
2W E A K E S T P R E C O N D I T I O N R E A S O N I N G

Weakest precondition reasoning [Dij75; Dij76] is a technique devel-
oped by Edsger Wybe Dijkstra for formal reasoning about the cor-
rectness of nonprobabilistic programs. In this chapter, we will in-

troduce this technique and show how it can be generalized to allow for quan-
titative reasoning. Later, in Chapter 4, we will see how those quantitative
techniques can be extended to reasoning about probabilistic programs.

This chapter is organized as follows: We first present the programming
language GCL. This language (as well as probabilistic and recursive exten-
sions of it) will be used throughout this entire thesis. We then recap Dijk-
stra’s original weakest precondition calculus which allows for reasoning at
the level of predicates. Finally, we show how to extend this style of reason-
ing beyond predicates to quantities, e.g. values of program variables.

2.1 T H E G UA R D E D C O M M A N D L A N G UAG E (GCL)

Dijkstra’s Guarded Command Language (GCL) [Dij76] is a very simple,
yet Turing–complete [Wikm], imperative model programming language

that still provides enough structure to produce readable programs. In that
sense the GCL formalism lies between elementary models of computation
like e.g. Turing–machines or the Lambda calculus (very simple formalism,
less readable programs) and higher programming languages like e.g. C++ or
Java (more complex formalism, much more readable programs).

We use GCL to describe ordinary, i.e. nonprobabilistic, programs. There is
thus no access to any source of randomness within GCL. On the other hand,
we will later see that GCL does include features for modeling uncertainty,
namely nondeterministic choices. Later in Chapter 3, we will see how this
language can be extended further to express probabilistic computations as
well. For now, though, let us consider only ordinary, deterministic programs:

Definition 2.1 (The Guarded Command Language [Dij76]):
a. Let Vars be a countable set of program variables and let Vals be a

countable set of values. If not explicitly stated otherwise, we let
Vals =Q, where Q is the set of rational numbers. For later use, let
ℵ : N→ Vals. be a bijective canonical enumeration of Vals.

b. The set of program states is given by

Σ = {σ | σ : Vars→ Vals } .

23

24 weakest precondition reasoning

c. The set of programs in guarded command language, denoted GCL,
is given by the grammar

C −→ skip (effectless program)

| diverge (freeze)

| x := E (assignment)

| C # C (sequential composition)

| if (ϕ) {C } else {C } (conditional choice)

| while (ϕ) {C } , (while loop)

where x ∈ Vars is a program variable, E is an arithmetic expres-
sion over program variables, and ϕ is a boolean expression over
program variables guarding a choice or a loop.

d. A program containing no diverge or while loops is loop–free.

e. Given a program state σ , we denote by σ (E) the evaluation of ex-
pression E in σ , i.e. the value obtained by evaluating E after re-
placing any occurrence of any program variable x in E by the value
σ (x). Analogously, we denote by σ (ϕ) the evaluation of ϕ in σ to
either true or false. Furthermore, for a value v ∈ Vals we write
σ [x 7→ v] to indicate that in σ we set x to v, i.e.1

σ [x 7→ v] = λy�

v, if y = x

σ (y), if y , x .

f. We use the Iverson bracket notation [Wikg] to associate with each
guard its according indicator function. The Iverson bracket [ϕ] of
guard ϕ is thus defined as the function

[ϕ] : Σ→ {0, 1}, [ϕ] (σ) =

1, if σ (ϕ) = true

0, if σ (ϕ) = false.

Let us examine the computational effects of all GCL constructs. We start with
the atomic programs: The effectless program skip does nothing, meaning
that it terminates immediately in an unaltered program state. Starting in an
initial state σ , the program skip will terminate in the same final state σ .

The freezing program diverge is a program that immediately enters an
endless busy loop and therefore it does not terminate (diverges) regardless
of the initial state it is started in. It can be thought of as a shorthand notation
for the endless loop while (true) {skip } (for the effects of loops, see below).

1 We use λ–expressions to construct functions: λξ� ε stands for the function that, when applied
to an argument α, evaluates to ε in which every occurrence of ξ is replaced by α.

2.1 the guarded command language (GCL) 25

The assignment x := E is the (only) statement that directly alters the pro-
gram state. It evaluates E in the current program state and sets program
variable x to the thusly obtained value. When executed on an initial state σ ,
the assignment x := E thus terminates in final state σ [x 7→ σ (E)].

We proceed with the composed statements: The sequentially composed
program C1 # C2 has exactly the effect one would expect: First C1 is executed
and after its termination C2 is executed. So if C1 transforms state σ into σ ′

and C2 transforms σ ′ into σ ′′ , then C1 # C2 transforms σ into σ ′′ . Notice that
if C1 diverges on σ (e.g. if C1 = diverge), then so does C1 # C2.

