Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

On $\infty\textsc{-}Safety$ of Stochastic Differential Dynamics

Mingshuai Chen

-Joint work with S. Feng, B. Xue, S. Sankaranarayanan, N. Zhan-

MOVES · April 2020

Reducing ∞ -Safety to <i>T</i> -Safety 0000000	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
Stochasticity			
		** ***	·····
	. •		

Reducing o	∞-Safety to	T-Safety
000000		

Synthesizing Stochastic BCs

Experimental Result

Concluding Remarks

Stochasticity in Differential Dynamics

©[Wikipedia]

Brownian motion

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Rema
0000000	00	00	00

Stochasticity in Differential Dynamics

Louis Bachelier

©[Wikipedia]

Brownian motion

"The mathematical expectation of the speculator is zero."

[L. Bachelier, Théorie de la spéculation, 1900]

Reducing ∞-Safety to *T*-Safety 0000000 Synthesizing Stochastic BCs

Experimental Result

Concluding Remarks

Stochasticity in Differential Dynamics

©[Wikipedia]

A. Einstein

©[Wikipedia] M. Smoluchowski

©[Wikipedia] P. Langevin

K. Itô

©[Alchetron]

R. Stratonovich

Mingshuai Chen · i2, RWTH Aachen Univ. Or

On ∞ -Safety of Stochastic Differential Dynamics

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

Stochastic Differential Equations (SDEs)

$$\mathrm{d}X_t = b(X_t) \, \mathrm{d}t + \sigma(X_t) \, \mathrm{d}W_t, \quad t \ge 0.$$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

Stochastic Differential Equations (SDEs)

$$\mathrm{d}X_t = b(X_t) \, \mathrm{d}t + \sigma(X_t) \, \mathrm{d}W_t, \quad t \ge 0.$$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

Stochastic Differential Equations (SDEs)

$$\mathrm{d} X_t = b(X_t) \, \mathrm{d} t + \sigma(X_t) \, \mathrm{d} W_t, \quad t \ge 0.$$

The unique solution is the *stochastic process* $X_t(\omega) = X(t, \omega) : [0, \infty) \times \Omega \to \mathbb{R}^n$ s.t.

$$X_t = X_0 + \int_0^t b(X_s) \, \mathrm{d}s + \int_0^t \sigma(X_s) \, \mathrm{d}W_s.$$

The solution $\{X_t\}$ is also referred to as an *(Itô) diffusion process*.

Reducing ∞-Safety to <i>T</i> -Safety 0000000	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
	6005		

Safety Verification of ODEs

Given $T \in \mathbb{R}$, $\mathcal{X} \subseteq \mathbb{R}^n$, $\mathcal{X}_0 \subset \mathcal{X}$, $\mathcal{X}_u \subset \mathcal{X}$, weather

$$\forall \mathbf{x}_0 \in \mathcal{X}_0: \quad \left(\bigcup_{t \leq T} \mathbf{x}_{t, \mathbf{x}_0} \right) \cap \mathcal{X}_u = \emptyset \quad ?$$

System is *T*-safe, if no trajectory enters \mathcal{X}_u over [0, T]; Unbounded : $T = \infty$.

Reducing ∞ -Safety to T-Safety 0000000	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
∞ -Safety of SDEs			

Bound the failure probability

$$\mathcal{P}\left(\exists t\in [0,\infty)\colon ilde{X}_t\in \mathcal{X}_u
ight), \hspace{1em} orall X_0\in \{X\mid ext{supp}(X)\subseteq \mathcal{X}_0\},$$

Reducing ∞ -Safety to <i>T</i> -Safety 0000000	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
∞ -Safety of SDEs			

Bound the failure probability

$$P\left(\exists t \in [0,\infty) \colon \tilde{X}_t \in \mathcal{X}_u\right), \quad \forall X_0 \in \{X \mid \operatorname{supp}(X) \subseteq \mathcal{X}_0\},$$

where \tilde{X}_t is the process that will stop at the boundary of \mathcal{X} :

$$ilde{X}_t \stackrel{\sim}{=} X_{t \wedge au_{\mathcal{X}}} = egin{cases} X(t, \omega) & ext{if } t \leq au(\omega), \ X(au(\omega), \omega) & ext{otherwise}, \end{cases}$$

with $\tau_{\mathcal{X}} \cong \inf\{t \mid X_t \notin \mathcal{X}\}.$

Reducing ∞ -Safety to <i>T</i> -Safety 0000000	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
∞ -Safety of SDEs			

