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Formal Verification Methods

Formal verification methods

• Rigorous, mathematically based techniques for the specification, development and verification of software and hardware
systems

• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– neural network, Markov chain, source code, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...

3 of 31 Trends in Computer-Aided Verification
Thomas Noll et al.

Winter 2024/25



Formal Verification Methods

Formal verification methods

• Rigorous, mathematically based techniques for the specification, development and verification of software and hardware
systems

• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– neural network, Markov chain, source code, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...

3 of 31 Trends in Computer-Aided Verification
Thomas Noll et al.

Winter 2024/25



Outline

Overview

Aims of this Seminar

Important Dates

A. Verification of Neural Networks [Christopher Brix]

B. Compositional Verification of Probabilistic Systems [Hannah Mertens]

C. Analysis of Partially Observable Stochastic Systems [Alexander Bork]

D. Static Analysis of Quantum Programs [Thomas Noll]

Final Hints

4 of 31 Trends in Computer-Aided Verification
Thomas Noll et al.

Winter 2024/25



Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature

– given references sufficient in most cases
• Writing of your own report on this topic

– far more that just a translation/rewording
– usually an “extended subset” of original literature

■ “subset”: present core ideas and omit too specific details (e.g., related work or optimisations)
■ “extended”: more extensive explanations, examples, ...
■ discuss contents with supervisor!

• Oral presentation of your results
– can be “proper subset” of report
– generally: less (detailed) definitions/proofs and more examples
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Requirements on Report

Your report

• Independent writing of a report of 12–15 pages
• First milestone: detailed outline

– not: “1. Introduction/2. Main part/3. Conclusions”
– rather: overview of structure (section headers, main definitions/theorems) and initial part of main section (one page)

• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes immediate exclusion from this seminar
• Font size 12pt with “standard” page layout

– LATEX template will be made available on seminar web page

• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction
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Requirements on Talk

Your talk

• Talk of 30 minutes
• Available: projector, presenter, [laptop]
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner
– number your slides
– LATEX/beamer template will be made available on seminar web page

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions
• Have backup slides ready for expected questions
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Important Dates

Deadlines

• October 11: Topic preferences due
• November 11: Detailed outline due
• December 9: Full report due
• January 13: Presentation slides due
• February 3–5 (?): Seminar talks

Important

Missing a deadline causes immediate exclusion from the seminar

9 of 31 Trends in Computer-Aided Verification
Thomas Noll et al.

Winter 2024/25



Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Indicate the preference of your topics (first, second, third).
• Return sheet here or via e-mail (noll@cs.rwth-aachen.de) by Friday (October 11).
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution

• Assignment will be published on web site early next week.
• Then also your supervisor will be indicated.

Withdrawal

• You have up to one week (!) to refrain from participating in this seminar (after topic assignment).
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your (three) possibilities by one.
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Motivation
NN Verification

● Verification guarantees robustness to 
perturbations

○ Formal process, sound bounds on network 
behavior

● Novelty Detection identifies 
unexpected inputs

○ Heuristic approach
○ Aims to avoid “guessing” for inputs the 

network wasn’t trained on

• Verification guarantees robustness to perturbations
– Formal process, sound bounds on network behaviour

• Novelty Detection identifies unexpected inputs
– Heuristic approach
– Aims to avoid “guessing” for inputs the network was not trained on
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Verification of Neural Networks

1. Abstraction-Based Verification with Intervals and Zonotopes
– Introduction into NN verification
– More formal
– Network behaviour needs to be approximated
– Aws Albarghouthi: Introduction to Neural Network Verification, textbook, pp. 83–108

2. Shared Certificates for Neural Network Verification
– The verification of one (robustness) property can be reused to help proving another one
– Demonstrates that different input perturbations require similar proofs
– Marc Fischer, Christian Sprecher, Dimitar I. Dimitrov, Gagandeep Singh, Martin Vechev: Shared Certificates for Neural Network

Verification, CAV 2022

3. Detecting Novel Inputs
– Networks guess: after training on animals, it may return “cat” for cars
– Problem: Identify inputs that are outside the training domain (“don’t know”)
– Computes clusters for known inputs, input outside those clusters are considered out-of-distribution
– Thomas A. Henzinger, Anna Lukina, Christian Schilling: Outside the Box: Abstraction-Based Monitoring of Neural Networks, ECAI 2020
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Verification of Probabilistic Systems