The construct if (ϕ) {C1 } else {C2 } is a conditional choice. Guard ϕ is
a boolean expression over program variables, thus e.g. of the form x > 0 or
(x + y ≤ z + 17)∧ (z , 0). If ϕ evaluates to true in the current program state,
then C1 is executed and if ϕ evaluates to false, then C2 is executed.

Example 2.2 (Deterministic GCL Programs):
Consider the following loop–free GCL program:

C2.2 � if (y > 0) {x := 5 } else {x := 2 } #
y := x − 3 #
skip

First, this program checks whether y is strictly larger than 0. If this is the
case, it sets x to 5. Otherwise (i.e. if y ≤ 0) it sets x to 2. After that, the
program sets y to the value of x decreased by 3. Finally, the program does an
effectless operation by performing a skip statement.

The last construct while (ϕ) {C } is a guarded while loop, that is executed
as follows: If in the current program state σ the guard ϕ evaluates to false,
then the whole loop immediately terminates without any effect. If on the
other hand ϕ evaluates to true, then the loop body C is executed. After
C has terminated in some state σ ′ (if C in fact terminates), the whole loop
construct is invoked all over again but now starting from initial state σ ′ : If ϕ
evaluates to false in state σ ′ , the loop terminates, otherwise C is executed to
obtain a next state σ ′′ , and so on. In principle the loop while (ϕ) {C } is thus
equivalent to the infinitely long (thus not well–formed) program

if (ϕ) {C # if (ϕ) {C # · · · } else {skip } } else {skip }

which is an infinite nesting of simple conditional choices.
Notice that loops need not terminate on all initial states: Consider

while (x , 0) { x := x − 1} ,

which is a program that terminates only from those initial states σ in which
σ (x) is positive and moreover an integer.

26 weakest precondition reasoning

Example 2.3 (Deterministic GCL Programs):
Consider the following GCL program:

C2.3 � z := y #
while (x > 0) {

z := z+ 1 #
x := x − 1

}

C2.3 first sets z to y and then, as long as x is strictly larger than 0, it repeats
the following two steps: It adds 1 to z and subtracts 1 from x. These two
steps (i.e. the effect of the loop body) will be repeated in total dx0e times,
where x0 is the initial value of x.

Effectively this program therefore adds to y the rounded up value that x
initially had and stores that result in variable z. As a (possibly unwanted)
side–effect, the program also „forgets“ about the value of x by effectively
setting it to a value between 0 and −1.

2.2 R E A S O N I N G A B O U T P R E D I C AT E S

We now develop formal reasoning about correctness of GCL programs
at the level of predicates. For us, a predicate represents simply an

arbitrary subset of program states, i.e. we can think of a predicate F as

F ∈ P (Σ) ,

where for a set S we denote by P (S) its powerset. The predicate false stands
for the empty set ∅ and dually true stands for the entire set Σ. Furthermore,
¬F stands for the set Σ \ F, and F ∧G and F ∨G stand respectively for the
intersection and the union of the sets represented by F and G. We write

σ |= F

and say „σ satisfies F“ to indicate that state σ is in the set represented by
predicate F and σ 6|= F to indicate that σ is not in that set. We write

F1 =⇒ F2

and say „F1 implies F2“ to indicate that the set represented by predicate F1
is a subset of the set represented by predicate F2.

Our goal will be to associate to each program C and each predicate F (in-
terpreted as a set of final states) a predicate G (interpreted as a set of initial
states) such that if and only if the program C is started in any state σ |= G,
then C terminates in a state τ |= F. In the following we will gradually develop
a calculus for achieving this.

2.2 reasoning about predicates 27

Σ

G

¬G

Σ

F

¬F

Figure 2.1: Hoare triple 〈G 〉 C 〈F 〉 is valid: Starting in G, C will terminate in F. Start-
ing in ¬G, we do not know whether C diverges or terminates in F or ¬F.

2.2.1 Hoare Triples

Hoare logic is a formal verification method seeded by the works of Robert
(Bob) W Floyd2 [Flo67a] and later developed further by Charles Antony
(Tony) Richard Hoare [Hoa69]. It is therefore also called Floyd–Hoare logic.

The crucial concept of this technique are Hoare triples: Given two predi-
cates F and G and a program C, a Hoare triple 〈G 〉 C 〈F 〉 is said to be valid
iff the following holds:

If program C is started in some initial state σ |= G,
then C terminates in a final state τ |= F.

Notice our notion of validity means „valid for total correctness“3 as pre-
sented by Manna & Pnueli [MP74]. In a more diagrammatic style, the sit-
uation is depicted in Figure 2.1. We call F a postcondition since we interpret
it as a predicate over final states, i.e. F shall hold after (post) the execution
of C. Dually, we call G a precondition since we interpret it as a predicate over
initial states, i.e. G shall hold before (pre) the execution of C.

