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Chen]
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Formal Verification Methods

Formal verification methods

• Rigorous, mathematically based techniques for the specification, development and
verification of software and hardware systems
• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– source code, neural networks, Bayesian networks, fault trees, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...
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Areas Covered in this Seminar

Topic areas

• Robustness Analysis of Neural Networks
• Analysis of Bayesian Networks
• Synthesizing Quantitative Loop Invariants for Probabilistic Programs
• Formal Approaches to Systems Engineering
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Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature

– given references sufficient in most cases
• Writing of your own report on this topic

– far more that just a translation/rewording
– usually an “extended subset” of original literature
� “subset”: present core ideas and omit too specific details (e.g., related work or optimisations)
� “extended”: more extensive explanations, examples, ...
� discuss contents with supervisor!

• Oral presentation of your results
– can be “proper subset” of report
– generally: less (detailed) definitions/proofs and more examples
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Requirements on Report

Your report

• Independent writing of a report of 12–15 pages
• First milestone: detailed outline

– not: “1. Introduction/2. Main part/3. Conclusions”
– rather: overview of structure (section headers, main definitions/theorems) and initial part of main

section (one page)

• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes

immediate exclusion from this seminar
• Font size 12pt with “standard” page layout

– LATEX template will be made available on seminar web page

• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction
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Requirements on Talk

Your talk

• Talk of 30 minutes
• Organised as Zoom meeting
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner
– number your slides

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions
• Have backup slides ready for expected questions
• LATEX/beamer template will be made available on seminar web page
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Important Dates

Deadlines

• April 18: Topic preferences due
• May 10: Detailed outline due
• June 7: Full report due
• June 28: Presentation slides due
• July 13 (?): Seminar talks

Important

Missing a deadline causes immediate exclusion from the seminar
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Selecting Your Topic

Procedure

• Check out Foodle poll at https://terminplaner.dfn.de/qhUSVZHyboDWZP63
• Topics classified according to BSc/MSc level
• Please give at least three “Yes” votesX
• Preferably additional “Maybe” votes (X)
• Give as comment:

– preference of topics (if desired)
– language of report and talk (English/German)

• Fill form by Sunday, April 18
• We do our best to find an adequate topic-student assignment

– disclaimer: no guarantee for an optimal solution

• Assignment of topics and supervisors will be published on web site by mid next week

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.
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Machine Learning

Training data ML model
Training

Machine Learning

Prediction: Panda
ML model

Inference
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Adversarial Examples

+ 0.007 · =

Adversarial Example [Goodfellow 2015]

Prediction: Gibbon  ML model

Adversarial Attack
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Questions

How to
• find adversarial examples if they exist?
• prove that no adversarial examples exist?
• do so automatically?
• do so efficiently (avoid exponential runtime)?
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Topics I

1. Efficient Formal Safety Analysis of Neural Networks
(Wang et al.) (B/M)
– Describes a toolkit for automatic verification
– Uses symbolic propagation (tracking of dependencies)
– Approximates piecewise linear activation functions

2. Efficient Neural Network Verification via Adaptive Refinement
and Adversarial Search (Henriksen, Lomuscio) (M)
– Describes an improved toolkit
– Can also approximate non-linear functions (sigmoid, tanh)

3. Star-Based Reachability Analysis of Deep Neural Networks
(Tran et al.) (M)
– Describes an alternative approach
– No approximation is needed (sound and complete)
– All (not just one) adversarial examples can be found

introduced by the relaxation process. Thus Neurify will check whether a counterexample is a false
positive. If so, Neurify will use directed constraint refinement guided by symbolic linear relaxation
to obtain a tighter output bound and recheck the property with the solver.

3.1 Symbolic Linear Relaxation

Symbolic linear 
relaxation

Refine 
overest. node

Constraints

Concrete
sample

Violated

Unsat

Linear solver

Check for 
violation

Input intervals

Timeout Unsafe

Safe

False positive

Split
target
node

Safety
propertyDNN

Figure 2: Workflow of Neurify to formally
analyze safety properties of neural networks.

