
Latticed k-Induction with an Application to

Probabilistic Programs

Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski,

Joost-Pieter Katoen, Christoph Matheja, Philipp Schröer

MOVES Seminar

April 20, 2021

k-Induction [Sheeran et al. 2000]

I SAT-based technique for verifying invariant properties of finite transition systems

I Later: Verification of infinite-state transition systems via SMT solving

I Applications: Hardware- and software model checking

“ [k-induction] easily integrates with existing SAT-solvers [...]. The simplicity of applying

k-induction made it the go-to technique for SMT-based infinite-state model checking.”1

Is k-induction applicable to

(possibly infinite-state) probabilistic program verification?

Yes. Enables fully automatic verification of non-trivial properties.

1[Krishnan et al. 2018]
Kevin Batz Latticed k-Induction 2

Classical k-Induction for Transition Systems

Given: TS = (S, I, T), invariant property P ⊆ S
Goal: Prove that P covers all reachable states of TS

By induction. If

I ⊆ P

and ∀s, t ∈ S : s ∈ P ∧ T (s, t) =⇒ t ∈ P ,

then P is an inductive invariant covering all reachable states.

s1 s2

s3 s4

s5

s6 s7 . . .

P

Kevin Batz Latticed k-Induction 3

Classical k-Induction for Transition Systems

Given: TS = (S, I, T), invariant property P ⊆ S
Goal: Prove that P covers all reachable states of TS

By 1-induction. If

I ⊆ P

and ∀s, t ∈ S : s ∈ P ∧ T (s, t) =⇒ t ∈ P ,

then P is an 1-inductive invariant covering all reachable states.

s1 s2

s3 s4

s5

s6 s7 . . .

P

Kevin Batz Latticed k-Induction 4

Classical k-Induction for Transition Systems

Given: TS = (S, I, T), invariant property P ⊆ S
Goal: Prove that P covers all reachable states of TS

By 2-induction. If

I ⊆ P and Succs(I) ⊆ P

and ∀s, t, u ∈ S : s ∈ P ∧ T (s, t) ∧ t ∈ P ∧ T (t, u) =⇒ u ∈ P ,

then P is a 2-inductive invariant covering all reachable states.

s1 s2

s3 s4

s5

s6 s7 . . .

P

Kevin Batz Latticed k-Induction 5

Classical k-Induction for Transition Systems

Given: TS = (S, I, T), invariant property P ⊆ S
Goal: Prove that P covers all reachable states of TS

Let k ≥ 1. If the following two formulae are valid

I(s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk)︸ ︷︷ ︸
all states reachable within k − 1 steps

=⇒ P (s1) ∧ . . . ∧ P (sk)︸ ︷︷ ︸
are P -states

P (s1) ∧ T (s1, s2) ∧ . . . ∧ P (sk)︸ ︷︷ ︸
assuming we stay in P for k − 1 steps,

∧T (sk, sk+1)︸ ︷︷ ︸
after step k,

=⇒ P (sk+1)︸ ︷︷ ︸
we end up in P again

,

then P is a k-inductive invariant covering all reachable states of TS.

For verifying probabilistic programs, we have to ...

... leave the Boolean domain and reason about quantities

... reason about sets of paths rather than individual paths

Kevin Batz Latticed k-Induction 6

k-Induction

k-induction for TS

in terms of a SAT problem

k-induction for TS

in terms of fixed points

latticed k-induction

k-induction for probabilistic programs

in terms of fixed points

k-induction for probabilistic programs

in terms of a SAT problem

generalize instantiate

Kevin Batz Latticed k-Induction 7

k-Induction for Transition Systems in Terms of Fixed Points

Let TS = (S, I, T) and P ⊆ S. Define Φ: 2S → 2S on the complete lattice (2S ,⊆) by

Φ (F) = I ∪ Succs(F) . Then: Reach (TS) = lfp Φ

Goal: Prove lfp Φ ⊆ P

By 1-induction. If

Φ (P) ⊆ P then lfp Φ ⊆ P .

s1 s2

s3 s4

s5

s6 s7 . . .

