

Seminar Trends in Computer-Aided Verification

Introduction Summer Semester 2021; April 14, 2021 Thomas Noll et al. Software Modeling and Verification Group

RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-20-21/propro/

Aims of this Seminar

Important Dates

Verification of Neural Networks [Christopher Brix, Thomas Noll]

Analysis of Bayesian Networks [Bahare Salmani]

Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]

Formal Approaches to Systems Engineering [Shahid Khan]

Final Hints

Seminar *Trends in Computer-Aided Verification* Thomas Noll Summer Semester 2021

Formal Verification Methods

Formal verification methods

- Rigorous, mathematically based techniques for the specification, development and verification of software and hardware systems
- Aim at improving correctness, reliability and robustness of such systems

Formal Verification Methods

Formal verification methods

- Rigorous, mathematically based techniques for the specification, development and verification of software and hardware systems
- Aim at improving correctness, reliability and robustness of such systems

Classifications

- According to design phase
 - specification, implementation, testing, ...
- According to specification formalism
 - source code, neural networks, Bayesian networks, fault trees, ...
- According to underlying mathematical theories
 - model checking, theorem proving, static analysis, ...

Areas Covered in this Seminar

Topic areas

- Robustness Analysis of Neural Networks
- Analysis of Bayesian Networks
- Synthesizing Quantitative Loop Invariants for Probabilistic Programs
- Formal Approaches to Systems Engineering

Aims of this Seminar

Important Dates

Verification of Neural Networks [Christopher Brix, Thomas Noll]

Analysis of Bayesian Networks [Bahare Salmani]

Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]

Formal Approaches to Systems Engineering [Shahid Khan]

Goals

6 of 27

Aims of this seminar

- Independent understanding of a scientific topic
- Acquiring, reading and understanding scientific literature
 - given references sufficient in most cases
- Writing of your own report on this topic
 - far more that just a translation/rewording
 - usually an "extended subset" of original literature
 - "subset": present core ideas and omit too specific details (e.g., related work or optimisations)
 - "extended": more extensive explanations, examples, ...
 - discuss contents with supervisor!
- Oral presentation of your results
 - can be "proper subset" of report
 - generally: less (detailed) definitions/proofs and more examples

Requirements on Report

Your report

- Independent writing of a report of 12–15 pages
- First milestone: detailed outline
 - not: "1. Introduction/2. Main part/3. Conclusions"
 - rather: overview of structure (section headers, main definitions/theorems) and initial part of main section (one page)
- Complete set of references to all consulted literature
- Correct citation of important literature
- Plagiarism: taking text blocks (from literature or web) without source indication causes immediate exclusion from this seminar
- Font size 12pt with "standard" page layout
 - LATEX template will be made available on seminar web page
- Language: German or English
- We expect the correct usage of spelling and grammar
 - \geq 10 errors per page \Longrightarrow abortion of correction

Requirements on Talk

Your talk

- Talk of 30 minutes
- Organised as Zoom meeting
- Focus your talk on the audience
- Descriptive slides:
 - \leq 15 lines of text
 - use (base) colors in a useful manner
 - number your slides
- Language: German or English
- No spelling mistakes please!
- Finish in time. Overtime is bad
- Ask for questions

- Have backup slides ready for expected questions
- LATEX/beamer template will be made available on seminar web page

- Aims of this Seminar
- Important Dates
- Verification of Neural Networks [Christopher Brix, Thomas Noll]
- Analysis of Bayesian Networks [Bahare Salmani]
- Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]
- Formal Approaches to Systems Engineering [Shahid Khan]
- **Final Hints**

Seminar *Trends in Computer-Aided Verification* Thomas Noll Summer Semester 2021

Important Dates

Deadlines

- April 18: Topic preferences due
- May 10: Detailed outline due
- June 7: Full report due
- June 28: Presentation slides due
- July 13 (?): Seminar talks