The symbolic linear relaxation of the output of each
ReLU z = Relu(z′) leverages the bounds on z′,
Eqlow and Equp (Eqlow ≤ Eq∗(x) ≤ Equp). Here
Eq∗ denotes the closed-form representation of z′.

Specifically, Equation 1 shows the symbolic linear
relaxation where "→ denotes “relax to”. In addition,
[llow, ulow] and [lup, uup] denote the concrete lower
and upper bounds for Eqlow and Equp, respectively.
In supplementary material Section 1.2, we give a de-
tailed proof showing that this relaxation is the tightest
achievable due to its least maximum distance from
Eq∗. In the following discussion, we simplify Eqlow

and Equp as Eq and the corresponding lower and
upper bounds as [l, u]. Figure 3 shows the differ-
ence between our symbolic relaxation process and
the naive concretizations used by Wang et al. [39].
More detailed discussions can be found in supple-
mentary material Section 2.

Relu(Eqlow) "→ ulow

ulow − llow
(Eqlow) Relu(Equp) "→ uup

uup − lup
(Equp − lup) (1)

z 

z′
u

(a) Naive concretizaion

z 

z′  0l 

z ≤ u 

z ≥ 0 

l u 
0

z ≥
u
u - l

Eq 

z ≤
u
u - l

(Eq - l) 

(b) Symbolic linear relaxation

Figure 3: An illustration of symbolic linear relaxation for
an intermediate node. (a) Original symbolic interval anal-
ysis [39] used naive concretization. (b) Symbolic linear
relaxation leverages the knowledge of concrete bounds for z′

and computes relaxed symbolic interval. Eq is the symbolic
representation of z′.

In practice, symbolic linear relaxation
can cut (on average) 59.64% more
overestimation error than symbolic in-
terval analysis (cf. Section 2) and
saves the time needed to prove a prop-
erty by several orders of magnitude
(cf. Section 4). There are three key
reasons behind such significant per-
formance improvement. First, the
maximum possible error after intro-
ducing relaxations is −lup∗uup

uup−lup
for up-

per bound and −llow∗ulow

ulow−llow
for lower

bound in Figure 3(b) (the proof is in
supplementary material Section 1.2).
These relaxations are considerably
tighter than naive concretizations shown in Figure 3(a), which introduces a larger error uup. Second,
symbolic linear relaxation, unlike naive concretization, partially keeps the input dependencies during
interval propagation ([ u

u−lEq, u
u−l (Eq − l)] by maintaining symbolic equations. Third, as the final

output error is exponential to the error introduced at each node (proved in supplementary 1.2), tighter
bounds on earlier nodes produced by symbolic relaxation significantly reduce the final output error.

3.2 Directed Constraint Refinement

Besides symbolic linear relaxation, we also develop another generic approach, directed constraint
refinement, to further improve the overall performance of property checking. Our empirical results
in Section 4 shows the substantial improvement from using this approach combined with symbolic
linear relaxation. In the following, we first define overestimated nodes before describing the directed
constraint refinement process in detail.

Overestimated nodes. We note that, for most networks, only a small proportion of intermediate
ReLU nodes operate in the non-linear region for a given input range X . These are the only nodes that

4

The previous lemma states that zi > z⇤
t , so the tangent at zi is

a valid upper relaxation for all i. Furthermore, as zi < zi�1, the
solution improves at each iteration since zi is closer to z⇤

t than zi�1

was.
This concludes the last of the three cases outlined in the beginning

of this section, thus defining the necessary linear relaxations for S-
shaped activation functions.

Algorithm 1 Iterative approximation of z⇤
t

z0, m zu, Number of iterations
for i = 1...m do

zi  update step(zi�1) //Given in Equation 2 & 3
end for
bz⇤
t  zm

4 VERIFICATION ALGORITHM
Having derived the linear relaxations for the symbolic interval prop-
agation, we now introduce an efficient verification algorithm for the
local robustness problem from Definition 1. We begin by providing a
high-level overview of the algorithm, followed by a detailed account
of each step. The pipeline of the procedure is presented in Figure 2.

