
Seminar Quantum Compilation
Introduction

Summer 2024; April 16, 2024

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-24/qc/

https://moves.rwth-aachen.de/teaching/ss-24/qc/

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

2 of 35 Quantum Compilation
Thomas Noll

Summer 2024

C L A S S I C A L C O M P U T E R

…00010111010…

Q U A N T U M C O M P U T E R

… 1
0

1
0

1
0

0
1

1
0

0
1

0
1

0
1

1
0

0
1

1
0 …

3 0 J A N U A R Y 2 0 2 4 Q U A N T U M C O M P U T I N G & V E R I F I C A T I O N 2

… 0 0 0 1 0 1 1 1 0 1 0 …

Quantum Computer – Basic Idea

0 0 0 1 0 1 1 1 0 1 |0⟩
Dirac Notation

A Quantum Program

3 0 J A N U A R Y 2 0 2 4 Q U A N T U M C O M P U T I N G & V E R I F I C A T I O N 11[Shor‘s Algorithm, Wikipedia]

Quantum Compilation

Mapping quantum circuit → quantum computer

1. Rebasing
2. Device-independent optimisations
3. Mapping logical → physical qubits
4. Routing and re-mapping (swapping/shuttling operations)
5. Scheduling of gate operations

(while minimising errors)

5 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Quantum Circuit Compilation

Traditional Compilation

|0i

|0i X

|0i X X

Rebasing

|0i

|0i H H

|0i H H H H

Device Independent Optimization

|0i

|0i H H

|0i H H

5 of 33 Optimized Routing for Shuttling Based Quantum Processing Architectures

Roy Hermanns

Quantum Circuit Compilation

Traditional Compilation

|0i

|0i H H

|0i H

H

Executable

P1

P2

P3

• Architecture:
– Physical Qubits
– Allowed 2-Qubit Gates

• Mapping of Qubits: Logical, Physical
• Exemplary Initial Mapping: Qi , Pi for

i 2 {1, 2, 3}

• Remapping Required
• Q1 $ P1, Q2 $ P3, Q3 $ P3

• Established via SWAP-Gates

6 of 33 Optimized Routing for Shuttling Based Quantum Processing Architectures

Roy Hermanns

Areas Covered by the Seminars

Topic areas

• Overview topics

• The Routing Problem in General

• Compilation for Neutral-Atom Quantum Computers

• Compilation for Trapped-Ion Quantum Computers

• Compilation for Spin Quantum Computers

• Software Frameworks

8 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

9 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature

– given references sufficient in most cases
• Writing of your own report on this topic

– far more that just a translation/rewording
– usually an “extended subset” of original literature

■ “subset”: present core ideas and omit too specific details (e.g., related work or optimisations)
■ “extended”: more extensive explanations, examples, ...
■ discuss contents with supervisor!

• Oral presentation of your results
– can be “proper subset” of report
– generally: less (detailed) definitions/proofs and more examples

10 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Requirements on Report

Your report

• Independent writing of a report of 12–15 pages
• First milestone: detailed outline

– not: “1. Introduction/2. Main part/3. Conclusions”
– rather: overview of structure (section headers, main definitions/theorems) and initial part of main section (one page)

• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes immediate exclusion from this seminar
• Font size 12pt with “standard” page layout

– LATEX template will be made available on seminar web page

• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction

11 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Requirements on Talk

Your talk

• Talk of 30 minutes
• Available: projector, presenter, [laptop]
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner
– number your slides
– LATEX/beamer template will be made available on seminar web page

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions
• Have backup slides ready for expected questions

12 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

13 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Important Dates

Deadlines

• April 19: Topic preferences due
• May 13: Detailed outline due
• June 10: Full report due
• June 24: Presentation slides due
• July 8/9/10 (?): Seminar talks

Important

• Missing a deadline causes immediate exclusion from the seminar
• Please notify us if you decide to quit

14 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Indicate the preference of your topics (first, second, third).
• Return sheet here or via e-mail (noll@cs.rwth-aachen.de) by Friday (April 19).
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution

• Assignment will be published on web site next week.
• Then also your supervisor will be indicated.
• Please give language preference (unsure =⇒ German).

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your (three) possibilities by one.

15 of 35 Quantum Compilation
Thomas Noll

Summer 2024

mailto:noll@cs.rwth-aachen.de

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

16 of 35 Quantum Compilation
Thomas Noll

Summer 2024

1. Programming languages and compiler design for realistic quantum hardware

Frederic T. Chong, Diana Franklin, Margaret Martonosi: Programming languages and compiler design for realistic
quantum hardware. Nature 549, 2017

REVIEW INSIGHT

1 4 S E P T E M B E R 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 8 1

computation, such as a simple classical function (for example, a fast
Fourier transform), so that it can be automatically synthesized into more
customized hardware. In these cases, the developer uses a programming
language called a hardware description language. The hardware descrip-
tion language program is then analysed and heavily optimized to produce
a low-level hardware design that can be fabricated as an application-
specific integrated chip or downloaded onto a field-programmable gate
array. However, the design languages used for hardware synthesis are
much more detailed than high-level languages.

QC shares characteristics with both design models. As in classical com-
puting, QC algorithm designers work at a very high level. As described
below, quantum computers will depend on classical computation, so
high-level programming languages are an attractive target. At the same
time, however, quantum computers have strict resource constraints that,
for the foreseeable future, require the compilation of quantum code to
a level of specification similar to the circuit level. As we navigate this
unique computation model, we reflect on what characteristics are shared
with existing computation models so that we can draw upon previous
techniques whenever possible.

Before exploring the layers of the software toolchain in more detail
(Fig. 1), it is useful to have an execution model in mind. Almost all models
of quantum computation require classical control. This is because it
would be difficult to achieve reliable measurement and fault-tolerant
computation with error-prone quantum devices if there were no way
to sequence operations reliably and to make error-correction deci-
sions. Consequently, all known software toolchains assume a ‘quantum
co-processor’ model. That is, a classical central processing unit controls a
quantum processing unit and orchestrates its execution, much as today a
classical microprocessor orchestrates and interacts with the graphics pro-
cessing unit residing on the graphics co-processor card. Although actual
implementations may differ, the software writer can think of a single
microprocessor sending instructions to the quantum co-processor every
cycle. Unlike a graphics processing unit, which can perform sophisti-
cated operations with no microprocessor intervention, the quantum
co-process does not fetch its own instructions. At all times, the quantum
unit is controlled by the microprocessor. A good recent discussion of
this model can be found in ref. 19 and in a series of quantum archi-
tecture studies since 200520–29. Although several variations exist, most
available tools support the QASM quantum assembly language20, a com-
mon language among quantum software toolchains, using it to specify
instructions for the quantum co-processor (the Scaffold QC tools are
available at https://github.com/epiqc/ScaffCC). Unlike classical assembly

languages, the QASM language is specified at the gate level rather than
at the arithmetic operation level.

