
5P R O O F R U L E S F O R L O O P S

Reasoning about loops is one of the most — if not the most — difficult
tasks in verification. For nonprobabilistic programs, this is usually
done using loop invariants and loop variants. Roughly speaking, loop

invariants allow proving partial correctness, meaning the algorithm is cor-
rect if it terminates. Loop variants, on the other hand, enable proving termi-
nation. Partial correctness and termination together give total correctness.

For probabilistic programs, neither correctness nor termination are strictly
binary properties: Monte Carlo algorithms, for instance, typically trade off
100% correctness for runtime efficiency, thus giving correct answers to oth-
erwise difficult problems only with high probability but make up for it with
short expected runtime. In order to account for those quantitative aspects,
techniques for reasoning about the correctness of randomized algorithms
need to naturally also be of quantitative nature. Amongst others, Kozen,
McIver & Morgan, Jones, and also ourselves have provided quantitative ana-
logs to invariant–style reasoning about probabilistic loops. In this chapter,
we survey those proof rules.

After recapping how to lift invariant–style reasoning from nonprobabilis-
tic to probabilistic loops, we survey and discuss proof rules for proving
bounds (both upper and lower) on weakest preexpectations and weakest lib-
eral preexpectations. In particular, we discuss in some detail the problem
of obtaining lower bounds on weakest preexpectations, i.e. lower bounds on
least fixed points. All proof rules have been translated into our weakest pre-
expectation setting so that we can give a unified overview and comparison.

5.1 I N VA R I A N T S

All proof rules we present in this chapter make in one way or another
use of a probabilistic, or rather quantitative, notion of invariants. In

order to transit from Boolean to quantitative reasoning, let us briefly recap
invariant–style reasoning about partial correctness of nonprobabilistic while
loops: Given a precondition G and a postcondition F, say we want to prove
that if executing while (ϕ) {C } on an initial state σ |= G terminates, then it
does so in a final state τ |= F. For that, we have to find a predicate I such that

G =⇒ I and ¬ϕ ∧ I =⇒ F and
〈
ϕ ∧ I

〉
C

〈
I
〉

is valid, (5.1)

where we mean validity for partial correctness. Any I for which the Hoare
triple

〈
ϕ ∧ I

〉
C

〈
I
〉

is valid for partial correctness is called a loop invariant:

105

106 proof rules for loops

If the loop while (ϕ) {C } is started in a state satisfying both loop guard ϕ
and invariant I and one execution of the loop body C terminates from that
state, then the execution of C terminates in a state that again satisfies I . Thus,
satisfaction of I is invariant under (guarded) iteration of the loop body.1

Why do invariants do the trick? Because we can now apply the while rule
for partial correctness of Hoare logic which reads as follows:〈

ϕ ∧ I
〉
C

〈
I
〉〈

I
〉
while (ϕ) {C }

〈
¬ϕ ∧ I

〉 (while–partial)
(5.2)

We can now combine the while–partial rule above with the consequence rule
of Hoare logic (see Section 4.2.4, Relation to the consequence rule) into a
single proof tree and so obtain the full proof of partial correctness, namely

G =⇒ I

〈
ϕ ∧ I

〉
C

〈
I
〉〈

I
〉
while (ϕ) {C }

〈
¬ϕ ∧ I

〉
¬ϕ ∧ I =⇒ F

〈G 〉 while (ϕ) {C } 〈F 〉 ,

which can be stated as a single inference rule:

G =⇒ I
〈
ϕ ∧ I

〉
C

〈
I
〉

¬ϕ ∧ I =⇒ F

〈G 〉 while (ϕ) {C } 〈F 〉
(while–partial2)

In the realm of weakest precondition reasoning, the premises
〈
ϕ ∧ I

〉
C

〈
I
〉

and ¬ϕ ∧ I =⇒ F together are equivalent to

[I] � Φ
wlp

[F]([I]) ,

where Φ
wlp

[F] is the wlp–characteristic function of while (ϕ) {C }with respect
to postcondition [F] (see Definition 4.5 e.). This can be seen by

¬ϕ ∧ I =⇒ F

iff [¬ϕ] · [I] � [F]

iff [¬ϕ] · [I] � [¬ϕ] · [F] (by case distinction) (†)

and 〈
ϕ ∧ I

〉
C

〈
I
〉

iff ϕ ∧ I =⇒ wlp JCK (I)

iff [ϕ] · [I] � wlp JCK ([I])

iff [ϕ] · [I] � [ϕ] ·wlp JCK ([I]) (by case distinction)

iff [¬ϕ] · [I] + [ϕ] · [I] � [¬ϕ] · [F] + [ϕ] ·wlp JCK ([I]) (by (†) above)

iff [I] � Φ
wlp

[F]([I]) .
(
by definition of Φ

wlp
[F], Definition 4.5 e.

)
1 By “guarded iteration" we mean iterating the loop body only if the loop guard is true.

5.1 invariants 107

In the language of our weakest precondition calculi, the (while–partial2)–
rule thus reads as follows:

[G] � [I] � Φ
wlp

〈ϕ,C〉 [F]([I])

[G] � wlp Jwhile (ϕ) {C }K ([F])

For our definition of quantitative invariants, we lift the above rule to weak-
est preexpectations in a straightforward way. Furthermore, we distinguish
between super- and subinvariants.