Symbolic interval
propagation

Satisfiability
check classification t

Local searchBranch and
bound

For each classification
t 6= c

hf, x, ci

Constraints

Possible
counterexample

All calls ”unsat”

Backtrack/Safe

Counter-
example

Unsafe

Split
constraints

Undetermined

Timeout

Figure 2: The verification pipeline.

The algorithm takes as input a tuple hf, x, ci, where f : Rn !
Rm is an FFNN,  x = {lk  xk  uk|lk, uk 2 R}8k2{1,...,n} is
a set of constraints on the input to f and c 2 {1, 2, ..., m} is a clas-
sification as defined in Definition 1. The first block of the pipeline
uses error-based symbolic interval propagation to calculate linear
constraints on the network’s output as explained in Section 2. The
output-constraints are then used in a satisfiability call to an LP-solver
in order to locate an input-assignment misclassified as t for each in-
correct classification t 6= c. If the solver determines all calls to be
unsatisfiable, then the network is safe and the algorithm terminates.
Otherwise, the algorithm checks whether each assignment is spurious
by running them through the FFNN. For each assignment found to be
spurious, the method launches a gradient-based local search to locate
a valid counter-example. If a valid counter-example is found, then the
network is provably unsafe and the algorithm terminates. Otherwise,
the branch and bound phase is launched by splitting the input to a

node and branching. The constraints from the split are added back
to the LP-solver and the symbolic interval propagation, and the al-
gorithm is repeated for each branch. The verification loop terminates
when either the network is proven safe in all branches, or a valid
counter-example is found, or a timeout criterion is reached.

The rest of this section covers each step of the pipeline in detail.
Symbolic interval propagation. The first phase of the verifica-

tion algorithm implements error-based symbolic interval propagation
(ESIP) on the FFNN f and input constraints  x as explained in Sec-
tion 2. Recall that this produces lower symbolic bounds yl(x)k (up-
per, yu(x)k, respectively) constraining each of the network’s outputs
f(x)k under the given input constraints  x. Formally;

yl(x)k  f(x)k  yu(x)k 8x| x, k 2 {1, ...m} (6)

Lemma 1 states that the network is safe for the input-constraints  x

and classification c if the upper bounds of all classifications t 6= c
are smaller than the lower bound of c. The next phase aims at either
proving that this condition holds, or locating a counter-example if it
does not.

Satisfiability check. The second block of the pipeline takes as in-
put the symbolic bounds calculated by ESIP, the input constraints  x

and the classification c. For each classification t 6= c, a satisfiability
call is made to an LP-solver with the constraints  x and the inequal-
ity yl(x)t�c � 0 where yl(x)t�c is as defined in Lemma 1.

If the solver determines that all calls are unsatisfiable, then
yl(x)t�c < 0 for all t 6= c. From Lemma 1 this means that f is
safe for c with respect to  x and the algorithm terminates.

Otherwise, the solver’s assignments xt are treated as potential
counter-examples. Indeed, as the bounds from ESIP are not exact,
we may obtain spurious counter-examples such that yl(x

t)t�c � 0
even though f(xt)k < f(xt)c for all k 6= c. The next phase tests
whether this is the case and, if so, attempts to locate a valid counter-
example.

Local search. The third block of the procedure is devoted to
checking whether the assignments xt from the LP-solver constitute
valid counter-examples by running them on the network and deter-
mining whether f(xt)k > f(xt)c for any k 6= c. If this is not the
case, then a gradient descent-based local search is launched in an at-
tempt to locate a valid counter-example by minimising the loss func-
tion L(x) = f(x)c�f(x)t with respect to x. After each step of the
gradient descent, the assignment xi is clipped to the input bounds  x

and checked to see whether it is a valid counter-example. If this is the
case, then f is unsafe for c with respect to  x and the algorithm ter-
minates. Otherwise, the local search terminates after a predetermined
number of steps or when the loss changes less than a given fraction.