Bound the failure probability

$$P\left(\exists t \in [0,\infty) \colon \tilde{X}_t \in \mathcal{X}_u\right), \quad \forall X_0 \in \{X \mid \operatorname{supp}(X) \subseteq \mathcal{X}_0\},$$

where \tilde{X}_t is the process that will stop at the boundary of \mathcal{X} :

$$ilde{X}_t \cong X_{t \wedge au_{\mathcal{X}}} = egin{cases} X(t, \omega) & ext{if } t \leq au(\omega), \ X(au(\omega), \omega) & ext{otherwise}, \end{cases}$$

with $\tau_{\mathcal{X}} \cong \inf\{t \mid X_t \notin \mathcal{X}\}.$

$$\begin{split} \phi &\cong "\tilde{X}_t \text{ evolves within } \mathcal{X}", \quad \psi &\cong "\tilde{X}_t \text{ evolves into } \mathcal{X}_u" \\ & \downarrow \\ & &$$

Reducing of OOOOOO	∞-Safety to ⊙	T-Safety	Synthesizing Stochastic BCs OO	Experimental Results	Concluding Remarks
-		C . 1			

Overview of the Idea

Observe that for any $0 \leq T < \infty$,

 $P(\exists t \ge 0: \tilde{X}_t \in \mathcal{X}_u) \le P(\exists t \in [0, T]: \tilde{X}_t \in \mathcal{X}_u) + P(\exists t \ge T: \tilde{X}_t \in \mathcal{X}_u).$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

Overview of the Idea

Observe that for any $0 \leq T < \infty$,

$$P(\exists t \ge 0: \tilde{X}_t \in \mathcal{X}_u) \le P(\exists t \in [0, T]: \tilde{X}_t \in \mathcal{X}_u) + \underbrace{P(\exists t \ge T: \tilde{X}_t \in \mathcal{X}_u)}_{\downarrow}.$$

Bounded by an exponential barrier certificate

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks

Overview of the Idea

Observe that for any $0 \leq T < \infty$,

Bounded by a time-dependent barrier certificate

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000	00	00	00

Recap : Barrier Certificate Witnesses ∞ -Safety

$$B(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in \mathcal{X}_{u},$$

$$B(\mathbf{x}) \le 0 \quad \forall \mathbf{x} \in \mathcal{X}_{0},$$

$$\frac{\partial B}{\partial \mathbf{x}}(\mathbf{x})b(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in \partial B.$$

©[S. Prajna & A. Jadbabaie, 2004]

Reducing ∞ -Safety to <i>T</i> -Safety 0000000	Synthesizing Stochastic BCs OO	Experimental Results OO	Concluding Remarks
Outline			
1 Reducing ∞ -Saf	ety to <i>T</i> -Safety		
2 Synthesizing Sto	ochastic BCs		
3 Experimental Re	esults		
4 Concluding Rem	arks		
			•

.

٠

• .•

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Tail Failure Probability			

Infinitesimal Generator

Definition (Infinitesimal generator [Øksendal, 2013])

Let $\{X_t\}$ be a diffusion process in \mathbb{R}^n . The *infinitesimal generator* \mathcal{A} of X_t is defined by

$$\mathcal{A}f(s,\mathbf{x}) = \lim_{t \downarrow 0} \frac{E^{s,\mathbf{x}}\left[f(s+t,X_t)\right] - f(s,\mathbf{x})}{t}, \quad \mathbf{x} \in \mathbb{R}^n.$$

Let $\mathcal{D}_{\mathcal{A}}$ denote the set of functions for which the limit exists for all $(s, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{n}$.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Tail Failure Probability			

Infinitesimal Generator

Definition (Infinitesimal generator [Øksendal, 2013])

Let $\{X_t\}$ be a diffusion process in \mathbb{R}^n . The *infinitesimal generator* \mathcal{A} of X_t is defined by

$$\mathcal{A}f(s,\mathbf{x}) = \lim_{t \downarrow 0} \frac{E^{s,\mathbf{x}}\left[f(s+t,X_t)\right] - f(s,\mathbf{x})}{t}, \quad \mathbf{x} \in \mathbb{R}^n.$$

Let $\mathcal{D}_{\mathcal{A}}$ denote the set of functions for which the limit exists for all $(s, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{n}$.

