Latticed k-Induction with an Application to
Probabilistic Programs

Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, Christoph Matheja, Philipp Schroer

MOVES Seminar
April 20, 2021

k-Induction [Sheeran et al. 2000]

» SAT-based technique for of finite transition systems

» Later: Verification of infinite-state transition systems via SMT solving

» Applications: - and model checking

“ [k-induction] easily integrates with existing SAT-solvers [...]. The simplicity of applying
k-induction made it the go-to technique for SMT-based infinite-state model checking.”?

infinite-state

Yes. Enables fully automatic verification of non-trivial properties.

![Krishnan et al. 2018]

Kevin Batz Latticed k-Induction

Classical k-Induction for Transition Systems

Given: TS = (S,I,T), invariant property /> C S
Goal: Prove that /7 covers all reachable states of TS

By induction. If
Ic

and Vs,t€S: sel” NT(s,t) = tel,

then /7 is an inductive invariant covering all reachable states.

~GD)—C)o D—()— -
—C

Kevin Batz Latticed k-Induction

Classical k-Induction for Transition Systems

Given: TS = (S,1,T), invariant property /> C S
Goal: Prove that /7 covers all reachable states of TS

By 1l-induction. If
IC

and Vs,t€S: sel” NT(s,t) = ter,

then /7 is an 1-inductive invariant covering all reachable states.

~GD)—C)o \@_, -

Kevin Batz Latticed k-Induction

Classical k-Induction for Transition Systems

Given: TS = (S,I,T), invariant property /> C S
Goal: Prove that /7 covers all reachable states of TS

By 2-induction. If
IC P and Succs(I) C

and Vs,t,ue S: sel” ANT(s,t) Ntel” N T(t,u) = wué€

then /7 is a 2-inductive invariant covering all reachable states.

>()——()o \@_, .

Kevin Batz Latticed k-Induction

Classical k-Induction for Transition Systems

Given: TS = (S,1,T), invariant property 7 C S

Goal: Prove that /7 covers all reachable states of TS

Let k£ > 1. If the following two formulae are valid

I(s1) ANT(s1,82) A .. NT(Sg—1,8) — AN
all states reachable within k& — 1 steps are /’-states
ANT(s1,82) Ao A AT (sk, Sk+1) =
——
assuming we stay in /7 for k — 1 steps, after step k, we end up in /7 again

then P is a k-inductive invariant covering all reachable states of TS.

For verifying probabilistic programs, we have to ...
... leave the Boolean domain and reason about quantities

. reason about sets of paths rather than individual paths

Kevin Batz Latticed k-Induction

k-Induction

k-induction

generalize instantiate

k-induction for TS k-induction for

in terms of in terms of

k-induction for TS k-induction for

in terms of a in terms of a

Kevin Batz Latticed k-Induction

k-Induction for Transition Systems in Terms of Fixed Points

Let TS=(S,I,T) and /> C S. Define ®: 2° — 25 on the complete lattice (2°,C) by
O (F) =TU Suces(F) . Then: Reach(TS) =Ifp @
Goal: Prove Ifp @ C

By 1l-induction. If
D () C then Ifp @ C

() @\@_,
OO0

Kevin Batz Latticed k-Induction

k-Induction for Transition Systems in Terms of Fixed Points

Let TS=(S,I,T) and /> C S. Define ®: 2° — 25 on the complete lattice (2°,C) by
O (F) =TUSuces(F) . Then: Reach(TS) =Ifp @
Goal: Prove Ifp @ C

By 2-induction. If
d(@()NnP)C then Ifp & C

O}
0@ | [olo—-
@ >@:> (P (/)N 1) @ (/)

Kevin Batz Latticed k-Induction

k-Induction for Transition Systems in Terms of Fixed Points

Let TS=(S,I,T) and /> C S. Define ®: 2° — 25 on the complete lattice (2°,C) by
® (F)=1USuccs(F). Then: Reach(TS)=Ifp ®
Goal: Prove Ifp @ C

By 2-induction. If
D (P()NP)C then Ifp @ C

By 3-induction. If

S(@(@(P)NP)NF)C then Ifp & C

Kevin Batz Latticed k-Induction

10

k-Induction for Transition Systems in Terms of Fixed Points

Let TS=(S,I,T) and /> C S. Define ®: 2° — 25 on the complete lattice (2°,C) by
® (F)=1USuccs(F). Then: Reach(TS)=Ifp ®
Goal: Prove Ifp @ C

Define W, : 25 — 25 by

For every k > 1,
o (W) C implies Ifp ® C

Kevin Batz Latticed k-Induction 11

Latticed k-Induction

k-induction

generalize instantiate
k-induction for TS k-induction for
in terms of in terms of

k-induction for TS k-induction for

in terms of a in terms of a

Kevin Batz Latticed k-Induction

12

Latticed k-Induction

Let (E, C) be a complete lattice. Furthermore, let ®: E — E be monotonic and
Goal: Prove Ifp @ C
Define ¥,: E — E by

Theorem (Latticed k-Induction)

For every k > 1,
) (\D’H()) T/ implies Ifp ®C

We call such | k-inductive invariant.

k-Induction generalizes Park induction £ 1-induction.

Can be generalized to transfinite x-induction (not in this talk).

Kevin Batz Latticed k-Induction

e E.

13

Latticed k-Induction

Theorem (Park Induction from k-Induction)

o (vin)c i @ (BN Cwhi()

is k-inductive invariant \1;’“*1() is inductive invariant

Lemma

Iterating W ; on | yields a descending chain, i.e.,

20, (H)IVA(HIEH(H)D... .