Branch and bound. If the local search does not find a valid
counter-example and at least one of the calls to the LP-solver is satis-
fiable, then the verification problem is still undefined at this point. In
this case a branch and bound refinement phase is launched by split-
ting the input to a node.

The method aims at splitting the node with the most impact on the
lower bound of the given classification yl(x)c and the upper bounds
of other classifications yu(x)t for t 6= c. This is done in an attempt
to satisfy the condition for Lemma 1, yl(x)t�c � 0 for all t 6= c and
x satisfying  x. We use a novel heuristic to quantify the impact of a
hidden node on these bounds.

Definition 5. Let hf, x, ci be the verification input as defined
in Definition 1 and let Em, yl(x)k and yu(x)k be the asso-
ciated error matrix and bounds at the output layer as calcu-
lated by ESIP. Moreover, let H be the set of all hidden nodes

676 H.-D. Tran et al.

Fig. 2. Over-approximation of ReLU functions with different approaches.

of the layer corresponding to the element Θi is computed by reachReLU sub-
procedure which executes a minimized sequence of stepReLU operations on the
new star I1, i.e., iteratively calls stepReLU sub-procedure. Note that that the
stepReLU sub-procedure is designed to handle multiple star input sets since the
number of star sets may increase after each stepReLU operation.

Lemma 1. The worst-case complexity of the number of stars in the reachable
set of an N -neurons FNN computed by Algorithm3.1. is O(2N ).

Lemma 2. The worst-case complexity of the number of constraints of a star in
the reachable set of an N -neuron FNN computed by Algorithm3.1. is O(N).

Theorem 1 (Verification complexity). Let F be an N -neuron FNN, Θ be a
star set with p linear constraints and m-variables in the predicate, S be a safety
specification with s linear constraints. In the worst case, the safety verification
or falsification of the neural network F (Θ) |= S? is equivalent to solving 2N

feasibility problems in which each has N + p + s linear constraints and m-
variables.

Remark 1. Although in the worst-case, the number of stars in the reachable set
of an FNN is 2N , in practice, the actual number of stars is usually much smaller
than the worst-case result which enhances the applicability of the star-based
exact reachability analysis for practical DNNs.

Theorem 2 (Safety and complete counter input set). Let F be an FNN,
Θ = 〈c, V, P 〉 be a star input set, F (Θ) = ∪k

i=1 Θi, Θi = 〈ci, Vi, Pi〉 be the
reachable set of the neural network, and S be a safety specification. Denote Θ̄i =
Θi ∩ ¬S = 〈ci, Vi, P̄i〉, i = 1, · · · , k. The neural network is safe if and only
if P̄i = ∅ for all i. If the neural network violates its safety property, then the
complete counter input set containing all possible inputs in the input set that
lead the neural network to unsafe states is CΘ = ∪k

i=1〈c, V, P̄i〉, P̄i &= ∅.

3.2 Over-Approximate Analysis

Although the exact reachability analysis can compute the exact behavior of FNN,
the number of stars grows exponentially with the number of layers and leads to
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Topics II

4. Analyzing Deep Neural Networks with Symbolic
Propagation: Towards Higher Precision and Faster
Verification (Li et al.) (B/M)
– Systematic investigation of symbolic domains
– Based on Abstract Interpretation and SMT methods

5. Improving Neural Network Verification through
Spurious Region Guided Refinement (Yang et al.)
(B/M)
– Elimination of spurious adversarial examples by linear

programming techniques
– Based on DeepPoly framework

6. Robustness Analysis of Neural Networks via Efficient
Partitioning with Applications in Control Systems
(Everett, Habibi, How) (M)
– Application of propagation and partitioning techniques to

control systems

300 J. Li et al.

The following example shows intuitively how these three abstract domains
work:

Example 2.2. Let x̄ ∈ R2, and the range of x̄ be X = {(1, 0), (0, 2), (1, 2), (2, 1)}.
With Box, we can abstract the inputs X as [0, 2] × [0, 2], and with Zono-
tope, X can be abstracted as

{
x1 = 1 − 1

2ε1 − 1
2ε3, x2 = 1 + 1

2ε1 + 1
2ε2

}
. where

ε1, ε2, ε3 ∈ [−1, 1]. With Polyhedra, X can be abstracted as {x2 ≤ 2, x2 ≤
−x1 +3, x2 ≥ x1 −1, x2 ≥ −2x1 +2}. Figure 2 (left) gives an intuitive descrip-
tion for the three abstractions.