Table 1 shows some differences between QC and classical computing
that affect the toolchain. There are three main differences that are rele-
vant to toolchain design and implementation. First, although algorithms
may be written for varying problem sizes, in order to minimize space
and time requirements, the final QC compilation step targets a specific
problem and hardware configuration. All inputs related to the size of the
problem must be provided. In addition, to allow for further optimization,
the code may be recompiled for each data value. This allows the compiler
maximal knowledge of the complete execution of the program. Second,
quantum computers are very unreliable, so error-correction techniques
are a major algorithm design constraint. Third, there is a chasm between
the resources available today and the programs being designed for future
quantum computers. Commercially available hardware has so few qubits
that the problem sizes supported do not expose bugs in the code. In addi-
tion, useful quantum computation is only useful insofar as it is computa-
tionally unfeasible on classical computers, which makes useful quantum
programs impossible to simulate. That is to say, if quantum programs
could be simulated in reasonable time on a classical computer, quantum
computation would not be necessary. Finally, we note that, unlike most
classical computers, most QC machines support substantial simultaneous
parallel operations on potentially all quantum bits.

Having established the execution model, we explore the causes of
the differences between classical computing and QC. Some of them are
fundamental to QC itself, and others are traditions of the field that
could be adjusted over time. We divide these issues into those that ‘flow
upwards’ from the physical device layer and those that ‘flow downwards’
from software and algorithms.

Exposing physical properties
As specific examples of the many broader ways in which underlying tech-
nology attributes affect higher-level software abstractions and toolchains,
there are three physical properties that affect design decisions made in
higher levels of the toolchain: two that are common to all technologies
(no cloning and fragility of state) and one that is dependent on particular
technology (parallelism).

All QC systems must adhere to the ‘no cloning’ theorem, which says
that qubit state cannot be copied. Therefore, any QC software with qubit
copies is invalid. Language abstractions can encourage or enforce this,
compilers can check that it is achieved, and any techniques to implement
module hardware or architecture primitives must follow this.

VLSI circuits VLSI circuits

Compiler

Algorithms

Classical compiler Quantum compiler

1950s computing Classical computing today Quantum computinga b c

Classical architecture
(memory, arithemetic
operations, control

operations, communication)

Classical
architecture

(control operations)

High-level languages

Hardware building
blocks: gates, bits

Hardware building
blocks (gates, bits)

Quantum
architecture

(QC gates, qubits,
communication)

Error-correction
and control pulses

Underlying technology
(semiconductors,

trapped ions)

Semiconductor
transistors

Semiconductor
transistorsRelay circuits and

discrete wires

Assembly language
(low-level) programs

Algorithms

High-level languages

Figure 1 | Design tool flows and abstraction stacks. a, Toolchain for
computing in the 1950s, when programmers used assembly directly, which
controlled relay circuits and wires. b, Over time, improved hardware and
software allowed algorithms to be expressed in high-level languages with
the compiler translating and optimizing to machine instructions. VLSI,

very large-scale integration. c, QC is split into classical control structures
and quantum instructions. Whereas the classical side can take advantage
of the classical tool chain, quantum operations are treated differently
owing to the physical constraints imposed by quantum computers.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

17 of 35 Quantum Compilation
Thomas Noll

Summer 2024

2. Full-stack quantum computing systems in the NISQ era

Medina Bandic, Sebastian Feld, Carmen G. Almudever: Full-stack quantum computing systems in the NISQ era:
algorithm-driven and hardware-aware compilation techniques. DATE 2022

Full-stack quantum computing systems in the
NISQ era: algorithm-driven and hardware-aware

compilation techniques
Medina Bandic∗, Sebastian Feld∗ and Carmen G. Almudever†

∗ Department of Quantum and Computer Engineering and QuTech, Delft University of Technology
† Technical University of Valencia

Abstract—The progress in developing quantum hardware
with functional quantum processors integrating tens of noisy
qubits, together with the availability of near-term quantum
algorithms has led to the release of the first quantum
computers. These quantum computing systems already inte-
grate different software and hardware components of the so-
called "full-stack", bridging quantum applications to quantum
devices. In this paper, we will provide an overview on current
full-stack quantum computing systems. We will emphasize
the need for tight co-design among adjacent layers as well
as vertical cross-layer design to extract the most from noisy
intermediate-scale quantum (NISQ) processors which are both
error-prone and severely constrained in resources. As an
example of co-design, we will focus on the development
of hardware-aware and algorithm-driven compilation tech-
niques.

I. Introduction
The general field of quantum computing has experienced

remarkable progress in the last years becoming a tangible
reality. Prototypes of quantum computers, also known as
noisy intermediate-scale quantum (NISQ) computers [1], al-
ready exist and have been made available to users through
the cloud [2], [3]. We will still have to wait for having large-
scale and fault-tolerant quantum computers that provide the
expected computational power, but the potential of this new
technology is undeniable [4]–[6]. A quantum computer will
not only be capable of solving relevant problems unsolvable
by current classical computers, it also represents a paradigm
shift in the way of how computing is performed.

Although there is still a long way to go and the challenges
are diverse, huge advances have recently been made. Sev-
eral experimental demonstrations of quantum computational
advantage have been performed since 2019, when Google
Research claimed to have achieved it on a 53-qubit pro-
grammable superconducting processor (Sycamore) [7]–[9].
Furthermore, in terms of processors’ scalability, qubit counts
(number of qubits on a chip) are rapidly increasing, especially
in quantum technologies based on superconductors. IBM just
released a 127-qubit quantum processor named Eagle [10],
and expects to present a 1000-qubit chip by 2023 [11]. Note
that adding more qubits exponentially increases the number
of states the quantum computer can calculate with and thus
its computational power.

The progress in quantum hardware has been accompanied
by advances not only on the algorithm side in the form of
hybrid quantum-classical algorithms [12] for NISQ devices,

Figure 1: Software and hardware functional elements of the quantum
computing full-stack. Grey arrows represent the flow of information
between hardware and software layers needed for co-design.

but also on other required intermediate functionalities such
as quantum software (i.e. programming languages and com-
pilers) [13], instruction set architecture and microarchitecture
[14]–[17] and control electronics [18]. This has lead to the
development of quantum computers, as we know them today,
that integrate different software and hardware components
of the so-called "full-stack" [19], [20] (see also Fig 1). More
precisely, full-stack quantum computing systems consist of
a series of functional elements (precursors of full-fledged
layers) that bridge quantum algorithms with quantum de-
vices. Following a layered-oriented approach, which resem-
bles classical computer architectures with some fundamental
differences, quantum algorithms can be expressed using high-
level programming languages and compiled to low-level
instructions (e.g., quantum assembly language-instructions,
QASM) that are further translated into specific signals for
controlling and operating the physical qubits.

In classical computing stacks, abstractions have been intro-
duced in the form of well-defined and self-contained layers
with clear functionality that encapsulate specific information,
which is only shared between adjacent layers. The level of
abstraction (i.e., storing/hiding information that renders more
independent layers) between different layers of the stack has
been increased by virtue of the abundance of resources. This

1978-3-9819263-6-1/DATE22/ c⃝2022 EDAA

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on April 15,2024 at 14:52:21 UTC from IEEE Xplore. Restrictions apply.