Lemma ([Øksendal, 2013])

Let $\{X_t\}$ be a diffusion process defined by an SDE. If $f \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ with compact support, then $f \in D_A$ and

$$\mathcal{A}f(t,\mathbf{x}) = \frac{\partial f}{\partial t} + \sum_{i=1}^{n} b_i(\mathbf{x}) \frac{\partial f}{\partial x_i} + \frac{1}{2} \sum_{i,j} (\sigma \sigma^{\mathsf{T}})_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

 $\mathcal{A}f(t, \mathbf{x})$ generalizes the Lie derivative that captures the evolution of X_t along $f(t, \mathbf{x})$.

RWT

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Tail Failure Probability			

Exponential Stochastic Barrier Certificate

Theorem

Suppose there exists an essentially non-negative matrix $\Lambda \in \mathbb{R}^{m \times m}$, together with an *m*-dimensional polynomial function (termed exponential stochastic barrier certificate) $V(\mathbf{x}) = (V_1(\mathbf{x}), V_2(\mathbf{x}), \dots, V_m(\mathbf{x}))^T$, with $V_i \colon \mathbb{R}^n \to \mathbb{R}$ for $1 \le i \le m$, satisfying

 $V(\mathbf{x}) \ge \mathbf{0} \quad \text{for } \mathbf{x} \in \mathcal{X},$ (1)

$$\mathcal{A}V(\mathbf{x}) \leq -\Lambda V(\mathbf{x}) \quad \textit{for } \mathbf{x} \in \mathcal{X},$$
 (2)

$$\Lambda V(\mathbf{x}) \le \mathbf{0} \quad \text{for } \mathbf{x} \in \partial \mathcal{X}. \tag{3}$$

Define a function

 $F(t,\mathbf{x}) \widehat{=} e^{\Lambda t} V(\mathbf{x}),$

then every component of $F(t, \tilde{X}_t)$ is a supermartingale.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Tail Failure Probability			

Exponential Stochastic Barrier Certificate

Theorem

Suppose there exists an essentially non-negative matrix $\Lambda \in \mathbb{R}^{m \times m}$, together with an *m*-dimensional polynomial function (termed exponential stochastic barrier certificate) $V(\mathbf{x}) = (V_1(\mathbf{x}), V_2(\mathbf{x}), \dots, V_m(\mathbf{x}))^T$, with $V_i \colon \mathbb{R}^n \to \mathbb{R}$ for $1 \le i \le m$, satisfying

 $V(\mathbf{x}) \ge \mathbf{0} \quad \text{for } \mathbf{x} \in \mathcal{X},$ (1)

$$\mathcal{A}V(\mathbf{x}) \leq -\Lambda V(\mathbf{x}) \quad \textit{for } \mathbf{x} \in \mathcal{X},$$
 (2)

$$\Lambda V(\mathbf{x}) \le \mathbf{0} \quad \text{for } \mathbf{x} \in \partial \mathcal{X}. \tag{3}$$

Define a function

 $F(t,\mathbf{x}) \widehat{=} e^{\Lambda t} V(\mathbf{x}),$

then every component of $F(t, \tilde{X}_t)$ is a supermartingale.