Probabilistic Systems:
e.g., Markov decision processes (MDPs)

Verification: Compositional Verification:
• Reduce peak memory consumption by reasoning about

individual parts and putting results together
• Exploit the existence of isomorphic parts of the state space
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Assume-Guarantee Reasoning

Framework for analysing parallel composition of communicating programs:
• Communicating programs: infinite-state C-like programs that can synchronously read and write messages over

communication channels
• Composition formalism: Assume-Guarantee-Repair (AGR)
• AGR verifies that a program satisfies a set of properties and repairs the program if the verification fails
• Employs Assume-Guarantee (AG) rules: e.g.,

“If M1 under assumption A satisfies property P and any system containing M2 as a component satisfies A, then the parallel
composition M1 ∥ M2 satisfies P.”

• Hadar Frenkel, Orna Grumberg, Corina S. Păsăreanu, Sarai Sheinvald: Assume, guarantee or repair: a regular framework for
non regular properties, STTT 2022
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Compositional Strategy Synthesis

Framework for strategy synthesis in parallel composition of stochastic games:
• Stochastic two-player game: two types of nondeterminism

– Player □ (uncontrollable environment)
– Player ♢ (controllable part)

• Compose a winning strategy for ♢ in the composed system G1 ∥ G2 ∥ . . . out of strategies in the individual components
G1,G2, . . . via assume-guarantee (AG) rules

• N. Basset, M. Kwiatkowska, C. Wiltsche: Compositional strategy synthesis for stochastic games with multiple objectives,
Information and Computation 2018
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Circular Assume-Guarantee Reasoning

Algorithm for circular AG reasoning of transition systems:
• Previous work: automation restricted to acyclic AG rules
• Employ a circular AG rule and automate the application of the rule CIRC-AG by automatically building the assumptions g1, g2

• Karam Abd Elkader, Orna Grumberg, Corina S. Păsăreanu, Sharon Shoham: Automated circular assume-guarantee
reasoning, Formal Aspects of Computing 2018
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Compositional Model Checking

Framework for analysing sequentially composed MDPs:
• Composition formalism: string diagrams
• String diagrams of MDPs are MDPs composed by algebraic operations:

• Consider the schedulers in a subMDP which form a Pareto curve on a combination of local objectives.
• Employ multi-objective model checking of MDPs to obtain a novel compositional algorithm for MDPs compositionally defined

by string diagrams.
• Kazuki Watanabe, Marck van der Vegt, Ichiro Hasuo, Jurriaan Rot, Sebastian Junges: Pareto Curves for Compositionally

Model Checking String Diagrams of MDPs, TACAS 2024
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Efficient Computation of Belief Values

Spaan, Vlassis: Perseus: Randomized Point-based Value Iteration for POMDPs. JAIR 24 (2005)

• Partially Observable MDPs (POMDPs): modeling formalism for planning in AI
– non-deterministic choice & probabilistic branching
– partially observable states

• Main question: what choices maximise expected rewards?
• Point-based value iteration methods are effective approximation techniques
• Perseus uses randomisation for speeding up computations
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Planning under Constraints

Poupart et al.: Approximate Linear Programming for Constrained Partially Observable Markov Decision Processes.
AAAI 2015
• Constrained POMDPs: POMDPs with constraints on the expected costs
• Exact solution methods often complex
• Use linear programming to approximate the solution

maximise E

[∑
t

γ tR(st, at)

]

subject to E

[∑
t

γ tCk(st, at)

]
≤ ck ∀k
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Multi-Environment Models

van der Vegt, Jansen, Junges: Robust Almost-Sure Reachability in Multi-Environment MDPs. TACAS 2023

• MEMDP: models different environments over the same state space
• Exact environment is unknown
• Examples: guessing a password, navigating with unknown obstacle positions, . . .
• Objective: find one strategy that almost-surely reaches a target in all environments
• Strongly related to POMDP problems
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Motivation

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts such as requirements, design models, and
programs.