18 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

19 of 35 Quantum Compilation
Thomas Noll

Summer 2024

3. On the Qubit Routing Problem

Alexander Cowtan et al.: On the Qubit Routing Problem. TQC 2019A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah 5:3

X

H

H

q1

q2

q3

q4

Figure 1 Example of a quantum circuit containing one and two-qubit gates acting on four qubits,
q1, q2, q3 and q4. This circuit has five timesteps, each with gates acting on disjoint sets of qubits.

1
2

3

4
5

6

7

8

(a)

1
2

3

4
5

6

7

8

(b)

Figure 2 Nodes in the graph represent physical qubits and edges are the allowed interactions.
(a) The circuit model assumes all-to-all communication between qubits, i.e. a complete graph and
(b) a physically realistic one-dimensional nearest neighbour cyclic graph, the ring.

Realistic qubit architectures are connectivity limited: for instance, in most superconducting
platforms the qubit interaction graph must be planar; ion traps present more flexibility,
but are still not fully connected. For now we will use the ring graph (Fig. 2b) as a simple
example. Given such a restricted graph, our goal is to emulate the complete graph with
minimal additional cost.

From this point of view, the routing problem can be stated as follows. Given (i) an
arbitrary quantum circuit and (ii) a connected graph specifying the allowed qubit interactions,
we must produce a new quantum circuit which is equivalent to the input circuit, but uses
only those interactions permitted by the specification graph. Provided the device has at least
as many qubits as the input circuit then a solution always exists; our objective is to minimise
the size of the output circuit.

2.1 Example: Routing on a Ring
Let’s consider the problem of routing the circuit shown in Fig. 1 on the ring graph of Fig. 2(b).
The first step is to divide the circuit into timesteps, also called slices. Loosely speaking, a
timestep consists of a subcircuit where the gates act on disjoint sets of qubits and could in
principle all be performed simultaneously (see Section 3.1 for a precise definition). The single
qubit gates have no bearing on the routing problem so can be ignored, and thus a timestep
can be reduced to a set of qubit pairs that are required to interact via some two-qubit gate.

Next, the logical qubits of the circuit must be mapped to the nodes of the graph. For our
example a reasonable initial mapping is q1 æ 1, q3 æ 2, q2 æ 3, q4 æ 4 as shown in Fig. 3.
This has the advantage that the qubits which interact in the first timestep are adjacent in
the graph, and the same for the second timestep.

TQC 2019

5:6 On the Qubit Routing Problem

= =
H

H

H

H

Figure 8 Representation of a SWAP gate in terms of three consecutive CNOT and its inverted
representation for a directed graph.

X

H

H

1

2

3

4

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Figure 9 Quantum circuit in Fig. 1 routed for architecture graph in Fig. 6.

3 The t|ketÍ Routing Procedure

The routing algorithm implemented in t|ketÍ guarantees compilation of any quantum circuit to
any architecture, represented as simple connected graph. It is therefore completely hardware
agnostic. The algorithm proceeds in four stages: decomposing the input circuit into timesteps;
determining an initial placement; routing across timesteps; and a final clean-up phase.

3.1 Slicing the Circuit Into Timesteps
Before routing we partition the quantum circuit into timesteps. The circuit structure provides
a natural partial ordering of the gates; thus a greedy algorithm starting from inputs can divide
the input circuit into “vertical” partitions of gates which can be executed simultaneously.
We simply traverse the circuit adding the qubits involved in a two-qubit gate to the current
timestep. Since only multi-qubit interactions (such as CNOT or CZ gates) constrain the
problem, single-qubit gates can be ignored4. If a gate requires a qubit already used in the
previous timestep, a new timestep is created. This procedure is repeated until all gates are
assigned to a timestep. A timestep thus consists of a set of disjoint pairs of (logical) qubits
which represent gates scheduled for simultaneous execution.

Applying this method to the example from Fig. 1 would yield the following timesteps.

1 ‘æ { (q1, q3), (q2, q4) }
2 ‘æ { (q2, q3) }
3 ‘æ { (q1, q2), (q3, q4) }
4 ‘æ { (q1, q2) }

Note, that this is not the same as the illustrative slicing shown in Fig. 1!

The density of a timestep is a measure of the number of simultaneous gates executed.
For an n-qubit architecture with single and two-qubit gates, the density is

d = #two-qubit gates%
n
2

& .

4 More accurately: while the single-qubit gates can be ignored for the purposes of routing, they must be
retained for circuit generation; for clarity we ignore them for now.

20 of 35 Quantum Compilation
Thomas Noll

Summer 2024

4. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices

Gushu Li, Yufei Ding, Yuan Xie: Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. ASPLOS
2019

q1
q2
q3
q4

(Q 1)
(Q 2)
(Q 3)
(Q 4)

q1
q2
q3
q4

(Q 1)
(Q 2)
(Q 3)
(Q 4)

(Q 2)
(Q 1)
(Q 3)
(Q 4)

Q1 Q2

Q3 Q4

q1
q2

=

(a)

(b)

Initial Mapping Updated Mapping

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
SWAP q1, q2
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

(c) (d)

Original Code Block
Updated Code Block

Figure 3. (a) SWAP Gate Decomposition, (b) Physical Qubit Coupling Graph Example,
(c) Original Quantum Circuit, (d) Updated Hardware-Compliant Quantum Circuit

3 Problem Analysis
In this section, we will illustrate the challenge of qubit map-
ping caused by the three limitations discussed above. We �rst
introduce qubit mapping problem with a small-size example.
Then we will discuss the design objectives and the metrics
used to evaluate our solution.

3.1 Problem in Qubit Mapping
We will use a small-size example to explain this qubit map-
ping problem. A 4-qubit device model is used as the hardware
platform (shown in Figure 3 (b)). Two-qubit gates are allowed
on the following physical qubit pairs:{Q1,Q2}, {Q2,Q4}, {Q4,
Q3}, {Q3,Q1} and not allowed on {Q1,Q4}, {Q2,Q3}.

Now suppose we have a small quantum circuit to be exe-
cuted on this 4-qubit device. This quantum circuit consists
of six CNOT gates (shown in Figure 3 (c)). We assume the
initial logical-to-physical qubits mapping is {q1 7! Q1,q2 7!
Q2,q3 7! Q3,q4 7! Q4}. We can �nd that four of the six
CNOT gates can be directly executed, but the fourth and
the sixth CNOT gates (marked red in Figure 3 (c)) cannot be
executed because the corresponding qubit pairs are not con-
nected on the device. A perfect initial mapping to satisfy all
two-qubit gate dependencies does not exist in this example
and we need to change the qubit mapping during execution
and make all CNOT gates executable.