0 1 2

1

2

0 6

Box

Zonotope
Polyhedra

3

-1

1 5

f

Fig. 2. An illustration of Examples 2.2 and 3.4, where on the right the dashed lines
gives the abstraction region before the ReLU operation and the full lines gives the final
abstraction f !(X!).

3 Symbolic Propagation for Abstract Interpretation
Based DNN Verification

In this section, we first describe how to use abstract interpretation to verify
DNNs. Then we present a symbolic propagation method to enhance its precision.

3.1 Abstract Interpretation Based DNN Verification

The DNN Verification Problem. The problem of verifying DNNs over a
property can be stated formally as follows.

Definition 3.1. Given a function f : Rm → Rn which expresses a DNN, a set
of the inputs X0 ⊆ Rm, and a property C ⊆ Rn, verifying the property is to
determine whether f(X0) ⊆ C holds, where f(X0) = {f(x̄) | x̄ ∈ X0}.

6 P. Yang et al.
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Fig. 1. Framework of spurious region guided refinement

– If lj ≥ 0 or uj ≤ 0, this ReLU neuron is definitely activated or deactivated,
respectively. In this case, this ReLU transformation actually performs an affine
transformation, and thus its abstract transformer can be defined as above.

– If lj < 0 and uj > 0, the behavior of this ReLU neuron is uncertain, and we
need to over-approximate this relation with a linear upper/lower bound. The best
upper bound is a≥

i =
uj(xj−lj)

uj−lj
. For the lower bound, there are multiple choices

a≤
i = λxj where λ ∈ [0, 1]. We choose λ ∈ {0, 1} which minimizes the area of the

constraints. Basically we have two abstraction modes here, corresponding to the
two choices of λ.

Note that for a DNN with only ReLU as non-linear operators, over-approximation oc-
curs only when there are uncertain ReLU neurons, which are over-approximated using
a triangle. The key of improving the precision is thus to compute the bounds of the
uncertain ReLU neurons as precisely as possible, and to determine the behaviors of the
most uncertain ReLU neurons.

DeepPoly also supports activation functions which are monotonically increasing,
convex on (−∞, 0] and concave on [0, +∞), like sigmoid and tanh, and it supports
max pooling layers. Readers can refer to [39] for details.

4 Spurious Region Guided Refinement

We explain the main steps of our algorithm, as depicted in Fig. 1. For the input property
and network, we first employ DeepPoly as the initial step to compute f#(X#). The
concretization of f#(X#) is the conjunction of many linear inequities given in Eq. 1,
and for the robustness property P , the negation ¬P is the disjunction of several linear
inequities ¬P =

∨
t$=Cf (x)(yCf (x) − yt ≤ 0).

1. We check whether f#(X#) ∩# (yCf (x) − yt ≤ 0) = ⊥ holds for each t. In
case of yes, it indicates that the label t cannot be classified, as it is dominated

Input Set Hidden Set Output Set

Layer 1 (Shear)

Layer 1 (Shear)

Layer 1 (Shear)

Layer 2 (Rotate)

Layer 2 (Rotate)

Layer 2 (Rotate)

Tighter Bounds
from Par88oning

Fig. 2: Partitioner Intuition. (Top) Large input sets cause loose
bounds on NN output sets, even for this simple 2-layer NN with linear
activations. (Bottom) Tighter bounds can be achieved by partitioning
the input set, propagating each cell through the NN, and merging the
output sets [14], [17].

gies of the nonlinear activation functions. At one extreme,
Interval Bound Propagation (IBP) [7] approximates the output
of each layer with a tight `1 ball, leading to conservative but
fast-to-compute bounds of the final layer. Convex relaxation-
based techniques [18] often achieve tighter bounds with more
computation by approximating nonlinear activations with lin-
ear bounds – some of these can be solved in closed-form [10],
[11]. Other propagators provide tighter analysis at the cost
of higher computation time, including approaches based on
QP/SDP [8], [9], and convex relaxation refinements [19].
While this paper focuses on analysis of trained NNs, several
recent works consider the orthogonal problem of how to use
these propagation techniques during training [20].

