
A6: Elimination of ε -Transitions

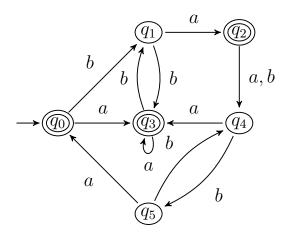
Task: Eliminate all ε -transitions of the following ε -NFA $\mathfrak A$ over $\Sigma:=\{a,b\}$ to obtain an equivalent NFA.

A8: Construction of Regular Expressions

Task: Give regular expressions that describe the following languages.

- (a) $L:=\{w\in\{a,b\}^*\mid |w| \text{ divisible by } 3\}$
- (b) $L:=\{w\in\{a,b,c\}^*\mid w \text{ does not contain } a,\,b,\,\text{or } c\}$
- (c) $L := \{w \in \{a,b\}^* \mid \text{substring } ab \text{ occurs exactly twice in } w, \text{ but not at the end} \}$

A9: From Regular Expressions to Finite Automata


Task: Using Kleene's construction, give the ε -NFA for the regular expression $(aa \mid b)^*$.

A3: Operations on Languages and Automata

Task: Show that regular languages are closed under the reversal operation.

A10: Minimisation of Deterministic Finite Automata

Task: Minimise the following DFA.