SWAP Qubit Mapping. Same as previous solutions, we
employ SWAP operations to change the qubit mapping by
exchanging the states between two qubits. It consists of three
CNOT gates (shown in Figure 3 (a)). We can employ multi-
ple SWAPs to move one logical qubit to arbitrary physical
qubit location. Even two qubits are not nearby on the quan-
tum device, we can still move them together and then apply
the two-qubit gate in the circuit. Figure 3 (d) shows that
the updated quantum circuit is now executable after we in-
sert one SWAP operation between q1 and q2 after the third
CNOT gates. The �rst three CNOT gates can be executed
under initial mapping. After the inserted SWAP, mapping
is updated to {q1 7! Q2,q2 7! Q1,q3 7! Q3,q4 7! Q4}. All
three remaining CNOT gates now can be executed under
this updated mapping.

Other Methods. Prior work also tried to employ other
circuit transformation methods [49] like ’Reverse’ or ’Bridge’
because of the asymmetric connection hardware model from

IBM’s 5-qubit and 16-qubit chips [18]. On those chips, CNOT
gate is only allowed in one direction even if two physical
qubits are connected on the chip. Fortunately, physical ex-
periments have shown that the connection between super-
conducting qubits can be symmetric [9] and on IBM’s lat-
est 20-qubit chip [18, 50], CNOT gate can be applied on
either direction between any connected qubit pair. Since the
di�culty from the asymmetric connection is overcome by
technology advance, we will focus on the latest symmet-
ric coupling model and only consider inserting SWAPs for
mapping change.

By introducing additional SWAPs in the quantum circuit,
we can solve all the two-qubit gate dependencies and gen-
erate a hardware-compliant circuit without changing the
original functionality. However, due to limitations of NISQ
devices, inserting SWAPs in the quantum circuit will also
cause the following problems:

1. The number of operations in the circuit is increased.
Since the operations are imperfect and will introduce
noise, the overall error rate will increase.

2. The circuit depth may also be increased, which means
the total execution time will be increased and too much
error can be accumulated due to qubit decoherence.

If we compare the original circuit and the updated circuit
in Figure 3 (c) and (d), the number of gates increases from 6
to 9 and the circuit depth increases from 5 to 8. Additional
SWAPs will bring signi�cant overhead in terms of �delity
and execution time. As a result, we hope to minimize the
number of additional SWAPs in order to reduce the overall
error rate and total execution time. We formally de�ne the
qubit mapping problem as follows:

De�nition: Given an input quantum circuit and the cou-
pling graph of a quantum device, �nd an initial mapping
and the intermediate qubit mapping transition (by insert-
ing SWAPs) to satisfy all two-qubit constraints and try to
minimize the number of additional gates and circuit depth
in the �nal hardware-compliant circuit.

3.2 Objectives and Metrics
Since qubit mapping problem is NP-Complete [49], it is hard
to directly �nd the optimal solution. We will design a heuris-
tic algorithm trying to �nd a solution to this problem with
the following objectives:

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1004

21 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

22 of 35 Quantum Compilation
Thomas Noll

Summer 2024

5. Computational Capabilities and Compiler Development for Neutral Atom Quantum Processors

Ludwig Schmid et al.: Computational Capabilities and Compiler Development for Neutral Atom Quantum
Processors: Connecting Tool Developers and Hardware Experts. arXiv, 2023 13

...

|0⟩ H

QF T QF T†|0⟩ H H

|0⟩ H H

- programming language for QC
(e.g. Qiskit, Q#, Pennylane, ...)

Abstract Algorithm Gate-level Description
- sequence of abstract and platform

independent gates

Pre-compiled Circuits
- pre-compiled and temporary stored

circuit files

(A) Nearest Neighbour
Connectivity

(B) Long-range
Interactions

(C) Multi-qubit
Gates

(D) Shuttling /
DPQA

(E) Fault-tolerant
QC

(c)

(f)

Synthesis to one - and two-
qubit gates
Mapping with nearest neighbor
connectivity
Scheduling according to gate-
restriction for parallelization of
CZ gates

Synthesis to one - and two-qubit
gates
Mapping with long-range
connectivity
Scheduling according to gate-
restriction for parallelization of
CZ gates

Synthesis to one - and two-qubit
and multi-qubit gates
Mapping with mid- to long-range
connectivity
Scheduling according to gate-
restriction for parallelization of
CZ gates

Synthesis to one - and multi-
qubit gates
Mapping with possible all-to-all
connectivity
Scheduling with DPQA
shuttling restrictions for AOD
number and movements

Fault-tolerant state preparation
Inter-photonic connections
Mid-circuit measurements

(C) Fidelity & Runtime

- number of additionally required

gate operations (e.g. SWAP

- total circuit execution time and

estimated sucess probability

(A) Gate/depth Count (B) Operations Count
- number of AOD movements and

trap switch from SLM to AOD

1.
 IN

PU
T

/
PR

EP
RO

CE
SS

IN
G

2.
 C

O
M

PU
TA

TI
O

NA
LC

AP
AB

IL
IT

IE
S

3.
 F

IG
UR

ES
 O

F
M

ER
IT

FIG. 4. Compilation and Evaluation Process Overview for the Neutral Atom Quantum Computing Platform.
1. Input/Preprocessing: The platform-independent compilation processes lead to a circuit description that includes abstract
and hardware-independent gates. 2. Computational capabilities: The di↵erent computational capabilities of the NAQC
platform, as elaborated in Section III B with a short description of the constraints for the corresponding compilation subtasks
of synthesis, mapping, and routing. Depending on the hardware setup, multiple capabilities, including all, can be considered.
3. Figures of merit: The compilation output is evaluated based on capability-specific proxy criteria, such as gate or shuttling
operation counts. To achieve a more comprehensive comparison and evaluation of gate-based routing and shuttling, figures of
merit, such as the final execution time and fidelity of the compilation result, can be computed.

need for additional SWAP operations during circuit ex-
ecution. However, the larger restriction volume due to
long-range interactions may lead to more sequential gate
execution.

(C) Multi-qubit gates: Besides higher connectivity, the
long-range Rydberg interaction enables the implemen-
tation of native multi-qubit gates, which is particularly
beneficial for the synthesis task or algorithms that in-
herently consist of many multi-qubit gates, such as re-
versible classical logic circuits. However, involving more
atoms also increases the restriction volume, potentially
limiting simultaneous gate executions.

(D) Shuttling/DPQA: A fundamental advantage of the
NAQC platform is the ability to physically move atoms,
and hence qubits, rather than relying on virtual SWAP
operations. High-fidelity shuttling is a promising alter-
native for gates between distant qubits. Additionally,
a fully shuttling-based architecture (dynamically field-
programmable quantum array - DPQA) might be possi-
ble, eliminating the need for virtual swaps altogether.

(E) Fault-tolerant quantum computing: NAs also of-
fer additional capabilities relevant to future compilation
tasks, such as fault-tolerant quantum computing. The
details of compiling logical circuits are beyond the scope
of this work, but with the recent experimental progress,
first work in this direction has been done, in particular
discussions on the implementation of qLDPC codes Xu
et al. [100], surface codes [101], and generalized bicycle
codes [102].