There are two things we would like to emphasize here: First, the validity
of 〈G 〉 C 〈F 〉 still does not tell us anything about what happens when C is

2 Floyd’s middle name is in fact just W: „[Floyd] was indeed born with another middle name, but
he had it legally changed to ‚W‘—just as President Truman’s middle name was simply ‚S‘. Bob
liked to point out that ‚W.‘ is a valid abbreviation for ‚W‘.“ [Hai04]

3 As opposed to „valid for partial correctness“.

28 weakest precondition reasoning

executed on some initial state σ 6|= G. In particular, it might be the case that
C will terminate in a final state τ |= F nonetheless. This will be different for
the notion of weakest preconditions.

Secondly, if 〈G 〉 C 〈F 〉 is valid for some F, then it is guaranteed that C
terminates from any state σ |= G. This means in particular that the validity of
〈G 〉 C 〈 true〉 simply states that C terminates from every state σ |= G, but it
does not tell us anything about the final state τ , since ∀τ : τ |= true.

2.2.2 Weakest Preconditions

To circumvent the dissatisfactory situation that validity of 〈G 〉 C 〈F 〉 gives
no information about the states satisfying ¬G we now introduce the notion
of weakest preconditions [Dij75; Dij76]. Imagine for that a Hoare triple〈 〉

C
〈
F
〉
,

where the precondition is left open just like in a cloze — so to speak: a
Hoare triple with a blank. We would like to fill this blank in a very general
way, namely with the weakest possible predicate G in the following sense: Any
predicate G′ for which 〈G′ 〉 C 〈F 〉 is valid should imply the more general
(weaker) predicate G. Put more formally:

∀G′ : G′ =⇒ G iff
〈
G′

〉
C

〈
F
〉

is valid (2.1)

Given program C and postcondition F, we call the (unique) predicate G that
satisfies Condition (2.1) the

weakest precondition of C with respect to postcondition F,

denoted as wp JCK (F). As a diagram, the situation is depicted in Figure 2.2:
From any state σ |= G the program C terminates in some state τ |= F. More-
over, if C is started in a state σ 6|= G, then

G either C terminates in a state τ 6|= F,

G or C does not terminate at all.

It is easy to see that the Hoare triple 〈wp JCK (F)〉 C 〈F 〉 is always valid and
moreover that the following holds:〈

G′
〉
C

〈
F
〉

is valid iff G′ =⇒ wp JCK (F)

We can also see that the situation has now changed in comparison to Hoare
triples in the sense that executing C on initial state σ 6|= wp JCK (F) will defi-
nitely not terminate in a state τ |= F.

2.2 reasoning about predicates 29

Σ

G

¬G

Σ

F

¬F

Figure 2.2: G is the weakest precondition of C with respect to postcondition F:
Starting in G, C terminates in F. Starting in ¬G, C either diverges or
terminates in ¬F.

2.2.3 The Weakest Precondition Calculus

Though we have defined what weakest preconditions are, given a program
and a postcondition we yet have no method of finding out what the respective
weakest precondition is. In the following we will therefore show how to
obtain weakest preconditions in a systematic way, namely with the aid of a
backward moving continuation–passing style weakest precondition transformer.

2.2.3.1 Continuation–passing

The principle of a continuation–passing style transformer is depicted in Fig-
ure 2.3: Assume we want to know the weakest precondition of the composed
program C1 # C2 with respect to postcondition F. Then we start from the end
of C1 # C2 with continuation F and move backward to the position between C1
and C2. While moving that position, we also transition from F to the weakest
precondition of C2 with respect to F, i.e. to wp JC2K (F).

Let us denote by G the intermediate predicate wp JC2K (F). Then G rep-
resents by definition exactly those states from which execution of C2 will
terminate in F. Therefore, we want precisely G to be the postcondition that
the execution of C1 should terminate in, so that the execution of the entire
program C1 # C2 terminates in F.

30 weakest precondition reasoning

C2 Fwp JC2K (F)

postcondition F
evaluated in final states
after termination of C2

weakest precondition of C2
with respect to F

C1wp JC1K
(
wp JC2K (F)

)

weakest precondition of C1
with respect to wp JC2K (F)

or in other words:

weakest precondition of C1 # C2
with respect to F

Figure 2.3: Continuation–passing style weakest precondition transformer.