B. Partitioners

Partitioners break the input set into smaller regions, compute
the reachable set of each small region, and return the total
reachable set as the union of each smaller region’s reachable
set. The idea is depicted in Fig. 2 for a simple NN with linear
activations. In the top row (without partitioning) IBP operates
on the full input set, leading to excessive conservatism in the
final output bound (top right: large red dashes vs. red shaded
region). The bottom row shows how IBP on two halves of the
input set leads to a tighter approximation of the output set.

The key difference between partitioning approaches is the
strategy for how to split the input set. Some works make one
bisection of the input set [13]; [14] splits the input set into
a uniform grid; [15] uses gradients to decide which cells to
split for ReLU NNs. [16] improves on [15] using “shadow
prices” to optimize how to split a particular cell (i.e., along
which dimension), but does not provide a way of choosing
which cells to split when computing tight reachable sets. As
illustrated in [17], substantial performance improvements can
be achieved by stopping the refinement of cells that are already
sufficiently refined. Thus, the current state-of-art partitioner,
a Simulation-Guided approach (SG) [17], uses a partitioning
strategy where Monte Carlo samples of the exact NN output
are used as guidance for efficient partitioning of the input
set, reducing the amount of computation required for the
same level of bound tightness. SG used IBP to compute
output sets, and the two ideas of Partitioners and Propagators

have been developed separately toward a similar objective.
This work addresses key gaps in the partitioning literature:
we unify Partitioners with state-of-art Propagators for better
performance, propose new partitioners that are flexible in the
desired output set shape. We then show how improvements in
robustness analysis map directly to reduced conservatism in
control tasks.

III. APPROACH

This section introduces the overall architecture, describes
our new partitioning algorithms, then analyzes the reduction
in conservatism from partitioning. Figure 1 shows a schematic
of the proposed framework with its three nested modules:
Analyzer, Partitioner and Propagator. The Analyzer is aware
of the desired output shape (e.g., lower bounds, `1-ball,
convex hull) and termination condition (e.g., computation
time, number of Propagator calls, improvement per step). The
Analyzer specifies a Propagator (e.g., CROWN [10], IBP [7],
SDP [9], Fast-Lin [11]) and a Partitioner (e.g., Uniform [14],
Sim-Guided [17] or the algorithms proposed in this section).
The Partitioner decides how to split the input set into cells,
and the Propagator is used by the Partitioner to estimate the
output set corresponding to an input set cell.

A. Greedy Simulation-Guided Partitioning
The state-of-art partitioning algorithm, SG [17], tightens

IBP’s approximated boundary with the following key steps:
(1) acquire N Monte Carlo samples of the NN outputs to
under-approximate the reachable set as the interval [usim]
(where [·] denotes a closed n-dimensional interval), (2) using
IBP, compute the reachable set of the full input set and add
this set to a stack M , and (3) (iteratively) pop an element
from M , and either stop refining that cell if its computed
reachable set is within [usim], or bisect the cell, compute
each bisection’s reachable set, and add both to the stack. The
SG algorithm terminates when one of the cell’s dimensions
reaches some threshold, and the returned reachable set estimate
is the weighted `1-ball that surrounds the union of all of the
cells remaining on the stack and [usim].

We propose a partitioning algorithm with better bound
tightness for the same amount of computation, called Greedy-
Sim-Guided (GSG), described in Alg. 1, by modifying the
choice of which cell in M to refine at each step. Rather than
popping the first element from the stack (LIFO) as in SG,
GSG refines the input cell with corresponding output range
that is furthest outside the output boundary of the N samples
(Line 17). This is illustrated in Fig. 3a, where the input cell
corresponding to d2 would be refined before d1, because d2’s
output set (magenta) further exceeds the simulation-guided
boundary estimate (black rectangle surrounding the black NN
samples).