Theoretically, it is feasible to combine multiple, or even
all, of the aforementioned capabilities. For instance, it
is possible to harness both physical shuttling operations
and virtual SWAP gates within the same computation.
Alternatively, one could adopt the DPQA approach while
organizing atoms into subgroups instead of pairs, thereby
utilizing shuttling and the ability to implement multi-
qubit gates within the atomic subgroups. Examples are
given by Viszlai et al. [101] studying possible surface code
architectures to take advantage of such a setup, or map-
ping algorithms taking advantage of using both, gate and
shuttling-based mapping techniques [36]. Nevertheless,
there remains a diverse set of compilation tasks and open
avenues for further investigation.

23 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

24 of 35 Quantum Compilation
Thomas Noll

Summer 2024

6. Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum Computer

Fabian Kreppel et al.: Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum Computer. Quantum
7, 2023

LIZ

Fig. 1: Linear shuttling-based segmented ion trap architecture: The ions are stored in small groups at di�erent segments of the
architecture. The lasers performing the gate operations (here on the red ions) are directed only to a specific segment, the laser
interaction zone (LIZ, purple segment). The following operations reconfigure the ion positions (from left to right): merging
ions into a new group (green ions), physically swapping ions (blue ions), splitting a group (purple ions), and translating ions
between di�erent segments (yellow ion).

This paper focuses on taking into account the proper-
ties of the shuttling-based quantum computing hard-
ware when optimizing the circuit. It provides insights
into how the hardware architecture can be exploited
to further improve the fidelity of the compiled circuit.
Since we use many state-of-the-art transformations
and algorithms as the basis for our circuit compiler,
much of this work is also applicable to more general
quantum circuit compilers.
The structure of this paper is as follows: Sec. 2 re-
views existing circuit optimization techniques. Sec. 3
defines the representation of quantum circuits used in
this work. This is followed in Sec. 4 by a detailed de-
scription of all circuit transformation algorithms used.
Parameterized circuits and their compilation are dis-
cussed in Sec. 5. An evaluation of the methods is pre-
sented in Sec. 6 and shows the benefits of our circuit
compiler.

2 Background
Due to the increasing size and complexity of quantum
circuits, automatic circuit compilation is required to
execute quantum circuits on di�erent platforms. For
this purpose, powerful frameworks for quantum com-
puting [15–17] have been developed. Although their
features vary widely, all frameworks provide some
kind of built-in optimization.
While the simplest form of circuit compilation re-
places gates with predefined sequences of other gates
(often referred to as decomposition), more advanced
techniques minimize the number of gates. A common
strategy is to reduce the overall gate count, with a
particular focus on expensive two-qubit gates [18–20].
One such approach uses a di�erent circuit represen-
tation called ZX-calculus [21], which allows simpli-
fications at the functional level. Another algorithm

searches for common circuit patterns, called tem-
plates, and replaces them with shorter or otherwise
preferable but functionally identical gate sequences
[20].
When compiling quantum circuits, the qubit map-
ping is often considered as well. Ideally, each qubit
can interact with any other qubit, allowing two-qubit
gates to be executed between any pair of qubits. How-
ever, for existing platforms, interactions are limited to
nearest neighbor topology or full connectivity within
subsets of limited size. Mapping the qubits from
the algorithmic circuit to physical qubits subjected
to these hardware constraints is called the routing
problem [15]. To make arbitrary two-qubit gates exe-
cutable on the quantum hardware, SWAP gates must be
inserted into the circuit [22–25]. In the case of ion trap
quantum computers, ion positions can be physically
swapped to establish dynamic all-to-all connectivity.
Consequently, no computational SWAP gates need to
be inserted at this stage.
The Pytket framework [15] provides a wide variety
of circuit transformation algorithms and therefore we
use it as the operational basis for the custom circuit
compiler described in this paper. Functionality such
as the removal of redundancies and the rebasing of
arbitrary gates into the native gate set is mainly re-
alized using Pytket’s built-in functions. Since Pytket
is designed for superconducting architectures, we have
additionally developed and implemented some specific
functionalities for trapped-ion quantum computers.
These include concatenating multiple local rotations
into global rotations, restricting gate parameters to a
fixed set of values, and improving gate ordering.
Previous approaches to quantum circuit compilers
have focused on di�erent architectures such as pho-
tonic [26] and superconducting quantum computers
[27]. These compilers share similarities with our ap-
proach, such as the use of the ZX-calculus [28] to op-

Accepted in Quantum 2023-10-25, click title to verify. Published under CC-BY 4.0. 2

25 of 35 Quantum Compilation
Thomas Noll

Summer 2024

7. Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer

Mark Webber et al.: Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer. Adv.
Quantum Technologies 3(8), 2020

www.advancedsciencenews.com www.advquantumtech.com

Figure 1. A) A depiction of a single X junction which is repeated to form a grid on which the ions are restricted to, with zones dedicated to specific tasks.
B) A 3D representation of a quantum computing device using our proposed routing algorithm, where the yellow grid represents the X-Junctions, which
the ions (red spheres) are restricted to, and the blue squares represent gate zones. The digitization of the simulation can be seen with a resolution of
seven positions between adjacent X-Junctions. Arrows represent the lane priority of the routing algorithm. C) A close up of an X-Junction from (B). The
routing logic used to decongest X-Junction centers involves occasionally ignoring the lane priority. Ions assigned to interior gate zones (blue square
labeled D) have the closest X-Junction center (labeled B) as their destination (one space off the center because it is an area of lower trap stability (labeled
A and C)). The ion in square A has been assigned to the local gate zone and it will travel back and forth between positions A and C directly, by ignoring
the lane priority, to decongest for ions still travelling to their gate zone.

swap gates via nearest neighbor interactions, which will incur a
high gate overhead for globally connected algorithms. For square
grids with nearest neighbor connectivity, the best knownmethod
for globally connected algorithms onN qubit scales with an over-
head of Θ(N0.5),[22] although it is only logarithmic if non-planar
architectures are considered[23,24] and optimisation of this swap-
ping procedure is necessary to maximize performance.[25,26] The
characteristics of the desired algorithm will dictate the degree to
which a device with inherent all-to-all connectivity outperforms a
device which has a cost associated with enabling connectivity.[27]

The way in which connectivity is enabled varies greatly even
within the trapped ion architectures. Architectures with station-
ary ions confined to a linear string benefit from global connec-
tivity and multi-qubit gates[28,29]; however, as the number of ions
co-existing in a single trap increases, it becomes progressively
challenging to maintain key device specifications, such as gate
fidelity. Furthermore, as the ion number N increases, gate times
increase as

√
N, and the increasing requirement on the number

of motional modes will eventually lead to frequency crowding.[30]

