Benchmarking Software Model
Checkers on Automotive Code

NFM 2020

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen
May 2020

Chair i2, RWTH Aachen University

Motivation

Motivation Case Studies and Tools Benchmarking

Software Model Checking

= very active field of research

= interest from industry is slowly mounting

= applicability, interoperability and stability is/was brittle
= enter the Competition on Software Verification

(SV-COMP): from 9 tools in 2012 to >30 in 2019:
the most prestigious software verification competition!

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 2/18

Motivation Case Studies and Tools Benchmarking

Project History

two year project with Ford Motor Company?*
» feasibility study: Model checking of automotive code
= two open-loop controller models as case studies

= previous subject of interest: BTC EmbeddedValidator, a
commercial model checker

= Qutcome: Feasible, but improvements are possible!

1Berger, P., Katoen, J.P., Abrahém, E., Waez, M. T.B., Rambow, T.:
Verifying Auto-generated C Code from Simulink. In: FM. Volume 10951
of LNCS. (2018)

= How do the SV-COMP competitors perform on industrial,
automotive code?

= How do these tools compare to proprietary tools that are

tailored to such code?

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 4 /18

Case Studies and Tools

Motivation Case Studies and Tools Benchmarking

The Case Studies

Basis: Two automotive case studies (open-loop controllers)

Electronic Clutch Control & Driveline State Request

= Electronic clutch: = Driveline: everything
replaces the manual responsible for delivering
shaft coupling power to the road

» ECC enables access to » DSR signalizes and sets
the electronic clutch driveline's state

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 5/ 18

Motivation Case Studies and Tools

Code Structure — General

1 // Global variables are declared here.
2 int motor.rpm;

3 extern float module_accl_paddle;

4

5 void initialize () {

6 // Initializes global variables.
7 motor_-rpm = 2500;

8}

9

10 void step() {

11 // Monolithic code for one bounded step.
12 motor_-rpm *= module_accl_paddle;
13 }

14

15 // Entry point.
16 void main() {

17 initialize ();

18 // Executes the step indefinitely.
19 while (1) {

20 step ()

21 }

2 }

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 6 /18

Motivation Case Studies and Tools Benchmarking

Verifier Selection

Three criteria for our use case:

Has a license that allows an academic evaluation

Operates on the features of the case studies
Rationale: Precise results

Competes in the categories ReachSafety and

SoftwareSystems of the SV-COMP
Rationale: Maturity, applicability, SV-COMP functions

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 7 /18

Motivation Case Studies and Tools Benchmarking

Verifier Selection

C-code model checkers

CBMC SMACK

EsBMmcC SYMBIOTIC

218 ULTIMATEAUTOMIZER
CPACHECKER ULTiIMATEKOJAK
PESCo ULTIMATETAIPAN
DepTHK

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 8 /18

Case Studies and Tools

Verifier Selection

C-code model checkers

CBMC SMACK

EsBMmC SYMBIOTIC

2LS ULTIMATEAUTOMIZER
CPACHECKER ULTIMATEKOJAK
PESCo ULTIMATETAIPAN
DePTHK CBMC + k

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 8 /18

Motivation Case Studies and Tools Benchmarking

CBMC + k

Enhancing BMC-only verifiers via k-induction*

» Operation: Code transformation that represents the
induction step

= Configurable: Enables k-induction® on top of any
bounded model checker

» Leveraging: Leverages efficiency of BMC-only verifiers
for proof generation

*Specialized: Works only on this specific code structure!

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 9 /18

Motivation Case Studies and Tools Benchmark

CBMC + k

k-induction code transformation
1 extern void __VERIFIER_error();

2

8

4 int main() {

5 initialize ();

6

7

8 while (1) {

9

10

11 step();

12 if (!property())
13 __VERIFIER _error () ;
14 !

15 }

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 10 / 18

Motivation Case Studies and Tools Benchmarking Epilogue

CBMC + k

k-induction code transformation
1 extern void __VERIFIER_error();
2 extern void __VERIFIER_assume(int);

4 int main() {

5 initialize ();

6 set_loop_variables_nondet();

7 unsigned int i = 0;

8 while (1) {

9 _-VERIFIER_assume(property());

10 it

11 step();

12 if(i = k & !property())

13 __VERIFIER _error () ;

14 !

15 }
k—1 k—1

INDk(s0, - - -, Sk) = /\ T (siysiv1) | A /\ P(si) | A—=P(sk)

i=0 i=0

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 10 / 18

Motivation

CBMC + k

Case Studies and Tools Benchmarking

k-induction code transformation
1 extern void __VERIFIER_error();

2 extern void __VERIFIER._assume(int);

8

4 int main() {

5 initialize ();

6 set_loop_variables_nondet(); K

7 unsigned int i = 0; \\

8 while (1) { \\

9 _-VERIFIER_assume(property());\
10 it Y
11 step(); \
12 if(i = k & !property()) !
13 __VERIFIER_ error () ; .
14 ! h
15 } '

wn

tarts at an arbitrary but .

v

—+

ixed execution point |

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 10 / 18

Motivation Case Studies and Tools Benchmarking

CBMC + k

k-induction code transformation
1 extern void __VERIFIER_error();

2 extern void __VERIFIER._assume(int);

8

4 int main() {

5 initialize ();

6 set_loop_variables_nondet();

7 unsigned int i = 0;

8 while (1) {

9 _-VERIFIER_assume(property());

10 i 4-F R

11 step(); AR
12 if(i = k & !property()) \
13 __VERIFIER _error () ; \
14 1 \
15 } 1

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 10 / 18

Motivation Case Studies and Tools Benchmarking

CBMC + k

k-induction code transformation
1 extern void __VERIFIER_error();
extern void __VERIFIER._assume(int);