Proof

Based on Dynkin's formula [Dynkin, 1965] and Fatou's lemma.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Tail Failure Probability			

Doob's Supermartingale Inequality

Lemma (Doob's supermartingale inequality [Karatzas and Shreve, 2014])

Let $\{X_t\}_{t>0}$ be a right continuous non-negative supermartingale adapted to a filtration $\{\mathcal{F}_t \mid t>0\}$. Then for any $\lambda > 0$,

$$\lambda P\left(\sup_{t\geq 0} X_t \geq \lambda\right) \leq E[X_0].$$

A bound on the probability that a non-negative supermartingale exceeds some given value over a given time interval.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Develope the Tell Collins Deskel like			

Exponentially Decreasing Bound on the Tail Failure Probability

For cases where $V(\mathbf{x})$ is a scalar function¹:

Proposition

Suppose there exists a positive constant $\Lambda \in \mathbb{R}$ and a scalar exponential stochastic barrier certificate V: $\mathbb{R}^n \to \mathbb{R}$. Then,

$$\mathsf{P}\left(\sup_{t\geq T}\mathsf{V}\left(\tilde{\mathsf{X}}_{t}\right)\geq\gamma\right)\leq\frac{\mathsf{E}[\mathsf{V}(\mathsf{X}_{0})]}{\mathrm{e}^{\Lambda T}\gamma}$$

holds for any $\gamma > 0$ and $T \ge 0$. Moreover, if there exists l > 0 s.t.

 $V(\mathbf{x}) \geq l$ for all $\mathbf{x} \in \mathcal{X}_u$,

then

$$P\left(\exists t \geq T: \tilde{X}_t \in \mathcal{X}_u\right) \leq \frac{E[V(X_0)]}{\mathrm{e}^{\Lambda T}l}$$

holds for any $T \ge 0$.

Mingshuai Chen · i2, RWTH Aachen Univ.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000			
Development and the Tall Calling Development (1996)			

Exponentially Decreasing Bound on the Tail Failure Probability

For cases where $V(\mathbf{x})$ is a scalar function¹:

Proposition

Suppose there exists a positive constant $\Lambda \in \mathbb{R}$ and a scalar exponential stochastic barrier certificate V: $\mathbb{R}^n \to \mathbb{R}$. Then,

$$\mathsf{P}\left(\sup_{t\geq T}\mathsf{V}\left(\tilde{\mathsf{X}}_{t}\right)\geq\gamma\right)\leq\frac{\mathsf{E}[\mathsf{V}(\mathsf{X}_{0})]}{\mathrm{e}^{\Lambda T}\gamma}$$

holds for any $\gamma > 0$ and $T \ge 0$. Moreover, if there exists l > 0 s.t.

 $V(\mathbf{x}) \geq l$ for all $\mathbf{x} \in \mathcal{X}_u$,

then

$$P\left(\exists t \geq T: \tilde{X}_t \in \mathcal{X}_u\right) \leq \frac{E[V(X_0)]}{\mathrm{e}^{\Lambda T}l}$$

holds for any $T \ge 0$.

Proof

Based on Doob's supermartingale inequality.

1. The result generalizes to the slightly more involved case where $V(\mathbf{x})$ is a vector function.

On ∞ -Safety of Stochastic Differential Dynamics

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000			
Bounding the Tail Failure Probability			

Exponentially Decreasing Bound on the Tail Failure Probability

 $\forall \epsilon > 0. \exists \tilde{T} \ge 0$: the truncated \tilde{T} -tail failure probability is bounded by ϵ :

Theorem

If there exists $\alpha > 0$, s.t. $\forall \mathbf{x} \in \mathcal{X}_0$: $V_i(\mathbf{x}) \le \alpha$ holds for some $i \in \{1, \dots, m\}$. Then for any $\epsilon > 0$, there exists $\tilde{T} \ge 0$ s.t.

$$P\left(\exists t \geq \tilde{T}: \tilde{X}_t \in \mathcal{X}_u\right) \leq \epsilon.$$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000			
Reunding the Failure Brokability ever [0, 7]			