Important

Missing a deadline causes immediate exclusion from the seminar

Selecting Your Topic

Procedure

- Check out Foodle poll at https://terminplaner.dfn.de/qhUSVZHyboDWZP63
- Topics classified according to BSc/MSc level
- Please give at least three "Yes" votes \checkmark
- Preferably additional "Maybe" votes (

 Image: Second Second
- Give as comment:
 - preference of topics (if desired)
 - language of report and talk (English/German)
- Fill form by Sunday, April 18
- We do our best to find an adequate topic-student assignment
 - disclaimer: no guarantee for an optimal solution
- Assignment of topics and supervisors will be published on web site by mid next week

Withdrawal

- You have up to three weeks to refrain from participating in this seminar.
- Later cancellation (by you or by us) causes a not passed for this seminar and reduces your (three) possibilities by one.

Aims of this Seminar

Important Dates

Verification of Neural Networks [Christopher Brix, Thomas Noll]

Analysis of Bayesian Networks [Bahare Salmani]

Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]

Formal Approaches to Systems Engineering [Shahid Khan]

Machine Learning

Machine Learning

13 of 27 Seminar Trends in Computer-Aided Verification Thomas Noll Summer Semester 2021

Machine Learning

Inference

Adversarial Examples

+ 0.007 \cdot

Adversarial Example [Goodfellow 2015]

Software Modeling

14 of 27 Seminar Trends in Computer-Aided Verification Thomas Noll Summer Semester 2021

Adversarial Examples

Adversarial Example [Goodfellow 2015]

Adversarial Attack

=

Questions

How to

- find adversarial examples if they exist?
- prove that no adversarial examples exist?
- do so automatically?
- do so efficiently (avoid exponential runtime)?

Topics I

- 1. Efficient Formal Safety Analysis of Neural Networks
 - (Wang et al.) (B/M)
 - Describes a toolkit for automatic verification
 - Uses symbolic propagation (tracking of dependencies)
 - Approximates piecewise linear activation functions
- 2. Efficient Neural Network Verification via Adaptive Refinement and Adversarial Search (Henriksen, Lomuscio) (M)
 - Describes an improved toolkit
 - Can also approximate non-linear functions (sigmoid, tanh)
- 3. *Star-Based Reachability Analysis of Deep Neural Networks* (Tran et al.) (M)
 - Describes an alternative approach
 - No approximation is needed (sound and complete)
 - All (not just one) adversarial examples can be found

Topics II

- 4. Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification (Li et al.) (B/M)
 - Systematic investigation of symbolic domains
 - Based on Abstract Interpretation and SMT methods
- 5. Improving Neural Network Verification through Spurious Region Guided Refinement (Yang et al.) (B/M)
 - Elimination of spurious adversarial examples by linear programming techniques
 - Based on DeepPoly framework
- 6. Robustness Analysis of Neural Networks via Efficient Partitioning with Applications in Control Systems (Everett, Habibi, How) (M)
 - Application of propagation and partitioning techniques to control systems

17 of 27 Seminar Trends in Computer-Aided Verification Thomas Noll Summer Semester 2021

Aims of this Seminar

Important Dates

Verification of Neural Networks [Christopher Brix, Thomas Noll]

Analysis of Bayesian Networks [Bahare Salmani]

Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]

Formal Approaches to Systems Engineering [Shahid Khan]

1. Analysis of Bayesian Networks via Prob-Solvable Loops

Ezio Bartocci, Laura Kovács, Miroslav Stankovic: *Analysis of Bayesian Networks via Prob-Solvable Loops.* ICTAC 2020 (B/M)

- Encoding the following types of BNs as Prob-solvable loops
 - discrete BNs
 - Gaussian BNs
 - Dynamic BNs
- Looking into the following problems
 - exact inference
 - expected number of samples
 - sensitivity analysis

2. Formal Verification of Bayesian Network Classifiers

Andy Shih, Arthur Choi, Adnan Darwiche: *Formal Verification of Bayesian Network Classifiers.* PGM 2018 (B/M)