PΦ (P)

Kevin Batz Latticed k-Induction 8

k-Induction for Transition Systems in Terms of Fixed Points

Let TS = (S, I, T) and P ⊆ S. Define Φ: 2S → 2S on the complete lattice (2S ,⊆) by

Φ (F) = I ∪ Succs(F) . Then: Reach (TS) = lfp Φ

Goal: Prove lfp Φ ⊆ P

By 2-induction. If

Φ (Φ (P) ∩ P) ⊆ P then lfp Φ ⊆ P .

s1 s2

s3 s4

s5

s6 s7 . . .

P Φ (P)Φ (Φ (P) ∩ P)

Kevin Batz Latticed k-Induction 9

k-Induction for Transition Systems in Terms of Fixed Points

Let TS = (S, I, T) and P ⊆ S. Define Φ: 2S → 2S on the complete lattice (2S ,⊆) by

Φ (F) = I ∪ Succs(F) . Then: Reach (TS) = lfp Φ

Goal: Prove lfp Φ ⊆ P

By 2-induction. If

Φ (Φ (P) ∩ P) ⊆ P then lfp Φ ⊆ P .

By 3-induction. If

Φ (Φ (Φ (P) ∩ P) ∩ P) ⊆ P then lfp Φ ⊆ P .

...

Kevin Batz Latticed k-Induction 10

k-Induction for Transition Systems in Terms of Fixed Points

Let TS = (S, I, T) and P ⊆ S. Define Φ: 2S → 2S on the complete lattice (2S ,⊆) by

Φ (F) = I ∪ Succs(F) . Then: Reach (TS) = lfp Φ

Goal: Prove lfp Φ ⊆ P

Define ΨP : 2S → 2S by

ΨP (F) = Φ (F) ∩ P .

For every k ≥ 1,

Φ
(
Ψk−1

P (P)
)
⊆ P implies lfp Φ ⊆ P .

Kevin Batz Latticed k-Induction 11

Latticed k-Induction

k-induction for TS

in terms of a SAT problem

k-induction for TS

in terms of fixed points

latticed k-induction

k-induction for probabilistic programs

in terms of fixed points

k-induction for probabilistic programs

in terms of a SAT problem

generalize instantiate

Kevin Batz Latticed k-Induction 12

Latticed k-Induction

Let (E, v) be a complete lattice. Furthermore, let Φ: E → E be monotonic and f ∈ E.

Goal: Prove lfp Φ v f .

Define Ψf : E → E by

Ψf (g) = Φ (g) u f .

Theorem (Latticed k-Induction)

For every k ≥ 1,

Φ
(

Ψk−1
f (f)

)
v f implies lfp Φ v f .

We call such f k-inductive invariant.

k-Induction generalizes Park induction , 1-induction.

Can be generalized to transfinite κ-induction (not in this talk).

Kevin Batz Latticed k-Induction 13

Latticed k-Induction

Theorem (Park Induction from k-Induction)

Φ
(

Ψk−1
f (f)

)
v f︸ ︷︷ ︸

f is k-inductive invariant

iff Φ
(

Ψk−1
f (f)

)
v Ψk−1

f (f)︸ ︷︷ ︸
Ψk−1

f (f) is inductive invariant

Lemma

Iterating Ψf on f yields a descending chain, i.e.,

f w Ψf (f) w Ψ2
f (f) w Ψ3

f (f) w

Hence, if f is k-inductive invariant, then

I Ψk−1
f (f) is an inductive invariant,

I which is stronger than f .

Kevin Batz Latticed k-Induction 14

Latticed k-Induction

Latticed k-induction generalizes classical k-induction for TS:

Theorem

Let TS = (S, I, T) and P ⊆ S. For every k ≥ 1, the formulae

I(s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) =⇒ P (s1) ∧ . . . ∧ P (sk)

P (s1) ∧ T (s1, s2) ∧ . . . ∧ P (sk) ∧ T (sk, sk+1) =⇒ P (sk+1)

are valid if and only if

Φ
(
Ψk−1

P (P)
)
⊆ P .