Time-Dependent Stochastic Barrier Certificate

Theorem

Suppose there exists a constant $\eta > 0$ and a polynomial function (termed time-dependent stochastic barrier certificate) $H(t, \mathbf{x}) \colon \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, satisfying

$$H(t, \mathbf{x}) \ge 0 \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \mathcal{X}, \tag{4}$$

$$\mathcal{A}H(t,\mathbf{x}) \leq 0 \quad \textit{for}(t,\mathbf{x}) \in [0, \mathbf{T}] \times (\mathcal{X} \setminus \mathcal{X}_u), \tag{5}$$

$$\frac{\partial H}{\partial t} \le 0 \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \partial \mathcal{X}, \tag{6}$$

$$H(t, \mathbf{x}) \ge \eta \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \mathcal{X}_u.$$
(7)

Then,

$$P\left(\exists t \in [0, T]: \tilde{X}_t \in \mathcal{X}_u\right) \leq \frac{E[H(0, X_0)]}{\eta}$$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000			
Reunding the Failure Brokability ever [0, 7]			

Time-Dependent Stochastic Barrier Certificate

Theorem

Suppose there exists a constant $\eta > 0$ and a polynomial function (termed time-dependent stochastic barrier certificate) $H(t, \mathbf{x}) \colon \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, satisfying

$$H(t, \mathbf{x}) \ge 0 \quad \text{for} (t, \mathbf{x}) \in [0, \mathbf{T}] \times \mathcal{X}, \tag{4}$$

$$\mathcal{A}H(t,\mathbf{x}) \leq 0 \quad \textit{for}(t,\mathbf{x}) \in [0, \mathbf{T}] \times (\mathcal{X} \setminus \mathcal{X}_u), \tag{5}$$

$$\frac{\partial H}{\partial t} \le 0 \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \partial \mathcal{X}, \tag{6}$$

$$H(t, \mathbf{x}) \ge \eta \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \mathcal{X}_u.$$
(7)

Then,

$$P\left(\exists t \in [0, T]: \tilde{X}_t \in \mathcal{X}_u\right) \leq \frac{E[H(0, X_0)]}{\eta}$$

Proof

Based on Dynkin's formula and Doob's supermartingale inequality.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
000000			
Bounding the Failure Probability over $\begin{bmatrix} 0 & T \end{bmatrix}$			

Time-Dependent Stochastic Barrier Certificate

Corollary

Suppose there exists $\beta > 0$, s.t. $H(0, \mathbf{x}) \leq \beta$ for $\mathbf{x} \in \mathcal{X}_0$. Then,

$$P\left(\exists t \in [0, T] \colon \tilde{X}_t \in \mathcal{X}_u\right) \leq \frac{\beta}{\eta}.$$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000	● 0	00	00

SDP Encoding for Synthesizing $V(\mathbf{x})$

minimize
$$\alpha$$
 (8)

subject to
$$V^a(\mathbf{x}) \geq \mathbf{0}$$
 for $\mathbf{x} \in \mathcal{X}$ (9)

$$\mathcal{A}V^{a}(\mathbf{x}) \leq -\Lambda V^{a}(\mathbf{x}) \quad \text{for } \mathbf{x} \in \mathcal{X}$$
 (10)

$$\Lambda V^{a}(\mathbf{x}) \leq \mathbf{0} \quad \text{for } \mathbf{x} \in \partial \mathcal{X} \tag{11}$$

$$V^{a}(\mathbf{x}) \geq 1$$
 for $\mathbf{x} \in \mathcal{X}_{u}$ (12)

$$V^{a}(\mathbf{x}) \leq \alpha \mathbf{1}$$
 for $\mathbf{x} \in \mathcal{X}_{0}$ (13)

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000	00	00	00

SDP Encoding for Synthesizing $H(t, \mathbf{x})$

1

minimize
$$\beta$$
 (14)

subject to
$$H^{b}(t, \mathbf{x}) \geq 0$$
 for $(t, \mathbf{x}) \in [0, T] \times \mathcal{X}$ (15)

$$\mathcal{AH}^{b}(t, \mathbf{x}) \leq 0 \quad \text{for} (t, \mathbf{x}) \in [0, T] \times (\mathcal{X} \setminus \mathcal{X}_{u})$$
 (16)

$$\frac{\partial H^{\rho}}{\partial t} \le 0 \quad \text{for} (t, \mathbf{x}) \in [0, T] \times \partial \mathcal{X}$$
(17)

$$H^{b}(t, \mathbf{x}) \geq 1$$
 for $(t, \mathbf{x}) \in [0, T] \times \mathcal{X}_{u}$ (18)

$$H^{b}(0,\mathbf{x}) \leq \beta \quad \text{for } \mathbf{x} \in \mathcal{X}_{0}$$
 (19)

