Exercises (Context-Free Languages)

C1: Construction of Context-Free Grammars

Task: Give context-free grammars that generate the following languages.

(a)
$$L := \{a^k b^l c^{k+l} \mid k, l \in \mathbb{N}\}$$

(b)
$$L := \{a^k b^k c^l d^l \mid k, l \in \mathbb{N}\}$$

(c)
$$L := \{a^k b^l \mid k \ge 1, l > k\}$$

(d)
$$L := \{w \in \{a,b\}^* \mid |w| \text{ odd}, a \text{ in middle position}\} \ (= \{uav \in \{a,b\}^* \mid |u| = |v|\})$$

(e)
$$L = \{a^k b^l c^m \mid k, l, m \in \mathbb{N}, k = l \text{ or } k = m\}$$

C2: From Regular to Context-Free Languages

Task: Show that every regular expression can directly be translated into an equivalent context-free grammar.

C3: Chomsky Normal Form

Task: Transform the following grammar into Chomsky Normal Form:

$$\begin{array}{l} S \rightarrow xAx \mid CyBA \mid BB \mid z \mid xxx \\ A \rightarrow C \mid xy \\ B \rightarrow A \\ C \rightarrow yyy \mid B \end{array}$$

C4: The Word Problem for Context-Free Languages

Task: Let G be the following context-free grammar:

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

and let w := baaba. Employ the CYK-Algorithm to show that $w \in L(G)$. Use the following table to compute the sets

$$N_{i,j} := \{ A \in N \mid A \Rightarrow^* w[i,j] \} \qquad (1 \le i \le j \le 5)$$

where $w[i, j] := a_i \dots a_j$ for $w = a_1 a_2 a_3 a_4 a_5$.

$\lceil i \backslash j \rceil$	1	2	3	4	5
$\boxed{1}$					
2	X				
3	X	X			
4	X	X	X		
5	X	X	X	X	