Distinguishing features

Static: based on source code, not on (dynamic) execution
• in contrast to testing, profiling, or run-time verification

Automated: “push-button” technology, i.e., little user intervention
• in contrast to interactive “theorem-proving” approaches

(Main) Applications

• Initially (since 1970s): compiler optimisations and synthesis of efficient code
• Now: support for all phases of software development

– verification of specifications
– verification of program correctness
– certification of critical software
– refactoring and maintenance of applications, ...
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Detecting Bugs

• Pengzhan Zhao, Xiongfei Wu, Zhuo Li, Jianjun Zhao: QChecker:
Detecting Bugs in Quantum Programs via Static Analysis, Q-SE 2023

• Introduces static analysis tool QChecker that supports finding bugs in
quantum programs in Qiskit

• Two main modules:
– extracting program information based on abstract syntax tree (AST)
– detecting bugs based on patterns

• Patterns derived from real quantum bugs in previous studies
– Incorrect uses of quantum gates, Measurement related issues, Incorrect initial

state, ...

simulator = Aer.get_backend("qasm_simulator")

qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg, creg)

circuit.h(0)
circuit.h(2)
circuit.cx(0, 1)
circuit.measure([0,1,2], [0,1,2])
job = execute(circuit, simulator, shots=1000)
result = job.result()
counts = result.get_counts(circuit)
print(counts)

Fig. 1. A simple quantum program in Qiskit

A. Qiskit

Qiskit [2] is one of the most widely used open-source
frameworks for quantum computing, allowing us to create al-
gorithms for quantum computers. As a Python package, it pro-
vides tools for creating and manipulating quantum programs
and running on prototype quantum devices and simulators
and can use built-in modules for noise characterization and
circuit optimization to reduce the impact of noise. Qiskit also
provides a library of quantum algorithms for machine learning,
optimization, and chemistry.

In Qiskit, a program is defined by a quantum ob-
ject data structure that contains configuration information
and the experiment sequences. The object can be used
to get status information and retrieve results [22]. Fig-
ure 1 shows a simple Qiskit program that illustrates
the entire workflow of a quantum program. The function
Aer.get_backend(’qasm_simulator’) returns a backend
object for the given backend name (qasm_simulator). The
backend class is an interface to the simulator, and the
actual name of Aer for this class is AerProvider. After
the experimental design is completed, the instructions are run
through the execute method. The shots of the simulation,
which means the number of times the circuit is run, is set to
1000 while the default is 1024. When outputting the results
of a measurement, the method job.result() is used to
retrieve the measurement results. We can access the counts
via the method get_counts(circuit), which gives the
experiment’s aggregate outcomes.

B. Basic Properties of Qubits

In this subsection, we use Qiskit as an example to explain
the characteristics of quantum bit (qubit for short) and the
necessary execution process of a complete quantum program.

The basic unit of information in quantum computing is the
qubit. As shown in Figure 1, qreg = QuantumRegister(3)

means assigning a quantum register of three qubits, and
the value of each qubit is |0→ by default. So the initial
value of these three qubits is |000→. Next, let the first and
third qubits pass through the H (Hadamard) gate, as shown
by circuit.h(0) and circuit.h(2). In this way, the
unique property superposition of qubits is realized, which

means the qubit contains the states of |0→ and |1→. There is
also an entanglement of qubit properties that only multiple
qubits can achieve. The code in the sample program is
circuit.cx(0,1). That is to say, the first qubit is entangled
with the second qubit through a CNOT (Controlled-NOT) gate
operation. We measure the first qubit, and its output is 0 for
50 percent probability and 1 for 50 percent probability. After
that, measuring the second qubit is 100 percent the same
as the first measurement result. Since the third qubit is not
related to the first two qubits, the last qubit’s measurement
result is still taken with 0 for 50 percent probability and
1 for 50 percent probability. The measurement statement of
qubits shown in Figure 1 is circuit.measure([0,1,2],

[0,1,2]). Measurement can lead to the collapse of a quantum
superposition state to a classical state. There are many kinds
of quantum measurements, and the projection measurement
of a single qubit is used here. That is, each qubit is projected
onto a state space consisting of base vectors |0→ or |1→. In this
program, the final output is a three-bit array.