To the program C1 the predicate G is of course just an arbitrary continu-
ation as any other. We can therefore determine the weakest precondition of
C1 with respect to postcondition G by moving to the beginning of program
C1 while transitioning from G to wp JC1K (G). But since G = wp JC2K (F), we
have wp JC1K (G) = wp JC1K (wp JC2K (F)), and therefore we have effectively
moved from the end of program C1 # C2 to its beginning while transitioning
from F to the weakest precondition of C1 # C2 with respect to F.

Now that we have some familiarity with the basic concept of continua-
tion–passing, we will use it to give precise rules on how to obtain weakest
preconditions for any program with respect to any postcondition. It turns
out that this can be done in a very structured way, namely by induction on
the structure of the programs: For every program C, we will show how to
construct a continuation–passing style transformer wp JCK of type

wp JCK : P (Σ)→P (Σ) ,

that takes as input a postcondition F and returns the weakest precondition
of C with respect to postcondition F. We first show how to construct these
transformers for loop–free programs and then proceed with loops.

2.2.3.2 Weakest Preconditions of Loop–free Programs

The rules for constructing the wp transformer are given in Table 2.1. Let us
ignore the definition for while loops for the time being and let us go over
the other definitions one by one: Since the program skip has no effect, the
postcondition F has to be transformed to the very same precondition F, i.e.

wp JskipK (F) = F .

2.2 reasoning about predicates 31

C wpJCK(F)

skip F

diverge false

x := E F [x/E]

C1 # C2 wp JC1K
(
wp JC2K (F)

)
if (ϕ) {C1 } else {C2 }

(
ϕ ∧ wp JC1K (F)

)
∨

(
¬ϕ ∧ wp JC2K (F)

)
while (ϕ) {C′ } lfp X�

(
¬ϕ ∧ F

)
∨

(
ϕ ∧ wp JC′K (X)

)
Table 2.1: The weakest precondition transformer acting on predicates.

For the assignment x := E, we essentially replace every occurrence of x in F by
E. However, since E does not actually occur in F, we define

wp Jx := EK (F) = F [x/E] ,

where F [x/E] is a predicate whose indicator function is given by

λσ � [F] (σ [x 7→ σ (E)]) .

Notice that we have again used the Iverson bracket notation [F] above.

Example 2.4 (Weakest Preconditions of Assignments):

a. wp Jx := 5K (x ≤ 0) = (5 ≤ 0) = false

b. wp Jz := 18K (x = 0) = (x = 0)

c. wp Jx := 5K ((x > 2)→ (y = 7)) = (5 > 2)→ (y = 7)

= true→ (y = 7)

= (y = 7)

In the predicates above, the symbol → (logical implication) is the usual ab-
breviation for ¬A ∨ B. Notice that → is syntactic construct while =⇒ is a
semantic one: A→ B is one predicate while A =⇒ B is a statement concerning
the two predicates A and B.

Next, we turn to sequential composition: We have already seen the principle
of continuation–passing and this very principle is implemented in the def-

32 weakest precondition reasoning

inition of the transformer for sequential composition: Given the two trans-
formers wp JC1K and wp JC2K, we define

wp JC1 # C2K (F) = wp JC1K (wp JC2K (F)) .

The intuition for the conditional choice if (ϕ) {C1 } else {C2 } is the follow-
ing: If in the initial state σ , the guard ϕ is satisfied, then C1 will be executed.
We thus need to associate with that case the weakest precondition of C1 with
respect to F. As a predicate, this reads as4

ϕ→ wp JC1K (F) .

Dually, if we have σ 6|= ϕ, then C2 is executed and we thus need to associate
with that case the weakest precondition of C2. As a predicate, this reads as

¬ϕ→ wp JC2K (F) .

We can now express that both cases (the case for σ |= G and the case for σ 6|= G)
must hold true in one predicate, namely by

(ϕ→ wp JC1K (F)) ∧ (¬ϕ→ wp JC2K (F)) ,

which is logically equivalent to

(ϕ ∧ wp JC1K (F)) ∨ (¬ϕ ∧ wp JC2K (F)) .

We choose the latter over the former representation in Table 2.1 because we
will later associate ∧ with · and ∨ with +, whereas an arithmetic representa-
tion of→ is more cluttered and inconvenient.5

Before we turn our attention to the definition of wp for while loops, let us
take a look at how we can formally reason about the program from Exam-
ple 2.2 on page 25 by using the wp transformer:

Example 2.5 (Weakest Preconditions of Loop–Free Programs):
We will reconsider the program C2.2 from Example 2.2 and reason about the
set of initial states from which the execution of C2.2 terminates in a state
satisfying postcondition y2 > 2.

Throughout this thesis, we will use the notation

((G′

((G

C

((F

4 As usually, ¬ binds stronger than→.
5 Namely α→ β would need to be associated with (1−α) + β.

2.2 reasoning about predicates 33

to express the fact thatG = wp JCK (F) and moreover thatG′ is logically equiv-
alent to G. It is thus more intuitive to read annotated programs from bottom
to top, just like the wp transformer moves from the back to the front. Using
this notation, we can annotate the program C2.2 simply by applying the wp
rules from Table 2.1 as shown in Figure 2.4.