Hence, if | is k-inductive invariant, then
» UF1(/)is an inductive invariant,

» which is stronger than

Kevin Batz Latticed k-Induction

14

Latticed k-Induction

Latticed k-induction generalizes classical k-induction for TS:

Theorem

Let TS= (S,1,T) and I’ C S. For every k > 1, the formulae

I(s1) ANT(s1,82) A ... AT (Sg—1,8,) —

ANT(s1,82) A... A AT (8K, Sk+1)

are valid if and only if
® (WETH(1) €

Kevin Batz Latticed k-Induction

—

15

k-Induction for Probabilistic Programs

k-induction

generalize instantiate

k-induction for TS k-induction for

in terms of in terms of

k-induction for TS k-induction for

in terms of a in terms of a

Kevin Batz Latticed k-Induction

16

k-Induction for Probabilistic Programs

Consider the complete lattice (E, <) of expectations:
E={f] f:Z >R, with f<g iff YoeX: f(o) <g(o)
Weakest preexpectation transformer [Kozen, Mclver & Morgan]:

. N of g evaluated in final states
wp[C]: E = E wp[C] (g) (o) = reached Cono

wplz = 5] (z) =
wpl{ skip} [1/2] { =2 +2}] (2) =

wp[while (c=1){{c=0}[12]{z=24+1}}(x) = |

Kevin Batz

wpl{skip} [2] {z =2 +2}] (fx =4]) =

Latticed k-Induction

17

k-Induction for Probabilistic Programs

Given: Loop C'=while(¢){C’'} and /,g € E
Goal: Prove wp[[C] (g9) <
We have

wp[C] (g) = Ifp @ with ®: E — [E monotonic .

Hence, latticed k-induction applies:

Corollary

For every k > 1,
& (\I}kfl()) < implies wp[C] (g) <

Here

U, (h)=® (h) where for h,h' € E, hMh = Ao. min{h(c),h (o)} .

Kevin Batz Latticed k-Induction

k-Induction for Probabilistic Programs — Tool Support

Given linear C' = while (¢) {C" } and linear [, g € E, our tool

kipro2 : k-Induction for PRObabilistic PROgrams

not: Kevin is programming 2
semi-decides via SMT solving:
Is there k& > 1 such that wp[C] (¢g) < / is k-inductive?

Furthermore, if wp[C] (¢) £ /, KIPRO2 finds via bounded model checking some o € ¥ with

wp[CT (9) (o) > /(o) -

Kevin Batz Latticed k-Induction

19

k-Induction for Probabilistic Programs — Tool Support

For Cgeo given by
while(c=1){{c=0}[Y2]{z=a+1}},

the property
wp[Cgeo] (7) <

is 2-inductive. Does
wp[Ceeo] () <

also hold? No, bounded model checking yields a counterexample: ¢ =1,z = 6.

Kevin Batz Latticed k-Induction

20

k-Induction for Probabilistic Programs — Tool Support

For Cyp, given by

while (sent < toSend A fail < maxFail) {
{ fail :=0; sent .= sent + 1} [0.9] { fail .= fail + 1; total Fail := totalFail + 1}

the property
wp[Chip] (total Fail) <

is 4-inductive. Does

wp[Chip] (total Fail) <

also hold? No: toSend = 6052, maxFail = 2, sent = 6042, fail = 0, total Fail =1

Kevin Batz Latticed k-Induction

21

k-Induction for Probabilistic Programs — Tool Support

from {elow,...,ehigh} using fair coin flips only [Lumbroso 2013]:

while(running = 0){

v o= 2%V,
{c := 2%c+1}[0.5]1{c := 2xc};
if ((not (v<n))){
if ((not (m=c)) & (not (n<c))){ # terminate

running := 1
H
= v-n;
¢ := c¢c-n;
}
H
skip

}

On termination, determine correct index
if ((not (running = 0))){
c := elow + c;
H
skip
}
}

Kevin Batz Latticed k-Induction

22

Conclusion

» k-Induction for in terms of fixed points
> k-induction

» fully automatic k-induction for

Further topics:
> SMT encoding (theory: QF_UFLIRA)

» k-induction for

> k-induction
> of k-induction
> latticed (refute Ifp @ C /)
Thank you!
Kevin Batz Latticed k-Induction

23

Backup: Runtimes

Table 2: Empirical results for the first benchmark set (time in seconds).

postexpectation variant result &k #formulae formulaet sat_t total_t

1 ind 5 285 0.15 0.01 0.28
2 ind 11 2812 1.77 0.12 2.03
o 3 ind 23 26284 17.68 28.09 45.94
H totalFail 4 TO - - - - -
5 ref 13 949 0.84 14.39 15.28
6 TO - - - - -
7 TO - - - - -
o 1 ind 2 18 0.01 0.00 0.08
) c 2 ref 11 103 0.04 0.01 0.09
3 ref 46 1223 0.39 0.04 0.48
1 ind 1 21 0.01 0.00 0.15
5 2 ind 5 1796 1.27 0.03 1.44
3 [i=1] 3 TO - - - - -
H 4 ref 4 458 0.31 0.03 0.40
5 ref 8 10508 8.76 285 11.68
o 1 ind 2 267 0.27 0.02 0.56
o 2 ind 3 1402 1.45 0.10 1.81
j:' [e=1] 3 ind 3 1402 1.48 0.11 1.86
5 4 ind 5 40568 47.31 15.70 63.28
5 TO - - - - -

Kevin Batz Latticed k-Induction

	k-Induction [Sheeran et al. 2000]
	Classical k-Induction for Transition Systems
	k-Induction
	k-Induction for Transition Systems in Terms of Fixed Points
	Latticed k-Induction
	k-Induction for Probabilistic Programs
	k-Induction for Probabilistic Programs — Tool Support
	Conclusion
	Backup: Runtimes

