Termination of the general algorithm

Algorithm terminates assuming

- progress measure with bound

Number, increases when rows separate via extra column

- ascending chain condition on Hankel matrix (table (A^{*}, A^{*}))

Subsemimodule chains converge: if

$$
S_{1} \subseteq S_{2} \subseteq \cdots \subseteq H
$$

are subsemimodules, then there exists $n \in \mathbb{N}$ s.t.

$$
S_{n}=S_{n+1}=S_{n+2}=\cdots
$$

Termination argument

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Termination argument

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by $\left(S_{n}, A^{*}\right)$ form chain below Hankel matrix

- Converges, from that point on closedness guaranteed

Termination argument

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by $\left(S_{n}, A^{*}\right)$ form chain below Hankel matrix

- Converges, from that point on closedness guaranteed

Abstract result \Longrightarrow counterexample leads to either

- closedness defect or
- rows distinguished by new column

Termination argument

Assume

- progress measure with bound
- ascending chain condition on Hankel matrix

Modules generated by $\left(S_{n}, A^{*}\right)$ form chain below Hankel matrix

- Converges, from that point on closedness guaranteed

Abstract result \Longrightarrow counterexample leads to either

- closedness defect or rows distinguished by new column

Bounded progress measure \Longrightarrow finitely many counterexamples

Main ingredients for effective terminating algorithm

1. Progress measure with bound
2. Ascending chain condition on Hankel matrix
3. Procedure to determine/fix closedness:
solvability of finite system of linear equations

WFAs over field: no problem

1. Progress measure and bound

- Dimension of vector space spanned by table
- \leq minimal WFA size

WFAs over field: no problem

1. Progress measure and bound

- Dimension of vector space spanned by table
- \leq minimal WFA size

2. Ascending chain condition

- Vector space dimension increases with strict inclusion
- Minimal WFA size $=$ Hankel matrix dimension

WFAs over field: no problem

1. Progress measure and bound

- Dimension of vector space spanned by table
- \leq minimal WFA size

2. Ascending chain condition

- Vector space dimension increases with strict inclusion
- Minimal WFA size $=$ Hankel matrix dimension

3. Procedure to determine/fix closedness

- Gaussian elimination

WFAs over finite semiring: naive algorithm

1. Progress measure and bound

- Set size of semimodule spanned by table
- $\quad \leq$ determinisation of correct automaton

WFAs over finite semiring: naive algorithm

1. Progress measure and bound

- Set size of semimodule spanned by table
- \leq determinisation of correct automaton

2. Ascending chain condition

- Hankel matrix size \leq determinisation of correct automaton

WFAs over finite semiring: naive algorithm

1. Progress measure and bound

- Set size of semimodule spanned by table
- \leq determinisation of correct automaton

2. Ascending chain condition

- Hankel matrix size \leq determinisation of correct automaton

3. Procedure to determine/fix closedness

- Try all linear combinations of rows

WFAs over PID

Principal ideal domain $=$ integral domain with all ideals principal
Integral domain: commutative ring,

$$
a b=0 \Longrightarrow a=0 \vee b=0
$$

WFAs over PID

Principal ideal domain $=$ integral domain with all ideals principal
Integral domain: commutative ring,

$$
a b=0 \Longrightarrow a=0 \vee b=0
$$

All ideals principal: generated by one element

WFAs over PID

Principal ideal domain $=$ integral domain with all ideals principal
Integral domain: commutative ring,

$$
a b=0 \Longrightarrow a=0 \vee b=0
$$

All ideals principal: generated by one element
Examples: $\mathbb{Z}, \mathbb{Z}[i], K[x]$ for K a field

PID free module properties

A module is free if and only if it is torsion free:

$$
p m=0 \Longrightarrow p=0 \vee m=0
$$

PID free module properties

A module is free if and only if it is torsion free:

$$
p m=0 \Longrightarrow p=0 \vee m=0
$$

A submodule of a free and finitely generated module is

- free and finitely generated
- with smaller (or equal) rank

PID free module properties

A module is free if and only if it is torsion free:

$$
p m=0 \Longrightarrow p=0 \vee m=0
$$

A submodule of a free and finitely generated module is

- free and finitely generated
- with smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank is smaller or equal

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module
Bound: Hankel matrix rank

Progress measure for PIDs

Table modules are torsion free and thus free

Measure: rank of table module
Bound: Hankel matrix rank
Progress (general fact): for X, Y finite sets and

- $F X \xrightarrow{f} F Y$ a surjective homomorphism
- that identifies some elements
we have $|X|>|Y|$

Learning WFAs over PIDs

1. Progress measure and bound

- Rank of the module spanned by the table
- $\quad \leq$ rank of the Hankel matrix

Learning WFAs over PIDs

1. Progress measure and bound

- Rank of the module spanned by the table
- $\quad \leq$ rank of the Hankel matrix

2. Ascending chain condition

- Yes:)

Learning WFAs over PIDs

1. Progress measure and bound

- Rank of the module spanned by the table
- $\quad \leq$ rank of the Hankel matrix

2. Ascending chain condition

- Yes:)

3. Procedure to determine/fix closedness

- Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers)

Learning WFAs over PIDs

1. Progress measure and bound

- Rank of the module spanned by the table
- $\quad \leq$ rank of the Hankel matrix

2. Ascending chain condition

- Yes:)

3. Procedure to determine/fix closedness

- Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers)

So: the learning algorithm terminates for the integers!

Conclusion

Learning weighted automata

- Works for fields, finite semirings (known)
- also works for \mathbb{Z}
- does not terminate for \mathbb{N}.