Whereas SG might choose a cell that is not pushing the
overall boundary outward at a given iteration, GSG will always
choose to refine an input cell that is pushing the boundary. This
heuristic gives the opportunity to reduce the boundary estimate
at each iteration. While the core SG algorithm remains the
same, the greedy strategy can greatly improve the algorithm’s
performance.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on April 08,2021 at 07:08:10 UTC from IEEE Xplore.  Restrictions apply. 
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1. Analysis of Bayesian Networks via Prob-Solvable Loops

Ezio Bartocci, Laura Kovács, Miroslav Stankovic: Analysis of Bayesian Networks via
Prob-Solvable Loops. ICTAC 2020 (B/M)

• Encoding the following types of BNs as
Prob-solvable loops

– discrete BNs

– Gaussian BNs

– Dynamic BNs

• Looking into the following problems

– exact inference

– expected number of samples

– sensitivity analysis
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https://link.springer.com/chapter/10.1007/978-3-030-64276-1_12
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2. Formal Verification of Bayesian Network Classifiers

Andy Shih, Arthur Choi, Adnan Darwiche: Formal Verification of Bayesian Network
Classifiers. PGM 2018 (B/M)

• Compiling Bayesian network classifiers into Ordered Decision Diagrams

• Verifying BN classifiers using ODDs
– monotonicity checking
– finding irrelevant features
– verifying classification robustness
– verifying If-Then rules and decision independence
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https://www.semanticscholar.org/paper/Formal-Verification-of-Bayesian-Network-Classifiers-Shih-Choi/3be453b8dc7e58f15f88a2687938284c076fe7b2
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3. On the Relative Expressiveness of Bayesian and Neural Networks

Arthur Choi, Ruocheng Wang, Adnan Darwiche: On the Relative Expressiveness of
Bayesian and Neural Networks. Int. J. Approx. Reason. 2019 (M)

• Reviewing class of functions induced by
neural and Bayesian networks

• Identifying the corresponding gap in
expressiveness

• Proposing a new class of Bayesian
networks, namely Testing Bayesian
Networks

• Investigating expressiveness of TBNs
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Quantitative Loop Invariants

• Reasoning about loops is the hardest task in (probabilistic) program
verification.
• “Practical” approach: capture the loop effect by an invarianta.
• But how to (automatically) find an appropriate loop invariant?

1. Constraint solving-based numerical approach:
Feng Y. et al.: Finding Polynomial Loop Invariants for Probabilistic
Programs. ATVA 2017. (M)

2. Martingale-based symbolic method:
Barthe G. et al.: Synthesizing Probabilistic Invariants via Doob’s
Decomposition. CAV 2016. (M)

3. Moment-based approach by solving recurrences:
Bartocci E. et al.: Automatic Generation of Moment-Based Invariants for
Prob-Solvable Loops. ATVA 2019. (M)

aA loop invariant is a property of a loop that is true before and after each iteration.

©A. McIver & C. Morgan, 2005
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Formal Approaches to Systems Engineering

• Goal: ensure Reliability, Availability, Maintainability, and
Security (RAMS) of (computer) systems
• Fault Trees as popular modelling formalism of RAMS-domain
• Use of formal methods to analyse fault trees
• Specifically: probabilistic model checking
• Doing this efficiently is a challenge
• Topics:

1. Bäckström et al.: Effective Static and Dynamic Fault Tree Analysis.
SAFECOMP 2016 (B)
� presents efficient static and dynamic analyses of dynamic fault

trees
2. Kordy et al.: Attack-Defense Trees. J. Log. Comput. 24, 2014 (B)
� surveys various usage scenarios and semantics for

attack-defence scenarios for security applications
3. Aslanyan et al.: Quantitative Verification and Synthesis of

Attack-Defence Scenarios. CSF 2016 (B/M)
� translates attack defence trees to two-player games to enable

their stochastic analysis
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Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!
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