Definition 5.1 (Invariants):
Let Φf be the wp–characteristic function of while (ϕ) {C } with respect
to postexpectation f ∈ E and let I ∈ E. Then:

a. I is called a wp–superinvariant of while (ϕ) {C } with respect to
postexpectation f , iff

Φf (I) � I .

b. I is called a wp–subinvariant of while (ϕ) {C } with respect to pos-
texpectation f , iff

I � Φf (I) .

c. Super- and subinvariants for wlp, awp, and awlp are defined analo-
gously by means of wlp–, awp–, and awlp–characteristic functions,
respectively. Notice that wlp– and awlp–invariants are of type E≤1
rather than E.

The I we used to illustrate the while–rule for partial correctness (Rule 5.2
above) would be a wlp–subinvariant in the terminology of Definition 5.1.

Remark 5.2 (On Terminology in Related Literature). Our subinvariants corres-
pond to probabilistic invariants in the terminology of McIver & Morgan (see
[MM05, Definition 2.2.1, p. 39]) up to a slight technical difference: McIv-
er & Morgan call I a probabilistic invariant iff

[ϕ] · I � wp JCK (I) ,

which is implied by I � Φf (I), but the converse implication is not true in
general for arbitrary postexpectations f . However, McIver & Morgan do not
consider arbitrary postexpectations f , but instead argue only about weakest
preexpectations of loops with respect to postexpectation [¬ϕ] ·I and we have

[ϕ] · I � wp JCK (I) iff I � Φ[¬ϕ]·I (I) ,

108 proof rules for loops

as the following reasoning shows:

I � Φ[¬ϕ]·I (I)

iff [¬ϕ] · I + [ϕ] · I � [¬ϕ] · [¬ϕ] · I + [ϕ] ·wp JCK (I)

iff [¬ϕ] · I + [ϕ] · I � [¬ϕ] · I + [ϕ] ·wp JCK (I)

iff [¬ϕ] · I � [¬ϕ] · I and [ϕ] · I � + [ϕ] ·wp JCK (I)

iff [ϕ] · I � + [ϕ] ·wp JCK (I)

Our definition of subinvariants is therefore not a restriction compared to
McIver & Morgan’s probabilistic invariants.

Our superinvariants correspond to supermartingales in the terminology used
by Chakarov & Sankaranarayanan [CS14], Fioriti & Hermanns [FH15], and
Chatterjee et al. [CFG16; Cha+16; CF17; CNZ17; ACN18] with basically the
same technical difference as above.

Generally speaking, sub– and superinvariants in our terminology can be
conceived of, respectively, as sub– and supermartingales of the stochastic
process that can naturally be associated to a probabilistic loop. 4

Next, we introduce a concept we call ω–invariants. These are basically se-
quences of expectations that are invariants relative to each other. We will
make use of those for reasoning about lower bounds on least fixed points
and dually upper bounds on greatest fixed points.

Definition 5.3 (ω–Invariants):
a. Let Φ be the wlp–characteristic function of while (ϕ) {C } with re-

spect to postexpectation f and let (In)n∈N ⊂ E≤1 be a monotoni-
cally decreasing2 sequence with I0 = 1.

Then (In)n∈N is called a wlp–ω–superinvariant of while (ϕ) {C }
with respect to postexpectation f ∈ E≤1, iff

∀n ∈N : Φ(In) � In+1 .

b. Let Φ be the wp–characteristic function of while (ϕ) {C } with re-
spect to postexpectation f and let (In)n∈N ⊂ E be a monotonically
increasing3 sequence with I0 = 0.

Then (In)n∈N is called a wp–ω–subinvariant of while (ϕ) {C } with
respect to postexpectation f , iff

∀n ∈N : In+1 � Φ(In) .

c. awlp–ω–superinvariants and awp–ω–subinvariants are analogously
defined by means of awlp– and awp–characteristic functions.

2 But not necessarily strictly decreasing.
3 But not necessarily strictly increasing.

5.2 bounds on expected values 109

Using such sequences to reason about the correctness of programs is to the
best of our knowledge originally due to Jones [Jon90, p. 124]. In her the-
sis, she basically used what we here call wp–ω–subinvariants for a total–
correctness logic. Audebaud & Paulin–Mohring later build upon Jones’ ideas
and use monotonically increasing sequences to reason about total correct-
ness of randomized algorithms in Coq [APM09, Section 4.4].

5.2 B O U N D S O N E X P E C T E D VA LU E S

Bounds on expected values, i.e. bounds on preexpectations, are a key con-
cept in reasoning about probabilistic programs. Several correctness prop-

erties can be expressed as either upper or lower bounds on preexpectations.
For example, we have already seen that the probability of event A can be
coded as the expected value of the event’s characteristic function [A]. Ver-
ifying bounds on probabilities is also the main task of the model checking
problem of probabilistic logics like PCTL [HJ94].

Reasoning loop–free programs is mostly straightforward. Weakest preex-
pectations can be computed in practice.4 For while loops, the situation is
more difficult: Weakest (liberal) preexpectations of loops are defined as fixed
points and those are in general non–computable. All non–trivial approxima-
tions of the fixed points are non–computable as well (see Part III).

In this section, we thus describe proof rules that can aid in reasoning
about weakest (liberal) preexpectations of loops. We first describe induc-
tive proof rules that allow for reasoning about upper bounds on wp and awp
and coinductive proof rules that are suitable for lower bounds on wlp and
awlp. We also briefly discuss the problem of coinduction for lower bounds
on wp. Thereafter, we describe what we call ω–rules for reasoning about
lower bounds on wp and awp, and upper bounds on wlp and awlp. We then
survey proof rules by McIver & Morgan for lower bounds on wp and finally
show how any bound can potentially be tightened.