By these annotations, we have established wp JC2.2K
(
y2 > 0

)
= (y > 0). This

tells us that from any initial state in which y is larger than 0 the execution of
C2.2 terminates in some final state τ in which y2 is larger than 2.

Notice that y > 0 and y2 > 2 are evaluated in different states, namely in
initial and final states, respectively.

2.2.3.3 Weakest Preconditions of Loops

We now study weakest preconditions of loops. For the freezing program
diverge, notice that for any postcondition F there is no initial state σ from
which diverge terminates in some final state τ |= F (because diverge does
not terminate at all). So whatever precondition we assign to diverge with
respect to F, it may not be satisfiable by any σ . Therefore, the weakest pre-
condition of diverge with respect to any postcondition F must be defined as

wp JdivergeK (F) = false ,

since ∀σ : σ 6|= false.
If we take a look at the definition of wp for while loops in Table 2.1, we see

that it is defined using a least fixed point operator (lfp), namely as

lfp X� (¬ϕ ∧ F) ∨ (ϕ ∧ wp JC′K (X))︸ ︷︷ ︸
C Φ(X)

,

by which we mean the least fixed point of the characteristic function Φ(X).
This function is of type P (Σ)→P (Σ), thus mapping predicates to predicates.
A fixed point of Φ is a predicate G such that Φ(G) = G. But in what sense can
the fixed point be the least one? For that, we need to introduce some notion
of order on the set of predicates, i.e. on P (Σ). More concretely, =⇒ induces
a complete lattice (see Definition A.1) on P (Σ), i.e.

F1 „is smaller than or equal to“ F2 iff F1 =⇒ F2 .

The least element of the complete lattice (P (Σ) , =⇒) is false. The supremum
of a chain S ⊆ P (Σ) is given by

supS =
∨
F∈S

F ,

34 weakest precondition reasoning

((y > 0

(((y > 0 ∧ true) ∨ (y ≤ 0 ∧ false)

if (y > 0) {
((true

(((5− 3)2 > 2

x := 5

(((x − 3)2 > 2

}else {
((false

(((2− 3)2 > 2

x := 2

(((x − 3)2 > 2

} #
(((x − 3)2 > 2

y := x − 3 #

((y2 > 2

skip

((y2 > 2

Figure 2.4: Weakest precondition annotations for Example 2.5.

2.2 reasoning about predicates 35

which is the predicate that corresponds to the union of all sets corresponding
to the predicates in S.

One can now show that Φ is a continuous function (Definition A.2) und
we thus know by the Kleene fixed point theorem (Theorem A.5) that Φ has a
least fixed point, given by

lfp Φ = sup
n∈N

Φn(false) .

By the existence of the least fixed point, we have ensured that wp for while
loops is well–defined.

The evaluation of Φ0(false), Φ1(false), Φ2(false), . . . is called a fixed point
iteration and we callΦ i(false) the i-th iteration or i-th step of that fixed point
iteration. A very important fact about the fixed point iteration of continuous
functions is that, if started from the least element of the underlying complete
lattice, it converges monotonically to the least fixed point, meaning that in our
particular case we have an ascending chain

Φ0(false) =⇒ Φ1(false) =⇒ Φ2(false) =⇒ Φ3(false) =⇒

This follows by induction from continuity of Φ which implies monotonicity
of Φ (see Definition A.3 and A.4). For the base case, we have

Φ0(false) = false =⇒ Φ(false)

trivially, since false implies anything. Then, by monotonicity, we can per-
form the induction step. Assuming Φn(false) =⇒ Φn+1(0), we get

Φn+1(false) =⇒ Φn+2(0)

by monotonicity ofΦ . Let us revisit Example 2.3, and reason about a possibly
unwanted side–effect of that program (setting x to 0) using the wp calculus.

Example 2.6 (Weakest Preconditions of Loops):
Reconsider the program C2.3 from Example 2.3:

C2.3 � z := y #
while (x > 0) {

z := z+ 1 #
x := x − 1

}

We would like to reason about whether the program sets x exactly to 0, i.e.
about postcondition x = 0. The characteristic function of the while loop with
respect to postcondition x = 0 is given by

36 weakest precondition reasoning

Φ(X) = (x ≤ 0 ∧ x = 0) ∨ (x > 0 ∧ wp Jz := z+ 1 # x := x − 1K (X))

= (x = 0) ∨ (x > 0 ∧ wp Jz := z+ 1 # x := x − 1K (X)) .