Shuttling and swap operations may instead be used to enable
connectivity by positioning multiple ions into the same region
of space, where local gates may be performed. This introduces
different challenges, but all required register reconfiguration op-
erations have been demonstrated and several groups are further
improving on aspects such as speed and reliability. There are
two main approaches to enable connectivity between trapped ion
modules, one involves the use of photonic interconnects,[31,32]

while the other, as described in the architecture analyzed in this
manuscript, utilizes electric fields to connect adjacent modules.
The connected modules form a continuous 2D plane, resulting
in connection speeds between modules orders of magnitude
higher as compared to photonic interconnects.
The quantum computing architecture investigated in this

manuscript consists of an ion trap array on a microchip, giving
rise to a 2D grid to which all ions are restricted. The ions (where
each ion represents a physical qubit) do not have to be stationary
and are instead able to traverse the grid via shuttling operations.
Entangling operations are performed by bringing the two (or
more) desired ions to the same region of space (a gate zone). The

smallest repeated unit of the architecture is the X-Junction (see
Figure 1A). Logic gates may be performed by applying static volt-
ages to amicrochip in the presence of globally appliedmicrowave
fields and a local magnetic field gradient.[33] An alternative ap-
proach insteadmakes use of pairs of laser beams to execute quan-
tum gates,[34] but this may bemore challenging to implement for
large numbers of qubits. This electronic microwave-based archi-
tecture has a clear path toward scaling to large qubit numbers,[18]

and constitutes a practical blueprint for a quantum computer ca-
pable of solving some of the hardest problems, such as breaking
RSA encryption. Furthermore, arbitrary two-qubit connectivity
can be enabled in near-term devices relying only on ion shuttling
operations (which can have a state fidelity comparable to station-
ary trapped ions[35]), without sequences of swap gates, as may be
required in other architectures. To run an algorithm on a quan-
tum computer based on this design, one first needs a routing al-
gorithm which efficiently enables arbitrary connectivity between
the ions in the square grid device, which is the main challenge
addressed in thismanuscript. The relevance of thismanuscript is
independent of the specific choice of gate operation, ion species,
and transition. Finding the optimum instruction set for each in-
dividual ion in real time is intractable and so we have solved the
problem in a heuristic manner. The solution is motivated by one-
way traffic flowwith additional rule sets to deal with junction cen-
ters more efficiently. We quantify the efficiency of our approach
relative to an unattainable lower bound and investigate its flexi-
bility with regards to device shape and ion density. We use these
results, in combination with an error model we propose, to in-
vestigate the achievable depth and quantum volume for this de-
sign as a function of experimental parameters. We have made
the error model publicly available.[36] Quantum volume (QV) is a
conceived metric for quantum computational power designed to
enable sincere comparison between architectures,[37] and we will
discuss it in more detail in Section 3.2.
We have developed a simulation tool for the previously pro-

posed architectural design of Lekitsch et al.[18] The simulation
tool was used to develop and assess routing algorithms. The re-
mainder of this manuscript is organized as follows: In Section 2,
we start by specifying the architecture and the connectivity prob-

Adv. Quantum Technol. 2020, 3, 2000027 2000027 (2 of 11) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

 25119044, 2020, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202000027 by R

w
th A

achen H
ochschulbibliothek, W

iley O
nline Library on [15/04/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

26 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

27 of 35 Quantum Compilation
Thomas Noll

Summer 2024

8. SpinQ: Compilation strategies for scalable spin-qubit architectures

Nikiforos Paraskevopoulos et al.: SpinQ: Compilation strategies for scalable spin-qubit architectures. ACM
Transactions on Quantum Computing 5(1), 2023SpinQ: Compilation Strategies for Scalable Spin-Qubit Architectures 4:15

Fig. 7. Conflict-free shuttle-based SWAP for two-qubit gate routing: With this technique, two diagonally
neighboring qubits exchange their position by consecutively performing two horizontal and two vertical
shuttles. Each pair can be performed in parallel.
is temporarily broken. Proceeding the √

SW AP , a final shuttle returns the qubit to the previous
position, and the checkerboard pattern gets restored. Note that the aforementioned process can
be successfully executed only in that particular order; otherwise, there can be a routing conflict.
Overall, routing for two-qubit gates requires at least one shuttle-based SWAP and exactly two
horizontal shuttles.

So far, we have only talked about routing for bringing together qubits for performing two-qubit
gates. However, qubit routing is also needed for shuttle-based Z rotations and might be needed for
X or Y rotations, as discussed in Sections 3.3 and 4.2 , respectively. Mapping these two categories
of gates, therefore, should always respect operational requirements and avoid conflicts. This also
means that the “idle configuration” should be maintained when routing for these gates, as well.
Thus, the second consideration of the Integrated Strategy is the integration of single-qubit gate
routing within the scheduling stage, hence the name “integrated,” to prevent conflicts and optimize
performance.

The Integrated Strategy continues with two passes. In the first pass, the scheduler tries to paral-
lelize X or Y gates in an ideal manner, based on the gate dependencies [29] (ignoring any potential
conflicts) and Z gates individually. This is no different than other single-qubit gate scheduling pro-
cesses proposed for other qubit architectures. However, it differs on the second pass that integrates
the routing procedures for X , Y , and Z gates. The second pass iterates over each cycle produced by
the first pass. For each cycle, there are two causes: (a) If no conflicts are detected when scheduling
the shuttle instructions of the mapping scheme described in Section 4.2 , then these instructions
are inserted, each in a new cycle one after the other (b) if conflict(s) are detected, the subset of
the problematic gate(s) is separated. Once the non-problematic gate subset is scheduled according
to case (a), the problematic subset is recalled. This time it constitutes a conflict-free cycle and is
scheduled similarly to case (a). The Integrated Strategy is described in Algorithm 1 , and its time
complexity is calculated to be O (n), with n as the number of gates.

The key concept of this strategy is the ideal parallelization in the first pass that is aimed to relieve
the increased complexity of concurrently avoiding conflicts and optimizing. Then, the second pass

ACM Transactions on Quantum Computing, Vol. 5, No. 1, Article 4. Publication date: December 2023.

28 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

29 of 35 Quantum Compilation
Thomas Noll

Summer 2024

9. Qiskit

Robert Wille, Rod Van Meter, Yehuda Naveh: IBM’s Qiskit Tool Chain: Working with and Developing for Real
Quantum Computers. DATE 2019

Qiskit can be downloaded through https://qiskit.org/ and
the links to corresponding github-repositories provided there.
After downloading the tool, it can be installed by executing:

$ mkdir qiskit/
$ cd qiskit/
$ python3 -m venv .qiskitvenv
$ source .qiskitvenv/bin/activate
[within .qiskitvenv]$ pip install qiskit

For the hardware backends (i.e. the access to the QX ar-
chitectures), additionally a registration at IBM QX is required
which yields a token to be deposited.1 Afterwards, you can
load the QX architecture you would like to work with by
running a Python script with:

from qiskit import IBMQ
IBMQ.load_accounts()
ibmqx4 = IBMQ.get_backend(’ibmqx4’)

In this example, this loads the QX4 architecture whose corre-
sponding coupling map is shown in Fig. 2.

