A6: Elimination of ε-Transitions
Task: Eliminate all ε-transitions of the following ε-NFA \mathfrak{A} over $\Sigma:=\{a, b\}$ to obtain an equivalent NFA.

$$
\begin{aligned}
& D F a, O=\left(Q, 2, J_{90}, F\right) \\
& \begin{array}{l}
\text { CNFA, } \\
\Sigma-N F N:
\end{array} \\
& \delta: Q \times \Sigma \rightarrow Q \\
& \Delta: Q \times \Sigma \times Q \\
& \Delta: U \times \Sigma_{\varepsilon} \times Q \Sigma_{1} \Sigma_{\Sigma}=\Sigma u\{\varepsilon\} \\
& \varepsilon-N F A, \theta \longrightarrow N F A Q^{\prime} \text { : }
\end{aligned}
$$

it $p \xrightarrow{\varepsilon}{ }_{a}, \underline{a}, \underline{\varepsilon}{ }_{a}^{t g}$ in $\pi c_{t}(t)$ then $p \overrightarrow{b a} q$ in q^{\prime} a ${ }^{a}$ original

A8: Construction of Regular Expressions
Task: Give regular expressions that describe the following languages
(a) $L:=\left\{w \in\{a, b\}^{*}| | w \mid\right.$ divisible by 3$\}$
(b) $L:=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ does not contain a, b, or $\left.c\right\}$
(c) $L:=\left\{w \in\{a, b\}^{*} \mid\right.$ substring $a b$ occurs exactly twice in w, but not at the end $\}$

Reg. expo! $\theta, \Sigma, a(\epsilon \Sigma)$,

$$
\alpha \mid \beta, \alpha \cdot \beta, \alpha^{*}
$$

(a) $((a \mid b) \cdot(a \mid b) \cdot(a \mid b))^{k}$
(for all reg. expo. $\alpha, E \in L\left(\alpha^{k}\right)$)
$(b)(b \mid c)^{k}\left|(a \mid c)^{k}\right|(a \mid b)^{k}$
(c) $\underbrace{b^{k} a b^{+}+\underbrace{+}_{\text {ind }}{ }^{+} b\left(b^{+} a^{t} / b^{*} a^{+}\right)}_{\text {pst }}$
$b a a b_{a}^{b} a b \quad$ for reg.exper.
$\alpha^{t}:=\alpha \alpha^{*}$

A9: From Regular Expressions to Finite Automata
Task: Using Kleene's construction, give the ε-NFA for the regular expression $(a a \mid b)^{*}$.

$$
\begin{aligned}
& a: \rightarrow 0 \stackrel{a}{\rightarrow} 0 \\
& a a: \rightarrow 0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{a}(0) \\
& b: \rightarrow 0 \xrightarrow{b} 0
\end{aligned}
$$

$$
\rightarrow 0^{\prime} \frac{\varepsilon}{\varepsilon}>0 \xrightarrow{b} 0 \xrightarrow{\varepsilon}(0)
$$

$$
\left(\text { aa |b) }{ }^{*}: \underset{c}{\varepsilon} 0 \stackrel{a}{c} 0 \xrightarrow{\varepsilon} 0 \stackrel{a}{c} 0\right. \text { bs }
$$

A10: Minimisation of Deterministic Finite Automata
Task: Minimise the following DFA.

$$
\delta: Q \times \Sigma \rightarrow Q
$$

$$
\delta^{*}: 0 \times \Sigma^{*} \rightarrow 0
$$

Minimisation of DFAS: P,qEQ equivalent int $\forall w \in \Sigma^{*}: \delta^{*}(p, w) \in \mathcal{F}$ $\Leftrightarrow \int^{*}(q, w) \in F$
$\left.\begin{array}{l:lllllll} & q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & q_{5} \\ q_{0} & \mathcal{E} & a & \overline{1} & \sum & \varepsilon \\ q_{n} \\ q_{2} \\ q_{3} \\ q_{4} \\ q_{5}\end{array}\right)$

A: "Toolchain"
Task: Construct a DFA accepting the language described by $\alpha=\left(a b^{*}\right)^{*}$
(1) Σ-NFQ,

$$
\begin{equation*}
\xrightarrow[\varepsilon]{(90)} \underset{\sim}{\left.\underline{\varepsilon},(9)^{a}\right)} \tag{93}
\end{equation*}
$$

(2) E-elimination:

(3) Powerset construction,