Kevin Batz Latticed k-Induction 15

k-Induction for Probabilistic Programs

k-induction for TS

in terms of a SAT problem

k-induction for TS

in terms of fixed points

latticed k-induction

k-induction for probabilistic programs

in terms of fixed points

k-induction for probabilistic programs

in terms of a SAT problem

generalize instantiate

Kevin Batz Latticed k-Induction 16

k-Induction for Probabilistic Programs

Consider the complete lattice (E,≤) of expectations:

E =
{
f | f : Σ→ R∞≥0

}
with f ≤ g iff ∀σ ∈ Σ: f(σ) ≤ g(σ)

Weakest preexpectation transformer [Kozen, McIver & Morgan]:

wpJCK : E→ E wpJCK (g) (σ) , expected value of g evaluated in final states
reached after executing C on σ

wpJx := 5K (x) = 5

wpJ{ skip } [1/2] {x := x+ 2 }K (x) =
1

2
· x+

1

2
· (x+ 2) = x+ 1

wpJ{ skip } [1/2] {x := x+ 2 }K ([x = 4]) =
1

2
· [x = 4] +

1

2
· [x = 2]

wpJwhile (c = 1) { { c := 0 } [1/2] {x := x+ 1 } }K (x) = [c = 1] · (x+ 1) + [c 6= 1] · x

Kevin Batz Latticed k-Induction 17

k-Induction for Probabilistic Programs

Given: Loop C = while (ϕ) {C ′ } and f, g ∈ E
Goal: Prove wpJCK (g) ≤ f
We have

wpJCK (g) = lfp Φ with Φ: E→ E monotonic .

Hence, latticed k-induction applies:

Corollary

For every k ≥ 1,

Φ
(

Ψk−1
f (f)

)
≤ f implies wpJCK (g) ≤ f .

Here

Ψf (h) = Φ (h) u f where for h, h′ ∈ E, h u h′ = λσ. min{h(σ), h′(σ)} .

Kevin Batz Latticed k-Induction 18

k-Induction for Probabilistic Programs — Tool Support

Given linear C = while (ϕ) {C ′ } and linear f, g ∈ E, our tool

kipro2 : k-Induction for PRObabilistic PROgrams

not: Kevin is programming 2

semi-decides via SMT solving:

Is there k ≥ 1 such that wpJCK (g) ≤ f is k-inductive?

Furthermore, if wpJCK (g) 6≤ f , kipro2 finds via bounded model checking some σ ∈ Σ with

wpJCK (g) (σ) > f(σ) .

Kevin Batz Latticed k-Induction 19

k-Induction for Probabilistic Programs — Tool Support

For Cgeo given by

while (c = 1) { { c := 0 } [1/2] {x := x+ 1 } } ,

the property

wpJCgeoK (x) ≤ x+ 1

is 2-inductive. Does

wpJCgeoK (x) ≤ x+ 0.99

also hold? No, bounded model checking yields a counterexample: c = 1, x = 6.

Kevin Batz Latticed k-Induction 20

k-Induction for Probabilistic Programs — Tool Support

For Cbrp given by

while (sent < toSend ∧ fail < maxFail) {

{ fail := 0 ; sent := sent+ 1 } [0.9] { fail := fail + 1 ; totalFail := totalFail + 1 }

}

the property

wpJCbrpK (totalFail) ≤ [toSend ≤ 3] · (totalFail + 1) + [toSend > 3] · ∞

is 4-inductive. Does

wpJCbrpK (totalFail) ≤ totalFail + 1

also hold? No: toSend = 6052,maxFail = 2, sent = 6042, fail = 0, totalFail = 1

Kevin Batz Latticed k-Induction 21

k-Induction for Probabilistic Programs — Tool Support

Sampling uniformly from {elow, . . . , ehigh} using fair coin flips only [Lumbroso 2013]:

Kevin Batz Latticed k-Induction 22

Conclusion

I k-Induction for transition systems in terms of fixed points

I latticed k-induction

I fully automatic k-induction for probabilistic programs

Further topics:

I incremental SMT encoding (theory: QF UFLIRA)

I k-induction for expected run-times

I transfinite κ-induction

I (in)completeness of k-induction

I latticed bounded model checking (refute lfp Φ v f)

Thank you!

Kevin Batz Latticed k-Induction 23

Backup: Runtimes

Kevin Batz Latticed k-Induction 24

	k-Induction [Sheeran et al. 2000]
	Classical k-Induction for Transition Systems
	k-Induction
	k-Induction for Transition Systems in Terms of Fixed Points
	Latticed k-Induction
	k-Induction for Probabilistic Programs
	k-Induction for Probabilistic Programs — Tool Support
	Conclusion
	Backup: Runtimes