III. THE QCHECKER TOOL

In this section, we introduce the construction of QChecker,
which is developed based on Python. As illustrated in Figure 2,
QChecker first performs a thorough information extraction
of the quantum programs based on their ASTs. The corre-
sponding operations are in the module Ast_Operator. The
information mainly includes the variable assign operations and
function calls, which will be further stored in QP_Attribute

and QP_Operation. Then QChecker transmits the extracted
information to the bug detectors. The bug detectors can detect
various bug patterns, as shown in Table I. Finally, QChecker
generates bug detection reports, including the buggy programs,
line numbers, and bug descriptions.

A. Information Extraction

The previous static analysis tools inspire us (e.g.,
PyLint [28]) that using AST for program information extrac-
tion is effective and efficient. However, different from classical
static analysis tools, the AST_Operator in QChecker has the
ability to extract information specific to the semantics and
the function of quantum programs. Taking the program shown
in Figure 1 as an example, we apply a structured parsing to
each quantum program file, i.e., generating the AST. We adopt
two modules named QP_Attribute and QP_Operation to
store the AST information of all the variables and function
calls, respectively. In addition, QChecker also supports han-
dling complex syntax and data structures such as dictionaries,
lists, function definitions, loops, and conditional branches.
The purpose of this design is that the structured AST-based
information extraction can help QChecker trace the relation-
ship between each variable and function call. For example,
a variable may be modified multiple times, or its name may
be changed when passed as an argument inside a function.
Nevertheless, we can still trace back the initial value of the
variables in the program. We plot instances of QP_Attribute
and QP_Operation in Figures 3 and 4, respectively.
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Entanglement Analysis

• Shangzhou Xia, Jianjun Zhao: Static Entanglement Analysis of Quantum
Programs, Q-SE 2023

• Entanglement causes qubits to become mutually dependent
• Plays a crucial role in quantum computation
• Performing measurements requires considering the entanglement

information
• Here: first static entanglement analysis method for quantum programs in

Q#

modify and reorganize the existing algorithm in the process of
developing the algorithm, we construct the structure of calling
the GHZ algorithm in the user development program. Also, the
program allows the user to input the parameter a as a control
for whether to call the GHZ algorithm or not. EntryPoint
(line 13) tells the Q# compiler where to begin executing the
program.

1 namespace NamespaceQFT {
2 open Microsoft.Quantum.Intrinsic;
3 open Microsoft.Quantum.Diagnostics;
4 open Microsoft.Quantum.Math;
5 open Microsoft.Quantum.Arrays;
6
7 operation GHZ(target:Qubit[]): Unit {
8 H(target[0]);
9 Controlled X(target[0], target[1]);

10 Controlled X(target[1], target[2]);
11 }
12
13 @EntryPoint()
14 operation Entangle_test(a:Int) : Unit {
15 use qs=Qubit[4];
16
17 H(qs[0]);
18 X(qs[1]);
19 H(qs[3]);
20 Controlled R1([qs[0]], (PI()/2.0, qs[2]));
21 Controlled X(qs[0], qs[2]);
22 if a==1:
23 GHZ([qs[0],qs[1],qs[2]]);
24 Controlled R1([qs[1]], (PI()/4.0,qs[3]));
25 Controlled X(qs[1], qs[0]);
26 if a==1:
27 Controlled R1([qs[1]], (-PI()/4.0, qs[3]));
28 Controlled X(qs[1], qs[0]);
29 H(qs[3])
30 }
31 }

Fig. 1. An example Q# program.

Based on the three entanglement properties introduced in
Section II, we represent the entanglement relation using an
entanglement graph. In the entanglement graph, nodes rep-
resent qubits in a superposition state, and edges represent
entanglement relations. Two nodes in an entanglement graph
are entangled if they are connected. Therefore, we can modify
the entanglement graph step by step according to the interpro-
cedural control flow graph (ICFG). The entanglement relation
of the whole program will be generated automatically at the
end of the ICFG-based analysis.

First, our analysis algorithm constructs the corresponding
control flow graph (CFG for short) for each operation
module in the program. Due to the nature of quantum op-
erations, we transform the statements in Q# into the following
structure which we call operation line.