5.2.1 Induction for Weakest Preexpectations

Induction on natural numbers is a well–known proof principle which can
be traced back to classical antiquity, e.g. Euclid’s proof that the number of
primes is infinite. The induction principle states that in order to prove that
a predicate F is true for all natural numbers, it suffices to prove that both

a. 0 |= F, and

b. n |= F implies n+ 1 |= F

are true. We can reformulate induction over the natural numbers in the set-
ting of continuous functions on complete lattices [Rot16, Section 2.1]: We

4 I.e. in case the postexpectation is computable.

110 proof rules for loops

choose the complete lattice (P (N) , ⊆), the continuous function

Φ(X) = {0} ∪ {n+ 1 | n ∈ X } , (5.3)

and conceive of the predicate F as a set F ∈ P (N). We can easily convince our-
selves that N is the least fixed point of Φ and that checking a. and b. above
together amounts to checking whether Φ(F) ⊆ F. The induction principle for
the natural numbers then tells us that

Φ(F) ⊆ F implies lfp Φ ⊆ F . (5.4)

Since lfp Φ = N, thus N ⊆ F, and N is the greatest element in P (N), we can
conclude that F =N and thus F holds for all numbers.

Implication 5.4 above is a special case of a more general principle (see
Lemma A.6): Let (D, v) be any complete lattice and let Φ : D → D be any
continuous self–map on D. Then

∀d ∈D : Φ(d) v d implies lfp Φ v d .

The above general principle is called Park’s Lemma, Scott induction or sim-
ply induction [Rot16, Section 2]. Since weakest preexpectations are defined
as least fixed points of continuous functions on complete lattices, we can
make use of the induction principle in order to reason about upper bounds
on weakest preexpectations:

Theorem 5.4 (Induction for Upper Bounds on wp and awp5):
Let I ∈ E be a wp–superinvariant of while (ϕ) {C } with respect to post-
expectation f (see Definition 5.1 a.). Then

wp Jwhile (ϕ) {C }K (f) � I .

The analogous result for awp holds as well.

Proof. This is an instance of Park’s Lemma (see Lemma A.6): Simply choose
complete lattice (E, �) and continuous function Φ

wp
〈ϕ,C〉 f . q.e.d.

Example 5.5 (Upper Bounds on wp):
Consider the program Cgeo, given by

c := 1 #
while (c = 1) {

{c := 0 } [1/2] {x := x+ 1 }
} ,

5 For induction for tame programs, see [Koz85, the while rule on p. 168]

5.2 bounds on expected values 111

and suppose we want to reason about an upper bound on the expected value
of x after execution of Cgeo. To this end, we propose the wp–superinvariant

I = x+ [c = 1]

and check its wp–superinvariance by applying the wp–characteristic function

Φ(X) = [c , 1] · x+ [c = 1] · 1
2

(
X [c/0] +X [x/x+ 1]

)
,

to I , which gives us

Φ(I) = Φ
(
x+ [c = 1]

)
= [c , 1] · x+ [c = 1] · 1

2

(
x+ [0 = 1] + x+ 1 + [c = 1]

)
= x+ [c = 1] · 1

2

(
0 + 1 + 1

)
= x+ [c = 1]

= I � I .

Thus the induction rule (Theorem 5.4) gives us that

wp Jwhile (. . .}K (x) � x+ [c = 1] (†)

and hence we get

wp
q
Cgeo

y
(x) = wp Jc := 1 # while (. . .}K (x)

= wp Jc := 1K (wp Jwhile (. . .}K (x))

� wp Jc := 1K (x+ [c = 1])
(by † and monotonicity, Theorem 4.16)

= x+ [1 = 1]

= x+ 1

and therefore x + 1 (evaluated in the initial state) is an upper bound on the
expected value of x (evaluated in the final states) after executing Cgeo.

5.2.2 Coinduction for Weakest Liberal Preexpectations

The principle of coinduction is the dual of the induction principle and reads
as follows [Rot16, Section 2]: Let (D, v) be any complete lattice and let
Φ : D→D be any continuous function. Then

∀d ∈D : d v Φ(d) implies d v gfp Φ .

For our example of the natural numbers, coinduction is not very interesting,
since N is not only the least but also the greatest fixed point of Φ as defined

112 proof rules for loops

in Equation 5.3. For a predicate F ∈ P (N), we thus get by coinduction

F ⊆ Φ(F) implies F ⊆ N ,

which, however, does not provide any information on F as the right–hand–
side of the implication is vacuously true for any F ∈ P (N).

The particular problem we encounter with Φ here is that N is not only the
greatest fixed point of Φ but indeed the greatest element in P (N) altogether.
This is not the situation, however, for weakest liberal preexpectations: Those
are defined as greatest fixed points and they may very well be below 1 —
the greatest element in (E≤1, �). We may thus make use of the coinduction
principle to reason about lower bounds on weakest liberal preexpectations:

Theorem 5.6 (Coinduction for Lower Bounds on wlp6):
Let I ∈ E≤1 be a wlp–subinvariant of while (ϕ) {C } with respect to post-
expectation f (see Definition 5.1 b.). Then

I � wlp Jwhile (ϕ) {C }K (f) .

The analogous result for awlp holds as well.