Let us do the first three iterations of the fixed point iteration for Φ :

Φ0(false) = false

Φ1(false) = (x = 0)

Φ2(false) = (x = 0) ∨ (x = 1)

Φ3(false) = (x = 0) ∨ (x = 1) ∨ (x = 2)

Detailed calculations can be found in Appendix C.1 on page 323.
After three iterations, we can already start seeing a pattern for n > 1:

Φn(false) = (x = 0) ∨ (x = 1) ∨ . . . ∨ (x = n− 1) =
n−1∨
i=0

(x = i)

We could prove this pattern correct by induction on n, which we however
omit here. The above fixed point iteration will converge to the precondition

sup
n∈N

Φn(false) =
ω∨
i=0

(x = i) = (x ∈N) ,

and thus

wp Jwhile (x > 0) {z := z+ 1 # x := x − 1 }K (x = 0) = (x ∈N) . (2.2)

For the whole program, we can finally make these annotations:

((x ∈N
z := y #
((x ∈N (by Equation 2.2)

while (x > 0) {
z := z+ 1 #
x := x − 1 }

((x = 0

We have thus proven that from all initial states where x is a natural number,
the program sets x to 0.

While the above reasoning about the while loop was more or less ad–hoc, for-
mal reasoning about such fixed points in a systematic way is one of the most
difficult tasks in program verification. In general, this is not automatable, as

2.2 reasoning about predicates 37

this would contradict Rice’s Theorem [Ric53] and therefore ultimately con-
tradict the undecidability of the Halting Problem [Chu36; Tur37]. We show
how to reason about loops in a possibly more automatable way in Chapter 5.

2.2.4 Reasoning about Nondeterminism

So far, all GCL constructs were of deterministic nature: Given an initial state,
the behavior of the program was completely determined. We will now intro-
duce some notion of uncertainty into our GCL programming language: the
nondeterministic choice construct

{C1 }2 {C2 } .

We call programs that contain such nondeterministic choices nondetermin-
istic programs. Analogously, we call programs that do not contain any non-
deterministic choice constructs deterministic programs. The concept of pro-
grams containing nondeterministic choices was already present in Dijkstra’s
original weakest precondition calculus [Dij75], although the idea of „non-
deterministic algorithms“ is due to Floyd and dates back further [Flo67b].
Even earlier, as a precursor to nondeterministic programs, Rabin & Scott in-
troduced nondeterministic finite automata [RS59].

As for the semantics of nondeterministic choice, the program {C1 }2 {C2 }
executes either C1 or C2. Both scenarios are possible and we simply have no
information on which branch is going to be executed. In particular, we would
like to stress that it is not meaningful to associate a probability to either execut-
ing C1 or C2. Especially assigning the probability of 1/2 to either possibility
is only seemingly self–evident, but not meaningful. Nondeterministic choice
is thus a possibilistic, not a probabilistic construct. For semantics of nonde-
terministic and possibilistic programs based on possibility theory instead of
probability theory, see [CW08; WC12; WC11].

Example 2.7 (A Nondeterministic Loop–Free GCL Program):
Consider the following program that extends Example 2.2 on page 25:

C2.7 � {y := 1 }2 {y := y − 1 } #
if (y > 0) {x := 5 } else {x := 2 }
y := x − 3 #
skip

This program first nondeterministically either sets y to 1 or decreases y by 1.
Then it performs the same steps as the program from Example 2.2, starting
with the check for y > 0. Notice that this check can either evaluate to true,
i.e. in case that the left branch of the nondeterministic choice was executed

38 weakest precondition reasoning

Σ

G

¬G

Σ

F

¬F

Figure 2.5: G is the weakest precondition of nondeterministic program C with re-
spect to postcondition F: Starting in G, C will terminate in F. Starting in
¬G, we cannot guarantee anything about the computation of C.

and y was set to 1, or it can depend on the initial value of y, i.e. in case that
the right branch was executed.

Let us now look at weakest preconditions of nondeterministic choices: Recall
that we are interested in a precondition that guarantees both termination and
establishment of the postcondition F. In order to guarantee this regardless
whether C1 or C2 is executed, the weakest precondition of {C1 } 2 {C2 } with
respect to F must be a weakest precondition of both C1 and C2 with respect
to F. The weakest precondition transformer for {C1 }2 {C2 } is thus given by

wp J{C1 }2 {C2 }K (F) = wp JC1K (F) ∧ wp JC2K (F) .

We might recall at this point that for a deterministic program C we could
make the following statement:

If σ 6|= wp JCK (F) then we know that executing C on state σ will
definitely not terminate in a state τ |= F.

For a nondeterministic C, however, the statement must be:

If σ 6|= wp JCK (F) then it is not guaranteed that executing C on
state σ will terminate in a state τ |= F.