(Functor, Operation, Control, Target)

Based on the call relationship, we generate the corresponding
interprocedural control flow graph (ICFG for short). Then, we
classify the state of a qubit into the classical state (denoted by
0-state and 1-state) and the quantum state (superposition state)
(denoted by Q-state) according to whether the qubit state is
in the superposition state or not. At the same time, due to the
uncomputation mechanism, we create a stack data structure
for the Q to record the operations. The state system and state
transition rules for qubit will be described in detail in Section
IV.

For the Q# code in Figure 1, the program starts executing
from the Entrypoint() statement and creates four qubits
with 0-state (|0→ by default) at the time of the use statement

(line-0). When the line-1 operation is received, since qs[0]
is in 0-state, the transition rule 0 is executed. The operation
satisfies the requirement to change from 0-state to Q-state,
so we change the state of qs[0] to Q-state, and create
the corresponding stack and node in entanglement graph. For
the line-2 and line-3 operations, since the target qubit of the
operation is not in the Q-state, it is processed similarly to the
first operation line, by using the transition rule 0 or 1. For the
line-4 operation, the target qubit is in 0-state, and the operation
is a non-magnitude operation, so it can be ignored. For the
line-5 operation, since it satisfies the switching condition of
transition rule 0 and also meets the condition of entanglement
generation, we convert the state of qs[2] to Q-state and
create the corresponding stack and node. Since there is an
entanglement relationship, we add the line-5 operation to
Entangle and create an edge between them.

When executing the GHZ statement (line-6), we can use the
result of the GHZ transformation and the entanglement graph.
Since three inputs are required when calling the GHZ function,
we create the inputs (a,b,c) with the states (Q, Q, Q) for
the three qubits. The same processing is used for the GHZ
internal operations, which generate the corresponding stack
and graph.

When GHZ is called, an alias relationship between the input
qubits (qs[0], qs[1]and qs[2]) and the (a,b,c) is
created:

{ qs[0] ↑ a, qs[1] ↑ b, qs[2] ↑ c }.

Then the aliasing relation is lifted in turn, e.g., for qs[0].
Now the stack operation of a is passed to qs[0]. In the
process of stack passing, as in the judgment of entering the
stack, it is necessary to detect whether the top of the stack of
qs[0] is the inverse operation of the bottom of the stack of
a. It is necessary to determine whether the state of qs[0]
has changed in each pass, as this will affect which transition
rule is chosen. Also, we connect the point connected to a in
the entanglement graph to the node of qs[0] and delete the
node of a, as shown in Figure 2.

Fig. 2. The interprocedural analysis based on the ICFGs for calling the GHZ
operation.

For multiple calls to the GHZ function, we only need to
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Error Analysis

• Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong,
Ronghui Gu: Gleipnir: Toward Practical Error Analysis for Quantum
Programs, PLDI 2021

• Error analysis is essential for the design, optimization, and evaluation of
Noisy Intermediate-Scale Quantum (NISQ) computing

• Here: novel methodology toward practically computing verified error
bounds

• Can be used to evaluate the error mitigation performance of quantum
compiler transformations

• Suitable for real-world quantum programs with 10 to 100 qubits

Gleipnir: Toward Practical Error Analysis for !antum Programs PLDI ’21, June 20–25, 2021, Virtual, Canada

The diamond norm metric is typically used to obtain a
worst case error bound. The diamond norm between two
superoperators U and E is de!ned as:

| |U → E||" = max
! : tr(!)=1

1
2 ‖U ⊗ I(𝐿) → E ⊗ I(𝐿)‖1,

where I is the identity superoperator over some auxiliary
space. Intuitively, this formula calculates the maximum trace
distance between the output state after applying the erro-
neous operation versus applying the noiseless operation, for
any arbitrary input state. Diamond norms can be e"ciently
computed by simple Semi-De!nite Programs (SDP) [61].
Please refer to Freund [14] for more background on SDP.

However, as shown by the Wallman-Flammia bound [59],
diamond norms may overestimate errors by up to two orders
of magnitude, precluding its application in more precise
analyses of noisy quantum programs. The diamond norm
metric fails to incorporate information about the quantum
state of the circuit that may help tighten the error bound.
For example, a bit #ip error (𝑀 gate) does nothing to the
state

√
2

2
( |0〉 + |1〉 ) (the state is unchanged after #ipping

|0〉 and |1〉), but #ips the |1〉 state to |0〉. However, both
trace distance and diamond norm are agnostic to the input
state, and thus limit our ability to tightly bound the errors
of quantum circuits.