Proof. This is an instance of Park’s Lemma (see Lemma A.6): Simply choose
complete lattice (E≤1, �) and continuous function Φ

wlp
〈ϕ,C〉 f . q.e.d.

Example 5.7 (Lower Bounds on wlp):
Reconsider the program C, given by

c := 1 #
while (c = 1) {
{diverge } [1/2] {x := x+ 1 } #
{skip } [1/2] {c := 0 }

} ,

and suppose we want to reason about a lower bound on the probability that
x is even after execution of C (if C terminates at all). To this end, we propose

I = [c , 1] · [x even] + [c = 1] ·
(

2
3

+
4 · [x odd]

15
+

[x even]
15

)
as wlp–subinvariant and check wlp–subinvariance by applying the wlp–char-
acteristic function

6 See [MM05, Lemma 7.2.2, p. 185].

5.2 bounds on expected values 113

Φ(X) = [c , 1] · [x even] + [c = 1] ·
(

1
2

+
X [x/x+ 1]

4
+
X [c,x/0,x+ 1]

4

)
,

to I , which gives us

Φ(I) = [c , 1] · [x even] + [c = 1] ·
(

1
2

+
I [x/x+ 1]

4
+
I [c,x/0,x+ 1]

4

)
= [c , 1] · [x even] + [c = 1] ·

(1
2

+ [c , 1] · . . .
4

+ [c = 1] ·
(

2
3 · 4

+
4 · [x+ 1 odd]

15 · 4
+

[x+ 1 even]
15 · 4

)
+ [0 , 1] · [x+ 1 even]

4
+ [0 = 1] · (. . .)

)
= [c , 1] · [x even]

+ [c = 1] ·
(

1
2

+
2

3 · 4
+

4 · [x even]
15 · 4

+
[x odd]
15 · 4

+
[x odd]

4

)
= [c , 1] · [x even] + [c = 1] ·

(
2
3

+
[x even]

15
+

4 · [x odd]
15

)
= I � I .

Thus the coinduction rule (Theorem 5.6) gives us that

[c , 1] · [x even] + [c = 1] ·
(

2
3

+
4 · [x odd]

15
+

[x even]
15

)
(†)

� wp Jwhile (. . .}K ([x even])

and hence we get

wp JCK ([x even])

= wp Jc := 1 # while (. . .}K ([x even])

= wp Jc := 1K (wp Jwhile (. . .}K ([x even]))

� wp Jc := 1K
(
[c , 1] · [x even] + [c = 1] ·

(
2
3

+
4 · [x odd]

15
+

[x even]
15

))
(by † above and monotonicity, Theorem 4.16)

= [1 , 1] · [. . .] + [1 = 1] ·
(

2
3

+
4 · [x odd]

15
+

[x even]
15

)
=

2
3

+
4 · [x odd]

15
+

[x even]
15

and therefore 2/3+4 · [x odd]/15+ [x even]/15 (evaluated in the initial state) is a lower

114 proof rules for loops

bound on the probability thatC either diverges or terminates in a state where
x is even.

5.2.3 No Coinduction for Weakest Preexpectations

We have seen in the previous subsection that induction allows us to get above
a least fixed point whereas coinduction allows to get below a greatest fixed
point. Unfortunately, getting below a least fixed point — and dually: getting
above a greatest fixed point — is not associated with such elegant proof princi-
ples as induction or coinduction. In particular, for a complete lattice (D, v)
and a continuous function Φ : D→D, the supposedly evident rules

∀d ∈D : d v Φ(d) implies d v lfp Φ , �
and

∀d ∈D : Φ(d) v d implies gfp Φ v d �
are both unsound, not only in general but also in our particular use case of
preexpectations as the following counterexample demonstrates:

Counterexample 5.8 (Unsoundness of Coinduction for wp):
Consider the program C, given by

while (c = 1) {
{c := 0 } [1/2] {x := x+ 1 } #
k := k + 1

} ,

and suppose we want to incorrectly reason about a lower bound on the ex-
pected value of x after execution of C by coinduction. The wp–characteristic
function of the while loop with respect to postexpectation x is given by

Φ(X) = [c , 1] · x+ [c = 1] · 1
2

(
X [k,c

/
k + 1,0] +X [k,x

/
k + 1,x+ 1]

)
.

We now propose infinitely many fixed points of Φ , namely for every a > 0

Ia = x+ [c = 1]
(
2k+a + 1

)
is a fixed point of Φ , as one can easily check. However, for any d < b, we
clearly have Id ≺ Ib. Thus, if we prove Ib � Φ(Ib) we cannot have proven that
Ib is a lower bound on the least fixed point of Φ , since Id is a fixed point
strictly smaller than Ib. In fact, none of the Ia’s are the least fixed point of Φ .
The intuitive reason is that the expected value of x is completely independent
of k but k has an influence on the value that the Ia’s assume. �

5.2 bounds on expected values 115

It is important to note that unsoundness of coinductive premises in order to ob-
tain lower bounds on wp is absolutely not evident. We will see later in Chapter 7,
that for deterministic programs Frohn et al. have shown that one can prove
lower bounds on runtimes of programs from wp–subinvariants, which Frohn et
al. call metering functions [Fro+16b]. This allows to lower bound a least fixed
point from a coinductive premise (i.e. from a premise of the form d v Φ(d)).
Transferring the metering function method to probabilistic programs, how-
ever, unfortunately fails in a way similar to the above counterexample, as we
will see later in this thesis.