- Compiling Bayesian network classifiers into Ordered Decision Diagrams
- Verifying BN classifiers using ODDs
 - monotonicity checking
 - finding irrelevant features
 - verifying classification robustness
 - verifying If-Then rules and decision independence

(a) A naive Bayes classifier

(b) An OBDD

3. On the Relative Expressiveness of Bayesian and Neural Networks

Arthur Choi, Ruocheng Wang, Adnan Darwiche: *On the Relative Expressiveness of Bayesian and Neural Networks.* Int. J. Approx. Reason. 2019 (M)

- Reviewing class of functions induced by neural and Bayesian networks
- Identifying the corresponding gap in expressiveness
- Proposing a new class of Bayesian networks, namely Testing Bayesian Networks
- Investigating expressiveness of TBNs

Thomas Noll

Summer Semester 2021

21 of 27

Seminar Trends in Computer-Aided Verification

Aims of this Seminar

Important Dates

Verification of Neural Networks [Christopher Brix, Thomas Noll]

Analysis of Bayesian Networks [Bahare Salmani]

Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]

Formal Approaches to Systems Engineering [Shahid Khan]

Quantitative Loop Invariants

- Reasoning about loops is the hardest task in (probabilistic) program verification.
- "Practical" approach: capture the loop effect by an invariant^a.
- But how to (automatically) find an appropriate loop invariant?
 - 1. Constraint solving-based numerical approach:

Feng Y. *et al.*: *Finding Polynomial Loop Invariants for Probabilistic Programs*. ATVA 2017. (M)

- Martingale-based symbolic method: Barthe G. *et al.*: *Synthesizing Probabilistic Invariants via Doob's Decomposition*. CAV 2016. (M)
- 3. Moment-based approach by solving recurrences: Bartocci E. *et al.*: *Automatic Generation of Moment-Based Invariants for Prob-Solvable Loops*. ATVA 2019. (M)

^aA loop invariant is a property of a loop that is true before and after each iteration.

©A. McIver & C. Morgan, 2005

- Aims of this Seminar
- Important Dates
- Verification of Neural Networks [Christopher Brix, Thomas Noll]
- Analysis of Bayesian Networks [Bahare Salmani]
- Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]
- Formal Approaches to Systems Engineering [Shahid Khan]

Formal Approaches to Systems Engineering

- Goal: ensure Reliability, Availability, Maintainability, and Security (RAMS) of (computer) systems
- Fault Trees as popular modelling formalism of RAMS-domain
- Use of formal methods to analyse fault trees
- Specifically: probabilistic model checking
- Doing this efficiently is a challenge
- Topics:
 - 1. Bäckström et al.: *Effective Static and Dynamic Fault Tree Analysis*. SAFECOMP 2016 (B)
 - presents efficient static and dynamic analyses of dynamic fault trees
 - 2. Kordy et al.: Attack-Defense Trees. J. Log. Comput. 24, 2014 (B)
 - surveys various usage scenarios and semantics for attack-defence scenarios for security applications
 - 3. Aslanyan et al.: *Quantitative Verification and Synthesis of Attack-Defence Scenarios*. CSF 2016 (B/M)
 - translates attack defence trees to two-player games to enable their stochastic analysis

- Aims of this Seminar
- Important Dates
- Verification of Neural Networks [Christopher Brix, Thomas Noll]
- Analysis of Bayesian Networks [Bahare Salmani]
- Synthesizing Quantitative Loop Invariants for Probabilistic Programs [Mingshuai Chen]
- Formal Approaches to Systems Engineering [Shahid Khan]

Some Final Hints

Hints

- Take your time to understand your literature.
- Be proactive! Look for additional literature and information.
- Discuss the content of your report with other students.
- Be proactive! Contact your supervisor on time.
- Prepare the meeting(s) with your supervisor.
- Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