The situation is depicted in Figure 2.5. Notice that this diagram is the same
as the one in Figure 2.1. There is a hidden difference in the possible compu-

2.2 reasoning about predicates 39

tation starting in ¬G and terminating in F, though: For Hoare triples with
deterministic program C, this possible path stems from the fact that valid-
ity of the Hoare triple 〈G 〉 C 〈F 〉 is too weak a statement to exclude this
path. For weakest preconditions of nondeterministic programs on the other
hand, the path from ¬G to F is instead due to the nondeterminism of C: The
path from ¬G to F might actually be a possible computation of C. However:
computations starting from ¬G are not guaranteed to terminate in F.

Example 2.8 (Weakest Preconditions and Nondeterminism):
We will reconsider the program C2.7 from Example 2.7 and again, as in Ex-
ample 2.2, reason about postcondition y2 > 2. Using the annotation style
from earlier, we annotate C2.7 as shown in Figure 2.6. By these annotations,
we establish wp JC2.7K

(
y2 > 2

)
= (y > 1). This means that from any initial

state in which y is larger than 1, it is guaranteed that execution of C2.7 will
terminate in a state in which y2 is larger than 2.

Notice that even from a state in which y ≤ 1 it is still possible that the pro-
gram terminates in a state satisfying y2 > 2, namely if in the nondeterminis-
tic choice the left branch y := 1 is executed. However, this is not guaranteed.
This situation is reflected exactly by the path from ¬G to F in Figure 2.5,
when instantiating G with y > 1 and F with y2 > 2.

2.2.5 Weakest Liberal Preconditions

We have already encountered the phenomenon that certain programs do not
terminate from certain initial states. For instance, the program

while (x , 0) {x := x − 1 }

terminates only on initial states where x ∈ N. Our notion of weakest pre-
conditions, however, captures only the fact that a program terminates in a
state satisfying a given postcondition. Sometimes (e.g. later in this thesis), it
is necessary, though, to reason about partial correctness, namely that a post-
condition has to be satisfied only in case that the program terminates (but
termination itself is not guaranteed).

2.2.5.1 The Notion of Weakest Liberal Preconditions

The type of reasoning we require here can be carried out using the notion of
weakest liberal preconditions: Given a program C and a postcondition F, we
call the (unique) predicate G the

weakest liberal precondition of C with respect to F,

40 weakest precondition reasoning

((y > 1

((true ∧ y > 1

{
((true

((1 > 0

y := 1

((y > 0

}2 {
((y > 1

((y − 1 > 0

y := y − 1

((y > 0

} #
((y > 0 (see Example 2.5)

if (y > 0) {x := 5 } else {x := 2 } #
y := x − 3 #
skip

((y2 > 2

Figure 2.6: Weakest precondition annotations for Example 2.8.

2.2 reasoning about predicates 41

Σ

G

¬G

Σ

F

¬F

Figure 2.7: G is the weakest liberal precondition of deterministic program C with
respect to postcondition F: Starting in G, C cannot terminate in ¬F,
i.e. it will either diverge or terminate in F. Starting in ¬G, C will
terminate in ¬F.

denoted wlp JCK (F), if it satisfies the following: From any state σ |= G

G either C terminates in a state τ |= F,

G or C does not terminate at all.

Moreover, if C is started in a state σ 6|= G, then C terminates in a state τ 6|= F.
As a diagram, the situation is depicted Figure 2.7 for deterministic programs
and in Figure 2.8 for nondeterminstic programs. The difference is only in
those computations starting from ¬G: For the possible computation path
from ¬G to F, recall the explanations on page 38. The possible diverging
path emanating from ¬G is also caused by the nondeterminism of the pro-
gram: It is possible that C diverges from ¬G but it is not guaranteed.

If F is some correctness property and we can prove the above, then we say
that C is partially correct, whereas if we additionally require termination (as
it was the case with weakest preconditions) we say that C is totally correct. In
that terminology, weakest preconditions are suited for reasoning about total
correctness whereas weakest liberal preconditions are suited for reasoning
about partial correctness.

2.2.5.2 The Weakest Liberal Precondition Calculus

We now show how to obtain weakest liberal preconditions in a way simi-
lar to the weakest precondition transformer, namely by a backward moving

42 weakest precondition reasoning

Σ

G

¬G

Σ

F

¬F

Figure 2.8: G is the weakest liberal precondition of nondeterministic program C with
respect to postcondition F: Starting in G, C will not terminate in ¬F.

continuation–passing style weakest liberal precondition transformer.

Weakest Liberal Preconditions of Loop–Free Programs. The rules for con-
structing the wlp transformer are given in Table 2.2. Let us again ignore the
definition for while loops for the time being and inspect the remaining rules:
For the atomic programs skip and x := E the rules are exactly the same.