Having that, any desired quantum circuit to be executed
on this architecture can be defined; either directly in Python
or through one of the available languages such as the
OpenQASM. For example, the quantum circuit depicted in
Fig. 1b can be defined in Python by:

from qiskit import QuantumCircuit, QuantumRegister,
ClassicalRegister

q = QuantumRegister(4, ’q’)
circ = QuantumCircuit(q)
circ.h(q[2])
circ.cx(q[2], q[3])
circ.cx(q[0], q[1])
circ.h(q[1])
circ.cx(q[1], q[2])
circ.t(q[0])
circ.cx(q[2], q[0])
circ.cx(q[0], q[1])

Alternatively, the quantum circuit can be defined in
OpenQASM as shown in Fig. 1a and, afterwards, loaded into
Qiskit using the command load_qasm_file.

Then, as reviewed in Section II-B, every circuit has to
be properly mapped for the respective architecture, i.e. the
coupling restrictions sketched by the coupling map shown
in Fig. 2 have to be satisfied. Qiskit offers corresponding
methods for this compiling process (in the community, this
is also often referred to as mapping process). More precisely,
the circuit considered here can be made compatible for the
QX4 architecture using:

from qiskit import compile, qobj_to_circuits
qobj = compile(circ, ibmqx4)
compiled_circ = qobj_to_circuits(qobj)[0]

The resulting circuit eventually can be executed on a real
quantum computer. To this end, however, some measurements
should be defined to make clear what outputs are of interest. If
we are interested in the result of all qubits after the execution,
this can be set up by:

1Details on this are provided at https://qiskit.org/documentation/install.html.

from qiskit import execute, Aer
c = ClassicalRegister(5, ’c’)
measurement = QuantumCircuit(q, c)
measurement.measure(q, c)
measured_circ = circ + measurement

This can then be simulated e.g. by executing:

from qiskit.tools.visualization
import plot_histogram

job = execute(measured_circ,
backend=Aer.get_backend(’qasm_simulator’))

result = job.result()
plot_histogram(job.result().get_counts())

If the simulation shows the intended result (visualized by a
plot generated by the last line), an execution on a real quan-
tum device can be triggered by changing the backend from
“qasm_simulator” to the previously loaded backend “ibmqx4”
in the execute-command. In contrast to the simulation, this
eventually yields results that have indeed be generated by a
real quantum computer.

The run-through from above of course only provided a
glimpse of Qiskit’s functionality. However, Qiskit provides an
extensive documentation which can be found at https://qiskit.
org/documentation/ and provides a more detailed treatment.
Furthermore, several tutorials (in terms of Jupyter Notebooks)
are available at [8]. Using them provides an easy entry point
to working with real quantum computers.

V. DEVELOPER’S PERSPECTIVE: IMPROVING QISKIT

Although Qiskit is a powerful tool, it still offers much room
for improvement. In fact, many problems to be addressed
by Qiskit are solved in a rather straight-forward fashion
and provide potential for enhancement. In this section, we
exemplify that by the two representative functions introduced
previously in Section IV: simulation and compilation (called
mapping in the following). More precisely, we sketch how
simulation can be improved by utilizing a dedicated data-
structure (in terms of decision diagrams) and how the mapping
procedure can be improved by utilizing different heuristics.
Afterwards, we briefly discuss how improvements like this
can be incorporated into Qiskit. By this, we provide a brief
glimpse into the developer’s perspective of Qiskit.

A. Improving Simulation

Simulation takes a given quantum state (usually denoted
by |ψ⟩) and determines its transformation when a sequence
of quantum operations is applied to it. This requires a proper
mathematical description of both quantum states and quantum
operations.

Usually, the state of a single qubit is described by
|ψ⟩ = α0 · |0⟩ + α1 · |1⟩, where α0, α1 ∈ C denote the am-
plitudes which indicate how much the qubit is related to the
basis states |0⟩ and |1⟩, respectively.2 If a quantum system is

2Note that the amplitudes of a quantum state |ψ⟩ must satisfy the normal-
ization constraint |α0|2 + |α1|2 = 1.

Design, Automation And Test in Europe (DATE 2019) 1237

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on April 15,2024 at 15:35:52 UTC from IEEE Xplore. Restrictions apply.

30 of 35 Quantum Compilation
Thomas Noll

Summer 2024

10. t|ket〉

Seyon Sivarajah et al.: t|ket〉: A Retargetable Compiler for NISQ Devices. arXiv, 2020

t|ketÍ: A Retargetable Compiler for NISQ Devices 7

2. System Overview

The t|ketÍ system consists of two main components: a powerful optimising compiler
written in C++, and a lightweight user interface and runtime system written in Python.
This Python layer allows the user to define circuits and invoke compiler functions, while
the runtime environment marshalls and dispatches kernels for execution, and provides
convenience methods for defining variational loops, updating parameters, and collating
statistics across circuit evaluations. Optional Python extensions provide interfaces to
third-party quantum software systems. The overall structure is illustrated in Figure 3.

In the classical setting, a compiler translates a human-readable programming
language into machine-executable object code. This process can be divided into three
stages: a front-end, which handles lexing, parsing, semantic analysis, and other tasks
which depend on the source language; a back-end, which allocates registers and generates
suitable instruction sequences in the target machine language; and an intermediate stage,
which performs data and control-flow analysis on an intermediate representation (IR) of
the program, which is independent of both the source and the target languages. Modern
compiler systems, such as LLVM [45], use a standard IR to decouple these three stages,
making it relatively simple to add support for a new programming language or machine
architecture to an existing compiler framework.

Qiskit

ProjectQ

Rigetti

Google

IBM Q

PyZX

ProjectQ

Quil

Cirq

Language-agnostic
multiple front-ends

Retargetable
multiple back-ends

⋮ ⋮

QASM

Quipper

Honeywell

Figure 4: Modular front-ends and back-ends for t|ketÍ

t|ketÍ was designed from the ground up to be retargetable, meaning that it can
generate code for many di�erent quantum devices, and language agnostic, meaning
that it accepts input from most of the major quantum software platforms. For this
reason, its overall structure, shown in Figure 4, follows the same basic pattern as the
LLVM. A variety of lightweight front-end units translate the desired input language

31 of 35 Quantum Compilation
Thomas Noll

Summer 2024

11. ProjectQ

Damian S. Steiger, Thomas Häner, Matthias Troyer: ProjectQ: an open source software framework for quantum
computing. Quantum 2, 2018

Main
Engine

Optimizer Translator Optimizer . . . Mapper Back-end
interface

Quantum
Program

Simulator
Emulator
Hardware

Circuit drawer
Resource est.

Compiler Back-endseDSL in Python

Figure 3: ProjectQ’s full stack software framework. Users write their quantum programs in a high-level
domain-specific language embedded in Python. The quantum program is then sent to the MainEngine, which is
the front end of the modular compiler. The compiler consists of individual compiler engines which transform the
code to the low-level instruction sets supported by the various back-ends, such as interfaces to quantum hardware,
a high-performance quantum simulator and emulator, as well as a circuit drawer and a resource counter.