5.2.4 ω–Rules

In light of our just described inability to obtain lower bounds on weakest pre-
expectations, and dually upper bounds on weakest liberal preexpectations,
by simple means such as coinduction or induction, we now present two alter-
native proof rules for obtaining precisely such desired bounds. These proof
rules will be conceptually less elegant and consequently more difficult to
apply, as they make use of ω–invariants. In particular, it will be necessary
to find the limit of such ω–invariants in order to actually gain some insights
from applying these rules. That basically just shifts the problem of obtaining
bounds into the realm of real analysis. The rule for lower bounds on weakest
preexpectations (getting below a least fixed point) reads as follows:

Theorem 5.9 (Lower Bounds on wp and awp from ω–Invariants7):
a. Let (In)n∈N be a wp–ω–subinvariant of while (ϕ) {C } with respect

to postexpectation f (see Definition 5.3 b.). Then

sup
n∈N

In � wp Jwhile (ϕ) {C }K (f) .

b. Let (In)n∈N be a wlp–ω–superinvariant of while (ϕ) {C } with re-
spect to postexpectation f (see Definition 5.3 a.). Then

wlp Jwhile (ϕ) {C }K (f) � inf
n∈N

In .

c. Analogous results for awp and awlp hold as well.

Proof. We only prove a., because the proofs for b. and c. are analogous. Let
Φ be the wp–characteristic function of while (ϕ) {C } with respect to postex-
pectation f . We first prove by induction that

∀n ∈N : In � Φn+1(0) .

7 See also [Jon90, p. 124] and [APM09, Section 4.4].

116 proof rules for loops

For the induction base we have

I0 = 0 � Φ(0)

trivially, since 0 is the least element in E. For the induction step we assume
induction hypothesis In � Φn+1(0) and prove

In+1 � Φ(In) (by (In)n∈N being a wp–ω–subinv., Definition 5.3 b.)

� Φ
(
Φn+1(0)

)
(by I.H. and monotonicity of Φ , Theorem 4.16)

= Φn+2(0) .

Since In � Φn+1(0) holds for all n and Φ0(0) = 0, we may take the supremum
on both sides and conclude:

sup
n∈N

In � sup
n∈N

Φn+1(0)

= sup
n∈N

Φn(0)
(
by Φ0(0) = 0 being the least element in E

)
= lfp Φ

= wp Jwhile (ϕ) {C }K (f) q.e.d.

Example 5.10 (Bounds from ω–rules):
Recall Example 2.6, Example 2.9, Example 2.11 b., and Example 4.10. In all
of those examples we performed a fixed point iteration. The „patterns“ — as
we called them — which we learned by inspecting the evolution of the first
few iterations were in fact ω–invariants.

Proving the pattern correct would correspond to the induction on n in the
ω–rule. Finding the limit of a pattern would correspond to finding a closed
form for a sup or an inf, accordingly.

Let us briefly reflect on the usability of ω–rules. Recall that verification of
loops by means of the induction and the coinduction rule (Theorem 5.4 and
Theorem 5.6) was conceptually very simple. Informally, the steps we had to
take are the following:

1. Find an appropriate invariant I .

2. Push I through the characteristic function of the loop once.

3. Check whether Step 2. took us down (for induction) or up (for coinduc-
tion) in the partial order �.

Often, the „only“ difficulty that we encounter in practice is with Step 1:
Finding an appropriate invariant (even though this can admittedly be very
difficult in practice).

5.2 bounds on expected values 117

Verification of loops using ω–rules (Theorem 5.9) on the other hand is
much more involved. In summary, the steps we have to take are as follows:

1. Find an appropriate ω–invariant, i.e. a sequence (In)n∈N.

2. Check that (In)n∈N is indeed an ω–invariant, e.g. by induction on n:

a) Push In through the characteristic function.

b) Check whether performing Step a) took us above In+1 (for wp) or
below In+1 (for wlp) in the partial order �.

3. Find the supremum (for wp) or the infimum (for wlp) of (In)n∈N.

Steps 2.a) and 2.b) for the ω–rules basically correspond to Steps 2. and 3. for
(co)induction. However, forω–rules we have to perform an additional induc-
tion on the natural numbers.

The second — and probably more significant — extra effort we have to
take is reasoning about the limits of the ω–invariants. For wp, for instance,
one might very well argue that we may then just as well directly infer the
supremum sequence Φn(0) in order to obtain the exact expected value. As a
matter of fact, in my personal experience, we have never encountered a case
where we found a wp–ω–subinvariant In that truly underapproximated Φn(0).
Instead, we were always able to prove In = Φn(0). The difficulty with find-
ing the supremum of the sequence, however, remains. Personally, I there-
fore believe that both the usability as well as the gain of ω–rules is very
limited in practice.

Despite the extra difficulties that come with using ω–rules, a natural ques-
tion that arises is whether an ω–rule for upper bounds on weakest preex-
pectations, and dually an ω–rule for lower bounds on weakest liberal preex-
pectations, could be of any advantage. Luckily, the following remark gives a
negative answer to this question.

Remark 5.11 (Expendability of ω–rules for upper bounds on wp). Let us formu-
late the ω–rule for wp–reasoning: Let Φ be the wp–characteristic function
of while (ϕ) {C } with respect to postexpectation f and let (In)n∈N ⊂ E be a
monotonically decreasing sequence. Then

Φ(In) � In+1 implies wp Jwhile (ϕ) {C }K (f) � inf
n∈N

In .

