A6: Elimination of ε -Transitions

Task: Eliminate all ε -transitions of the following ε -NFA \mathfrak{A} over $\Sigma := \{a, b\}$ to obtain an equivalent NFA.

A8: Construction of Regular Expressions

Task: Give regular expressions that describe the following languages.

- (a) $L := \{w \in \{a, b\}^* \mid |w| \text{ divisible by } 3\}$
- (b) $L := \{w \in \{a, b, c\}^* \mid w \text{ does not contain } a, b, \text{ or } c\}$
- (c) $L := \{w \in \{a, b\}^* \mid \text{substring } ab \text{ occurs exactly twice in } w, \text{ but not at the end}\}$

Rug. eapr:
$$D, E, a (eZ), x/l, a^{*}$$

(a) $((a | b) \cdot (a | b) \cdot (a | b))^{k}$
(for all rug. expr. $x_{l} E \in L(a^{*})$)
(b) $(b | c)^{k} | (a | c)^{k} | (a | b)^{k}$
(c) $(b | c)^{k} | (a | c)^{k} | (a | b)^{k} a^{*} | b^{*} | b^{*} a^{*} | b^{*} a^{*} | b^{*} | b^{*$

A9: From Regular Expressions to Finite Automata

Task: Using Kleene's construction, give the ε -NFA for the regular expression $(aa \mid b)^*$.

A10: Minimisation of Deterministic Finite Automata

Task: Minimise the following DFA.

A: "Toolchain"

Task: Construct a DFA accepting the language described by $\alpha = (ab^*)^*$.

(1) E-NFA. E ->(9) $\left(\begin{array}{c} \mathcal{G} \end{array} \right)$ 5 E-elimination: (2)(3) Powerset construction, 9,6 (97,92,93)a12,6