(𝑁, 𝑂)→diamond norm [24] is a more !ne-grained metric:

| |U → E||(𝑀,#) := max
! : tr(!)=1,tr(𝑀!) ≥#

1
2 ‖U ⊗ I(𝐿) → E ⊗ I(𝐿)‖1 .

Unlike the unconstrained diamond norm, the (𝑁, 𝑂)→diamond
norm constrains the input state to satisfy the predicate 𝑁 , a
positive semide!nite and trace-1 matrix, to degree 𝑂; speci!-
cally, the input state 𝐿 must satisfy tr(𝑁𝐿) ≥ 𝑂. The (𝑁, 𝑂)→
diamond norm may produce tighter error bounds than the
unconstrained diamond norm by utilizing quantum state
information, but leaves open the problem of practically com-
puting a non-trivial predicate 𝑁 .

3 Gleipnir Work!ow
To use the input quantum state to tighten the computed
error bound, Gleipnir introduces a new constrained diamond
norm, (𝐿, 𝑃)-diamond norm, and a judgment (𝐿, 𝑃) ( 𝑄$ ≤ '
to reason about the error of quantum circuits. Gleipnir uses
Matrix Product State (MPS) tensor networks to approximate
the quantum state and compute the predicate (𝐿, 𝑃).

Figure 4 illustrates Gleipnir’s work#ow for reasoning about
the error bound of some quantum program 𝑄 with input state
𝐿0 and noise model ( of quantum gates on the target device:

(1) Gleipnir !rst approximates the quantum state 𝐿 and a
sound overapproximation of its distance 𝑃 to the ideal
state 𝐿 using MPS tensor networks𝑇𝑈 (𝐿0, 𝑄) = (𝐿, 𝑃)
(see Section 5).

Figure 4. Gleipnir work#ow.

(2) Gleipnir then uses the constrained (𝐿, 𝑃)-diamond norm
metric to bound errors of noisy quantum gates given
a noise model ( of the target device. Gleipnir con-
verts the problem of e"ciently computing the (𝐿, 𝑃)-
diamond norm to solving a polynomial-size SDP prob-
lem, given (𝐿, 𝑃) computed in Step (1) (see Section 6).

(3) Gleipnir employs a lightweight quantum error logic
to compute the error bound of 𝑄$ using the predicate
(𝐿, 𝑃) computed in Step (1) and the error bounds for
all used quantum gates generated by the SDP solver
in Step (2) (see Section 4).

Throughout this paper, we will return to the GHZ state
circuit (Example 2.1) as our running example. This exam-
ple uses the program 𝑉 (𝑊0);𝑋𝑈.𝑇 (𝑊0, 𝑊1), the input state
|00〉 〈00|, and the noise model ( , describing the noisy gates
𝑉$ and $𝑋𝑈.𝑇$ . Following the steps described above, we
will use Gleipnir to obtain the !nal judgment of:

( |00〉 〈00| , 0) (
(
𝑉$ (𝑊0) ; $𝑋𝑈.𝑇$ (𝑊0, 𝑊1)

)
≤ ',

where ' is the total error bound of the noisy program.

4 Quantum Error Logic
We !rst introduce our lightweight logic for reasoning about
the error bounds of quantum programs. In this section, we
treat MPS tensor networks and the algorithm to compute
the (𝐿, 𝑃)-diamond norm as black boxes, deferring their dis-
cussion to Sections 5 and 6, respectively.

The (𝐿, 𝑃)-diamond norm is de!ned as follows:

‖U → E‖(!̂,𝑃) := max
! : tr(!) = 1,
‖!→!̂ ‖1≤𝑃

1
2

'''U ⊗ I(𝐿) → E ⊗ I(𝐿)
'''

1
.
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The LintQ Static Analysis FrameworkAnalyzing !antum Programs with LintQ: A Static Analysis Framework for Qiskit 95:11

1 qc = QuantumCircuit (2, 2)
2 qc.h(1)
3 qc.cx(1, 0)
4 qc.measure(0, 0)
5 qc.measure(1, 1)
6 qc.z(0) # Problem: Qubit 0 has collapsed
7 qc.measure(0, 0)

1 from Measurement m, Gate g, int q
2 where
3 mayFollowDirectly(m, g, q)
4 and not g.isConditional ()
5 select gate , "Gate after measurement

on qubit " + q

Fig. 6. Operation a"er measurement example (le") and its analysis (right).