The soundness proof for this rule goes as follows:

∀n ∈N : Φ(In) � In+1

implies inf
n∈N

Φ(In) � inf
n∈N

In+1

implies inf
n∈N

Φ(In) � inf
n∈N

In

implies Φ
(

inf
n∈N

In
)
� inf

n∈N
In (by continuity, Theorem 4.12)

118 proof rules for loops

implies wp Jwhile (ϕ) {C }K (f) � inf
n∈N

In

(by induction rule, Theorem 5.4)

As a byproduct of our proof, we have shown that infn∈N In itself is a wp–
superinvariant. Since, ultimately, we have to find the infimum Ǐ = infn∈N In
anyway in order to gain some insights from the ω–rule, we could have just
as well applied the induction rule immediately to Ǐ and could therefore have
dispensed with the extra induction on n imposed by the ω–rule.

Dually to the above, an ω–rule for lower bounds on weakest liberal preex-
pectations is expendable as well. 4

5.2.5 Lower Bounds on wp

There is a genuine and legitimate interest in reasoning about lower bounds
on weakest preexpectations, namely when it comes to giving total correct-
ness guarantees which amounts to lower–bounding the probability of total cor-
rectness. Yet, we saw that applying ω–rules is quite involved. McIver & Mor-
gan came up with interesting total correctness rules that mitigate this un-
pleasant situation to the extent that their rules do not rely on ω–invariants.
One of the most important rules on which a larger part of their oeuvre on
proof rules for probabilistic loops builds upon reads as follows:

Theorem 5.12 ([MM05]8):
Let f ∈ E≤∃b be a bounded postexpectation. Furthermore, let I ′ ∈ E≤∃b
be a bounded expectation such that expectation I ∈ E given by

I = [¬ϕ] · f + [ϕ] · I ′

is a wp–subinvariant of while (ϕ) {C } with respect to f . Finally, let

T = wp Jwhile (ϕ) {C }K (1) .

be the termination probability of while (ϕ) {C }. Then:

a. If I = [G] for some predicate G, then

T · I � wp Jwhile (ϕ) {C }K (f) .

b. If [G] � T for some predicate G, then

[G] · I � wp Jwhile (ϕ) {C }K (f) .

c. If ε · I � T for some ε > 0, then

I � wp Jwhile (ϕ) {C }K (f) .

8 More specifically, this theorem combines Lemma 2.4.1 on p. 43, its relaxation described on p. 54,
Lemma 7.7.6 on p. 203, Theorem 7.3.3 on p. 188, and Theorem B.2.2 on p. 329 in [MM05].

5.2 bounds on expected values 119

Intuitively, Theorem 5.12 provides lower bounds on wp Jwhile (ϕ) {C }K (f)
in the following scenarios:

1. If the invariant I is the indicator function of a predicate G, then I mul-
tiplied by the termination probability T is a lower bound.

2. If the termination probability T is lower–bounded by the indicator
function of some predicate G, then the invariant I multiplied by that
indicator function [G] is a lower bound.

3. If the termination probability T is lower–bounded by some non–ze-
ro constant fraction ε of the invariant I , then the invariant I itself is
a lower bound.

While at first glance Theorem 5.12 seems easier to apply than ω–rules, it has
several drawbacks of its own: For one, it is only applicable to bounded expec-
tations which renders reasoning about general expected values (as opposed
to reasoning e.g. about probabilities) difficult, if not impossible.

Another major drawback of Theorem 5.12 is that it requires substantial
knowledge about the termination probability wp Jwhile (ϕ) {C }K (1). Rea-
soning about this probability is quite involved too, although we will later
present proof rules (some more, some less involved) that can render reason-
ing about probabilistic termination feasible (see Chapter 6).

Despite the just mentioned difficulties of applying Theorem 5.12 in prac-
tice, expecially Theorem 5.12 c. is an important theoretical device for prov-
ing the correctness of several other proof rules. In particular, several of the
termination rules in Chapter 6 ultimately build upon Theorem 5.12 c.

If by some means we already known that while (ϕ) {C } terminates univer-
sally almost–surely, then for one–bounded expectations f ∈ E≤1 we know by
Corollary 4.28 that wp Jwhile (ϕ) {C }K (f) and wlp Jwhile (ϕ) {C }K (f) coin-
cide. Thus, in that case there exists only one fixed point and we hence obtain
the following corollary:

Corollary 5.13 (Bounds on Almost–surely Terminating Loops):
Let the loop while (ϕ) {C } terminate universally almost–surely, i.e.

wp Jwhile (ϕ) {C }K (1) = 1

and let I ∈ E≤1. Then:

a. If I is a wp–subinvariant of while (ϕ) {C } with respect to postex-
pectation f , then

I � wp Jwhile (ϕ) {C }K (f) .

b. If I is a wlp–superinvariant of while (ϕ) {C } with respect to post-
expectation f , then

wlp Jwhile (ϕ) {C }K (f) � I .

120 proof rules for loops

Another rule by McIver & Morgan allows — interestingly — for reasoning
about weakest preexpectations by means of wlp–subinvariants:

Theorem 5.14 ([MM05, Lemma 7.3.1 on p. 186]):
Let I ′ ∈ E≤1 be a one–bounded expectation such that I ∈ E≤1 given by

I = [¬ϕ] · f + [ϕ] · I ′

is a wlp–subinvariant of while (ϕ) {C }with respect to postexpectation f .
Furthermore, let

T = wp Jwhile (ϕ) {C }K (1) ,

and let g 	 h be defined as max {g − h, 0 }, for any g,h ∈ E. Then

(I + T)	 1 � wp Jwhile (ϕ) {C }K (f) .