N

3

4 int main() {

5 initialize ();

6 set_loop_variables_nondet();

7 unsigned int i = 0;

8 while (1) {

9 __VERIFIER_assume (property ());

10 fi4F

11 step ();

12 if(i = k && !property ())<=~ <

13 __VERIFIER_ error () ; N
14 } K
15 } o

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 10 / 18

Benchmarking

Motivation Case Studies and Tools Benchmarking

Overall — Result Distribution

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 11 /18

Motivation Case Studies and Tools Benchmarking

Overall — Result Distribution

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 11 /18

Motivation

Case Studies and Tools Benchmarking

Overall — Result Distribution

Percentage

in finding bugs! :

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

11/ 18

Motivation Case Studies and Tools Benchmarking

Overall — Result Distribution

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 11 /18

Motivation Case Studies and Tools Benchmarking

Overall — Result Distribution

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

Leveraging CBMC with l:

k-induction works! \

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 11 /18

Motivation Case Studies and Tools Benchmarking

Overall — Result Distribution

== True

=== False

== Timeout

== Qut of memory

== Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 11 /18

Motivation Case Studies and Tools Benchmarking Epilogue

Overall — Result Distribution in DSR

DSR (105)

[CBMC+k (73)
UAutomizer (6)
CPAChecker (5)

[Symbiotic (7)
CBMC (21)

Most tools solve different problems — there are no easy ones!

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 12 /18

Moti

ation Case Studies and Tools Benchmarking

Comparison to an Industrial Tool

Competitions like SV-COMP use a ground truth for assigning
scores for correct and incorrect answers.

Verification result False True
Validation result Ve ? X Ve ? X

Score +1 +£0 +£0 +2 +1 +£0

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 13 /18

Moti

ation Case Studies and Tools Benchmarking

Comparison to an Industrial Tool —- BTC

BTC EmbeddedValidator (BTC)

= is focused on embedded automotive C-code, but
= can not (easily) handle more general code, and

= was run on slower CPU and with less RAM.

So why rely on BTC? It is

= 3 mature, commercial tool,
= specialized to this use case, and

= provides good coverage on the case studies (143 of 179).

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 14 / 18

Motivation Case S s and Tools Benchmarking

Comparison to an Industrial Tool —- BTC

== True

== True (Conflict w/ BTC)
== False

== False (Conflict w/ BTC)
== Timeout

== Out of memory

= Verifier bug

== Spurious counterexample
== Max. depth reached

Percentage

The verification results for each verifier, in percent of the 143
verification tasks on which BTC returned a definite result.

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 15 /18

Epilogue

Motivation Case Studies and Tools Benchmarking Epilogue

Our Answers

For the examined use case. ..

= How do the SV-COMP competitors perform on industrial,
automotive code?

There seems to be
a serious gap between
the needs of automotive code verification
and open-source software model checker capabilities.

At most 20% coverage on global invariants!

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 16 / 18

Motivation Case Studies and Tools Benchmarking Epilogue

Our Answers

For the examined use case. ..

= How do these tools compare to proprietary tools that are
tailored to such code?

Quantitative Results: To be expected.

Qualitative Results: Surprisingly bad!

But: Applicability should come in academic focus!

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 17 /18

Motivation Case Studies and Tools Benchmarking Epilogue

Main Takeaways

= More Benchmarks. Industrial partners need to come
forward with more real-world case studies not entangled
in NDAs.

= The scoring scheme in SV-COMP. The punishment of
wrong verification results is too severe! A relative
judgment (% of wrong answers) seems to be more fair.

Lukas Westhofen, Philipp Berger and Joost-Pieter Katoen 18 / 18

Code Structure — Specifics

Metric ECC DSR
Source lines of code 2517 1354
Global constants 274 77
float 30% 58%
Global variables 775 273
float 23% 26%
Operations 10096 5232
Addition /subtraction 346 133
Multiplication /division 253 52
Bit-precise operations 191 65
Pointer dereferences 180 83

Reasons for bad coverage

= Exploiting the code structure is key

= Preprocessing and handling for pointer-magic and
bitmask-on-float

= Access to industrial code for testing and adapting

Detailed — Verifier Stability

11 issues encountered during the study

CBMC: 2 CPACHECKER: 3

= Incorrect handling of switch-local = Resolving typedef’s (V')
variables (V)

= Faulty witness format (v')

= Ignoring of switch-local variables

= Incomplete implementation of Z3

[
EsBMc/DEPTHK: 1 glue code

= Faulty SMT formula for Boolector UAUTOMIZER/UTAIPAN: 2

= Conversion error of an assertion

2L8: 2

= Program abortion through
= False negatives with standard < <

. . unknown enum
configuration

= Bug in bit-vector implementation ~ SYMBIOTIC: 1

= Fails verification due to KLEE
shortcomings

Contradicting Results

The contradicting results observed in DSR and ECC, respectively.

Case study True False

DSR
CBMC+k BTC
BTC CBMC, CBMC+k

ECC
BTC UltimateTaipan
BTC, CBMC+k UltimateTaipan
BTC, ESBMC, CBMC+k UltimateTaipan
BTC, ESBMC UltimateTaipan

ESBMC, CBMC+k
ESBMC

DepthK
BTC, UltimateTaipan

N oA

References i

[§ Berger, P., Katoen, J.P., Abrahém, E., Waez, M.T.B,,
Rambow, T.:
Verifying Auto-generated C Code from Simulink.
In: FM. Volume 10951 of LNCS. (2018) 312-328

	Motivation
	Case Studies and Tools
	Benchmarking
	Epilogue
	Appendix