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
		•0	

Example : Population Dynamics

Example (Population growth [Panik, 2017])

$$\mathrm{d}X_t = -X_t \,\mathrm{d}t + \sqrt{2}/2X_t \,\mathrm{d}W_t.$$

\$\infty\$-safety setting : $\mathcal{X} = \{\mathbf{x} \mid \mathbf{x} \ge 0\}, \mathcal{X}_0 = \{\mathbf{x} \mid \mathbf{x} = 1\}, \mathcal{X}_u = \{\mathbf{x} \mid \mathbf{x} \ge 2\}$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
		••	

Example : Population Dynamics

Example (Population growth [Panik, 2017])

$$\mathrm{d}X_t = -X_t \,\mathrm{d}t + \sqrt{2}/2X_t \,\mathrm{d}W_t.$$

 ∞ -safety setting : $\mathcal{X} = \{\mathbf{x} \mid \mathbf{x} \ge 0\}, \mathcal{X}_0 = \{\mathbf{x} \mid \mathbf{x} = 1\}, \mathcal{X}_u = \{\mathbf{x} \mid \mathbf{x} \ge 2\}.$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
		00	

Example : Harmonic Oscillator

Example (Harmonic oscillator [Hafstein et al., 2018])

$$\mathrm{d} X_t = \begin{pmatrix} 0 & \omega \\ -\omega & -k \end{pmatrix} X_t \, \mathrm{d} t + \begin{pmatrix} 0 & 0 \\ 0 & -\sigma \end{pmatrix} X_t \, \mathrm{d} W_t.$$

 $\begin{array}{l} \text{Constants} : \omega = 1, \textit{k} = 7, \sigma = 2. \\ \infty \text{-safety setting} : \mathcal{X} = \mathbb{R}^{\textit{o}}, \mathcal{X}_0 = \{(\textit{x}_1, \textit{x}_2) \mid -1.2 \leq \textit{x}_1 \leq 0.8, -0.6 \leq \textit{x}_2 \leq 0.4\}, \\ \mathcal{X}_u = \{(\textit{x}_1, \textit{x}_2) \mid |\textit{x}_1| \geq 2\}. \end{array}$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
		0•	

Example : Harmonic Oscillator

Example (Harmonic oscillator [Hafstein et al., 2018])

$$\mathrm{d}X_t = \begin{pmatrix} 0 & \omega \\ -\omega & -k \end{pmatrix} X_t \,\mathrm{d}t + \begin{pmatrix} 0 & 0 \\ 0 & -\sigma \end{pmatrix} X_t \,\mathrm{d}W_t.$$

Constants : $\omega = 1, k = 7, \sigma = 2$. ∞ -safety setting : $\mathcal{X} = \mathbb{R}^n$, $\mathcal{X}_0 = \{(x_1, x_2) \mid -1.2 \le x_1 \le 0.8, -0.6 \le x_2 \le 0.4\}$, $\mathcal{X}_u = \{(x_1, x_2) \mid |x_1| \ge 2\}$.

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
			$\circ \circ$

Summary

For any $0 \leq T < \infty$, $P(\exists t \geq 0: \tilde{X}_t \in \mathcal{X}_u) \leq \underbrace{P(\exists t \in [0, T]: \tilde{X}_t \in \mathcal{X}_u)}_{\text{Bounded by an exponential barrier certificate}}^{\text{Homosoff}} + \underbrace{P(\exists t \geq T: \tilde{X}_t \in \mathcal{X}_u)}_{\text{Bounded by a time-dependent barrier certificate}}^{\text{Homosoff}}$

Reducing ∞ -Safety to T-Safety	Synthesizing Stochastic BCs	Experimental Results	Concluding Remarks
0000000	OO	OO	○●

∞ -Safety of Probabilistic Programs?