While this rule is methodologically interesting since it derives a total correct-
ness property (a weakest preexpectation) from a partial correctness invariant
(a wlp–invariant), it still has the potentially severe drawback that we need
substantial knowledge about the termination probability of the loop at hand.

5.2.6 Upper Bounds vs. Lower Bounds

Generally speaking (and perhaps slightly over–simplified), we saw that rea-
soning about upper bounds of least fixed point (and dually reasoning about
lower bounds of greatest fixed points) is easy, whereas reasoning about lower
bounds of least fixed points (and dually reasoning about upper bounds of
greatest fixed points) is more involved.

We will learn later in Part III that from a computational hardness perspec-
tive, the exact opposite to what we just stated should be expected. This consti-
tutes a seemingly paradoxical situation to which to the best of our knowledge
no good explanation is known.

An unsatisfactory explanation why lower bounds for weakest preexpecta-
tions are in fact computationally tractable is the following: Suppose we want
to reason about a lower bound for wp Jwhile (ϕ) {C }K (f) and Φ is the associ-
ated characteristic function. Then (Φn(0))n∈N is trivially anω–invariant. But
then for some fixed k ≥ 2, the sequence(

0, Φ(0), Φ2(0), . . . , Φk−1(0), Φk(0), Φk(0), Φk(0), . . .
)
n∈N

,

i.e. the so to speak forced stabilization of (Φn(0))n∈N after k iterations, is also
an ω–invariant with an easy–to–find (i.e. computable) limit: Φk(0).

This method is of course unsatisfactory, since we had to perform k itera-
tions, i.e. applications of Φ , in order to obtain some lower bound. In fact, the

5.2 bounds on expected values 121

tighter a bound we want to obtain, the more effort we have to invest. This
is not the case for induction or coinduction. So while the sequence (Φn(0))n∈N
successively indeed enumerates all lower bounds, a major problem in proba-
bilistic program verification remains open:

Open Problem 1 (One–shot Verification of Lower Bounds on wp):
Find a „one–shot“ method as elegant as the induction or coinduction
rule (Theorems 5.4 and 5.6), which, given a loop while (ϕ) {C }, a post-
expectation f ∈ E, and a specific hypothesis L ∈ E, allows for checking
whether L is in fact a lower bound on wp Jwhile (ϕ) {C }K (f).

In Section 6.2, we will present a rule that can be regarded as a partial solution
to the above problem, namely for the special case of almost–sure termination,
which amounts to proving that 1 is a (non–strict) lower bound on the termi-
nation probability. However, for lower bounds on arbitrary preexpectations,
to the best of our knowledge, no sufficiently elegant method is known.

5.2.7 Bound Refinement

We saw that obtaining a bound on a weakest (liberal) preexpectation of a
loop can be quite difficult. However, once we have obtained some bound —
be it upper or lower — by any means (e.g. by application of one of the proof
rules presented in the previous sections), we have a chance of refining and
thereby tightening this bound fairly easily:

Theorem 5.15 (Bound Refinement):
Let Φ be the wp–characteristic function of while (ϕ) {C } with respect
to f and let I be an upper bound on wp Jwhile (ϕ) {C }K (f), such that
Φ(I) � I .

Then Φ(I) is also an upper bound on wp Jwhile (ϕ) {C }K (f). More-
over, whenever Φ(I) , I , then Φ(I) is an even tighter upper bound on
wp Jwhile (ϕ) {C }K (f) than I .

Dually, if I is a lower bound, such that I � Φ(I), then Φ(I) is also a
lower bound; and whenever Φ(I) , I , then Φ(I) is an even tighter lower
bound than I .

Analogous results hold for awp, wlp, and awlp as well.

Proof. Let I be an upper bound on wp Jwhile (ϕ) {C }K (f). To see that Φ(I)
is also an upper bound on wp Jwhile (ϕ) {C }K (f), consider the following:

wp Jwhile (ϕ) {C }K (f) � I

iff lfp Φ � I

implies Φ(lfp Φ) � Φ(I) (by monotonicity, Theorem 4.16)

122 proof rules for loops

implies lfp Φ � Φ(I) (lfp Φ is a fixed point of Φ)

iff wp Jwhile (ϕ) {C }K (f) � Φ(I)

By the assumption Φ(I) � I , Φ(I) is at least as tight an upper bound as I .
Thus if Φ(I) , I , Φ(I) must be an even tighter upper bound.

The reasoning for awp, wlp, awlp, and lower bounds is analogous. q.e.d.

The particular bound refinement of Theorem 5.15 can of course be continued
ad infinitum: For instance, if I is an upper bound on wp Jwhile (ϕ) {C }K (f)
with Φ(I) � I , then so is Φ(I) but also Φ2(I), Φ3(I), and so on. In fact, for
increasing n, the sequence Φn(I) is decreasing and converges to a fixed point,
more precisely the greatest fixed point that is below (or equal to) I . This is called
the Tarski–Kantorovich principle [JGP00]. The so–obtained fixed point itself
is then also an upper bound, thus

wp Jwhile (ϕ) {C }K (f) � inf
n∈N

Φn(I) .