1 qc = QuantumCircuit (2, 2)
2 qc.h(q[0])
3 qc.cx(q[0], q[1])
4 # Problem: Implicitly creates a new

classical register
5 qc.measure_all ()
6 job = execute(qc,backend ,shots =1000)
7 result = job.result ().get_counts(qc)
8 # output: {'00 00': 487, '11 00': 513}

1 from
2 QuantumCircuit c, MeasurementAll m
3 where c = m.getQuantumCircuit () and
4 c.getNumberOfClassicalBits () > 0
5 and m.createsNewRegister ()
6 select m, "measure_all () with classical

register"

Fig. 7. Measure all abuse example (le") and its analysis (right).

Measure all abuse. In Qiskit, the API call measure_all with default arguments is used to
measure all the qubits of a program and store the result in a classical register that is generated
on the !y. Calling measure_all on a circuit that already contains a classical register may cause a
silent problem since the output string would include additional output registers, while the original
classical register would likely end up being empty, initialized with all zeros. Figure 7 (left) shows
an example, where the output bitstring has four bits instead of two, because of the newly added
register. Note that although the developer might still be able to correctly interpret the longer
string, it is a waste of register space and might lead to unexpected results. Analysis: The query
searches for a use of measure_all on a QuantumCircuit that has a classical register. This chain of
relationships is handled by LintQ abstractions, as shown in Figure 7 (right). Note that, thanks to our
abstractions, LintQ knows that the circuit has classical bits even if a ClassicalRegister object
is not explicitly instantiated, but it gets this information indirectly when creating the circuit, i.e.,
QuantumCircuit(2, 2). Ultimately, we use an auxiliary predicate to ensure that the measure_all
gate indeed creates a new register, which happens when it gets called with default arguments, i.e.
whenever the argument is not add_bits=False.

Conditional gate without measurement. In quantum programming, conditional gates play
a crucial role in introducing conditional behavior into quantum circuits. A conditional gate is
applied to a target qubit only when a condition expressed through a classical bit is satis"ed. For
example, qc.h(0).c_if(creg, 0) applies the h gate only if the classical register creg contains
the value 0. However, applying a conditional gate without any preceding measurement that stores
a value into the classical bit(s) used in the condition essentially means a constant condition, which
usually is not the programmer’s intention. Analysis: The query searches for a conditional gate
in a circuit in which all measurements are applied after the conditional gate, i.e., no preceding
measurement exists. For better precision, the query excludes warning raised on circuits involved in
circuit compositions, because those circuits might be composed with others that have a preceding
measurement.

Constant classical bit. Whenever a qubit is manipulated, it is impossible to know its value
without measuring it. In contrast, if a qubit is never modi"ed, its state remains in the initial default
state, i.e., 0, and thus any measurements of it will certainly return a constant value. Analysis:
The query searches for a measurement on a qubit for which there is no preceding gate applied
on it. To reduce false positives, it also excludes cases where the circuit has Subcircuits or an
UnknownQuantumOperator.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 95. Publication date: July 2024.

• Matteo Paltenghi, Michael Pradel: Analyzing Quantum Programs with LintQ: A Static Analysis Framework for Qiskit, FSE
2024

• Uses abstractions for reasoning about common concepts in quantum computing (without referring to details of underlying
quantum computing platform)

• Offers an extensible set of ten analyses that detect likely bugs
– operating on corrupted quantum states, redundant measurements, incorrect compositions of sub-circuits, ...
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Outline

Overview

Aims of this Seminar

Important Dates

A. Verification of Neural Networks [Christopher Brix]

B. Compositional Verification of Probabilistic Systems [Hannah Mertens]

C. Analysis of Partially Observable Stochastic Systems [Alexander Bork]

D. Static Analysis of Quantum Programs [Thomas Noll]

Final Hints
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Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!
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