While the potential for these cancellations and
optimizations is easy to see at this level of ab-
straction, carrying out such a cancellation is com-
putationally very expensive once all gates have
been translated to a low-level gate set, and may
be impossible to do after translating into a dis-
crete gate set (which introduces approximation
errors). In our compilation framework, we thus
define several intermediate gate sets. At every
such intermediate level, inexpensive local opti-
mization algorithms can be employed prior to fur-
ther translation into the next lower-level repre-
sentation.

The ProjectQ compiler is modular and allows
new compilers to be built by combining existing
and new components, as shown in Fig. 3. This
design allows to customize intermediate gate sets
to improve optimization for specific algorithmic
primitives. It also allows to adapt the compila-
tion process to different quantum hardware ar-
chitectures by replacing just some of the com-
piler engines (including hardware-specific map-
pers), which maximizes the re-use of individual
compiler components.

4 Features
In this section we will introduce the main features
of ProjectQ, starting with a minimal example:

1 from projectq import MainEngine
2 from projectq.ops import H, Measure
3

4 eng = MainEngine ()
5 qubit1 = eng.allocate_qubit ()
6 H | qubit1
7 Measure | qubit1
8 print(int(qubit1))

This minimal code example allocates one qubit

in state |0Í and applies a Hadamard gate be-
fore measuring it in the computational basis and
printing the outcome. While this is a valid quan-
tum program implementing a random number
generator, a more pythonic and better designed
version is shown in code example 1.
Line 1 imports the MainEngine class, which is
the front end of the quantum compiler as shown
in Fig. 3. Every quantum program needs to cre-
ate one MainEngine, which contains all compiler
components (engines) as well as the back-end (see
line 4). In section 4.2 we show how to select com-
piler engines and the back-ends. If a MainEngine
is created without any arguments as done here,
the default compiler engines are used with a sim-
ulator back-end.

Every quantum algorithm operates on
qubits, which are obtained by calling the
allocate_qubit function of the MainEngine.
To apply a Hadamard gate and then measure,
we first need to import these gates in line 2 and
apply them to the qubit in lines 6 and 7. The
syntax for applying a quantum gate to a qubit
mimics an operator notation. For example,

Rx(0.5) | qubit Í , (1)

might indicate a rotation around the x-axis ap-
plied to a qubit. In ProjectQ, this is coded as:

Rx (0.5) | qubit

The symbol | separates the gate operation with
optional classical arguments (e.g., rotation an-
gles) on the left from its quantum arguments on
the right (the qubits to which the gate is being
applied).

Finally, on line 8, qubit1 is converted to an
int. This conversion operation returns the mea-
surement result from line 7 which is then printed.

Accepted in Quantum 2018-01-21, click title to verify 4

32 of 35 Quantum Compilation
Thomas Noll

Summer 2024

12. ScaffCC

Ali Javadi Abhari et al.: ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Computing 45,
2015

3. Overview of ScaffCC

ScaffCC compiles a program written in the Scaffold programming language, and outputs a quantum assembly (QASM)
representation. It targets logical quantum computation, that is, compilation, analysis and optimizations before synthesis into
machine-dependent physical-level operations. This section gives a broad overview of the input and output languages, and
the design of the ScaffCC compiler.

3.1. Scaffold quantum programming language

Scaffold [6] is a high-level, imperative quantum programming language, designed as an extension to C. Scaffold includes
new data types, qbit and cbit, corresponding to quantum bits, and classical bits obtained as a result of measurement, respec-
tively. Furthermore, it includes basic quantum operations (gates) such as Pauli X, Hadamard, Toffoli, Rotation, etc. as built-in
entities. A Scaffold program can be regarded as being composed of two parts: the quantum part containing descriptions of
quantum bits and operations, and the classical part containing classical control around those operations, such as loops and
conditionals.

Similar to a C program or a Verilog classical circuit, almost every Scaffold quantum code has a hierarchical structure and is
organized into modules. Each module represents a sub-circuit of the overall program circuit, and can be instantiated within
larger (parent) modules. Since quantum circuits must be ‘‘reversible’’, each module must either be specified using unitary
quantum operations, or be transformed as such by the compiler. Scaffold includes a class of modules novel among quantum
compilers, called Classical-To-Quantum-Gate (CTQG). These allow sub-circuits to be defined as classical logical circuits. Scaf-
fCC converts these into valid quantum codes, as discussed in Section 6.

3.2. QASM assembly language

The quantum assembly language of QASM, proposed in [7,8], describes quantum programs using a set of low level quan-
tum gates. QASM specifies logical qubits and the sequence of gate operations performed on them. Basic data types in QASM
are qbit and cbit, and the instruction set includes a universal set of gates (Controlled-NOT (CNOT), Hadamard (H), Phase (S),
p=8 Rotation (T)), plus operations for measurement and preparation in the states j0i and j1i. QASM is independent of the
underlying quantum technologies, and assumes that the hardware can implement the described circuit using suitable gate
transformations and error correction in the next stages of synthesis.

QASM has been used to implement and study quantum circuits for small problems using a flat circuit format [9–11].
However, realistic quantum circuits that we examined contain between 107 and 1012 gates, rendering full flattening infea-
sible. In Section 4, we introduce modifications to the original flat format that retain scalability by enabling more manageable
target QASM sizes.

3.3. Internal structure of the compiler

Fig. 1 depicts a block diagram of ScaffCC’s internal structure. We have implemented ScaffCC in LLVM [1], a rich, open-
source library of compiler technologies, by adding intrinsic functions representative of quantum gates and a datatype repre-
sentative of qubits. Furthermore, we have extended Clang, a C-family front-end to LLVM, to accommodate parsing of our
language.

The first step of compilation is to separate the modules in the program which are marked as CTQG. These modules have
been defined by the programmer using classical gates, and are handled by the separate CTQG sub-compiler as described in
Section 6. CTQG’s output is translated directly to QASM without going to LLVM’s intermediate format, and is linked with the
output of the quantum modules after they have been converted to QASM. Although this approach yields fast output code
generation, it is not suitable for whole program analysis since a part of the code will bypass the LLVM-IR representation.

Fig. 1. Internal structure of the ScaffCC compiler: the top, middle and bottom parts respectively show translation of CTQG modules (Section 6), QASM code
generation (Section 5), and quantum program analysis (Section 7).

4 A. JavadiAbhari et al. / Parallel Computing 45 (2015) 2–17

33 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Outline

Overview

Aims of this Seminar

Important Dates

Overview Topics

The Routing Problem in General

Compilation for Neutral-Atom Quantum Computers

Compilation for Trapped-Ion Quantum Computers

Compilation for Spin Quantum Computers

Software Frameworks

Final Hints

34 of 35 Quantum Compilation
Thomas Noll

Summer 2024

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

35 of 35 Quantum Compilation
Thomas Noll

Summer 2024

	Overview
	Aims of this Seminar
	Important Dates
	Overview Topics
	The Routing Problem in General
	Compilation for Neutral-Atom Quantum Computers
	Compilation for Trapped-Ion Quantum Computers
	Compilation for Spin Quantum Computers
	Software Frameworks
	Final Hints