Dually, if I is a lower bound on wp Jwhile (ϕ) {C }K (f) with I � Φ(I), then so
are Φ(I), Φ2(I), Φ3(I), and so on, and moreover

sup
n∈N

Φn(I) � wp Jwhile (ϕ) {C }K (f) .

5.2.8 Independent and Identically Distributed Loops

We have learned in the previous sections that obtaining bounds — especially
lower bounds —, on weakest preexpectations of while loops can be a very
difficult task. Obtaining exact weakest preexpectations obviously cannot be
any easier in principle. Under certain conditions, however, we are able to de-
rive the exact weakest preexpectation of a while loop with respect to a given
postexpectation. Informally, these conditions can be described as follows:

1. For each loop iteration, the probability to immediately terminate after
that iteration is equal.

2. There is no information flow across different loop iterations with respect
to any program variable that has an influence on the value of the post-
expectation f .

In the following, we will make the above two conditions more formal. A
central notion for achieving this formalization is the concept of a loop being
f –independent identically distributed (f –i.i.d. for short):

5.2 bounds on expected values 123

Definition 5.16 (f –i.i.d. Loops [Bat+18b]):
Let f ∈ E and C ∈ pGCL.

a. The set of variables occurring in f , denoted Vars (f), is defined as

Vars (f) =
{
x ∈ Vars

∣∣∣ ∃v,v′ ∈ Vals : f [x/v] , f
[
x
/
v′
] }
.

b. The set of variables modified by C, denoted Mod (C), is defined as
the set of all variables x ∈ Vars, such that x appears on the left–
hand–side of an assignment occurring in C.

c. We say that C cannot influence f , denoted C 6e f , if the set of vari-
ables occurring in f is disjoint from the set of variables modified
by C, i.e.

C 6e f iff Mod (C) ∩ Vars (f) = ∅ .

d. A loop while (ϕ) {C } is called f –independent identically distrib-
uted (f –i.i.d. for short), iff

C 6e wp JCK ([ϕ]) and C 6e wp JCK ([¬ϕ] · f) .

Notice that Mod () is a purely syntactic notion. On the other hand, the def-
inition of Vars () has more of a semantic flavor as it speaks about a prop-
erty of a potentially arbitrary function of type Σ→ R

∞
≥0. However, if we are

given a closed form syntactic expression for the expectation f , we can at least
overapproximate Varsf by the set of all variables that actually occurr in f ,
syntactically. Nevertheless, because of the semantic flavor of Vars (), the
relation 6e and the notion of f –i.i.d.–ness is not purely syntactic

The definition of f –i.i.d.–ness is very technical and providing an intuition
for it is not an easy task. A more pleasant aspect about the definition is
that in practice it can often be checked in a quite straightforward and even
automatable manner, despite not being a purely syntactic notion [Bat+18b].
The most important aspect, however, is that for f –independent identically
distributed loops we can obtain exact weakest preexpectations:

Theorem 5.17 (Weakest Preexpectations of f –i.i.d. Loops [Bat+18b]):
Let while (ϕ) {C } be f –i.i.d. Then the weakest preexpectation of the
loop with respect to f is given by

wp Jwhile (ϕ) {C }K (f) = [¬ϕ] · f + [ϕ] ·
wp JCK ([¬ϕ] · f)
1−wp JCK ([ϕ])

,

where we define 0/0 = 0.

124 proof rules for loops

Intuitively, as the expected value of f can be determined by just a single
iteration of the loop body, the fraction appearing in Theorem 5.17 can be un-
derstood as the conditional expected value of f given that the loop terminates.

It is worthwhile to note that in order to apply Theorem 5.17 it is not re-
quired to find or guess in any way an invariant, ω–invariant, martingale, or
alike. Instead, only f –i.i.d.–ness of f — the very postexpectation one is inter-
ested in — needs to be checked. Our theorem then immediately yields the
exact sought–after preexpectation — not just a bound.

Finally, we would like to mention that Theorem 5.17 is obviously not a
free–lunch–theorem: Checking f –i.i.d.–ness can potentially become a non–
trivial and in general undecidable task. Also, once the expected value of
postexpectation f depends in some way on the number of iterations a loop
makes, i.e. once the loop performs some sort of counting and the value of
the counter influences the value of f , the theorem fails to be applicable al-
together. On the other hand, Theorem 5.17 has been successfully applied to
reason about massively large Bayesian networks from the Bayesian Network
Repository [Scu] with more than a thousand nodes [Bat+18b].

	Abstract
	Abstract
	Abstract
	Contents
	1 Overview
	-.55exClassical Weakest Preexpectation Reasoning
	2 Weakest Precondition Reasoning
	3 Probabilistic Computations
	4 Weakest Preexpectation Reasoning
	5 Proof Rules for Loops
	6 Probabilistic Termination

	-.55exAdvanced Weakest Preexpectation Reasoning
	7 Expected Runtimes
	8 Conditioning
	9 Mixed–Sign Expectations

	-.55exComputational Hardness
	10 The Arithmetical Hierarchy
	11 Approximating Preexpectations
	12 Deciding Probabilistic Termination
	13 Approximating Covariances
	14 Conclusion and Future Work

	-.55exAppendices
	A Domain Theory
	B Markov Decision Processes
	C Omitted Calculations
	D A More Detailed Note on Contributions of the Author
	Bibliography
	index
	Eidesstattliche Erklärung