For the remaining loop–free programs, the definitions differ only in the
fact that the right hand sides use wlp instead of wp on subprograms. From
that observation, we can easily conclude that wlp and wp coincide for any
loop–free program, i.e.

∀ loop–free C ∀ F : wlp JCK (F) = wp JCK (F) .

This does not only make sense when looking at the formal definitions, but it
also makes sense intuitively: Differences between wp and wlp occur only for
nontermination, but this cannot occur in loop–free programs.6

Weakest Liberal Preconditions of Loops. We now turn towards weakest
liberal preconditions of loops. As for diverge, consider the following: Ac-

6 Recall that programs containing diverge are not loop–free.

2.2 reasoning about predicates 43

C wlpJCK(F)

skip F

diverge true

x := E F [x/E]

C1 # C2 wlp JC1K
(
wlp JC2K (F)

)
if (ϕ) {C1 } else {C2 }

(
ϕ ∧ wlp JC1K (F)

)
∨

(
¬ϕ ∧ wlp JC2K (F)

)
{C1 }2 {C2 } wlp JC1K (F) ∧ wlp JC2K (F)

while (ϕ) {C′ } gfp X�
(
¬ϕ ∧ F

)
∨

(
ϕ ∧ wlp JC′K (X)

)
Table 2.2: The weakest liberal precondition transformer.

cording to the definition of weakest liberal preconditions, the weakest liberal
precondition of diverge with respect to postcondition F must be a predicate
such that either diverge terminates in a state τ |= F (however, diverge never
terminates, so this is never the case), or diverge does not terminate (this
is always the case). Therefore, the weakest liberal precondition of diverge
with respect to any postcondition can only be true.

Dually to weakest preconditions, we see in Table 2.2 that the weakest lib-
eral precondition of a while loop is defined using a greatest fixed point opera-
tor (gfp) instead of a least one as

gfp X� (¬ϕ ∧ F) ∨ (ϕ ∧ wlp JC′K (X))︸ ︷︷ ︸
C Φ(X)

,

i.e. the greatest fixed point of the characteristic function Φ(X).
Dually to least elements and suprema, a complete lattice also always has a

greatest element and every subset also has an infimum. The greatest element
of the complete lattice (P (Σ) , =⇒) is true. The infimum of a subset S ⊆ P (Σ)
is given by

inf S =
∧
F∈S

F ,

which is the predicate that corresponds to the intersection of all sets corre-
sponding to the predicates in S.

One can now show that Φ is continuous and we thus know by the Kleene
fixed point theorem (A.5) that Φ has a greatest fixed point, given by

gfp Φ = inf
n∈N

Φn(true) ,

44 weakest precondition reasoning

and therefore wlp for while loops is well–defined.
Dually to the situation with least fixed points, a very important fact about

the fixed point iteration of continuous functions is that, if started from the
greatest element of the underlying complete lattice, it converges monotoni-
cally to the greatest fixed point. This means in our particular case that we
have a descending chain

Φ0(true) ⇐= Φ1(true) ⇐= Φ2(true) ⇐=

This fact also follows from the monotonicity of Φ which is implied by its
continuity (see A.4).

We can now reconsider diverge from a gfp point of view. Recall that
diverge is a shorthand for while (true) {skip }. Then the characteristic func-
tional with respect to any postcondition F is given by

Φ(X) = (false∧F) ∨ (true∧wp JskipK (X)) = X ,

i.e. the identity function on P (Σ). Its largest fixed point is obviously the
largest element of P (Σ), namely true. Therefore,

wp JdivergeK (F) = wp Jwhile (true) {skip }K (F) = true

Let us again revisit an example and prove the partial correctness of a pro-
gram using the wlp calculus:

Example 2.9 (Weakest Liberal Preconditions):
Reconsider the following program from earlier in this section:

C2.9 � while (x , 0) {x := x − 1 }

We would like to reason about the fact that if C2.9 terminates, it sets x to
0. We can do so by reasoning about the weakest liberal precondition of C2.9
with respect to postcondition x = 0. The characteristic function of the loop
with respect to postcondition x = 0 is given by

Φ(X) = (x = 0 ∧ x = 0) ∨ (x , 0 ∧ wp Jx := x − 1K (X))

= (x = 0) ∨ (x , 0 ∧ wp Jx := x − 1K (X)) .

Let us perform the fixed point iteration forΦ (for wlp the fixed point iteration
for the greatest fixed point goes true, Φ(true), Φ2(true), Φ3(true), . . . instead
of false, Φ(false), Φ2(false), Φ3(false), . . . as for wp):

Φ(true) = (x = 0) ∨ (x , 0 ∧ wp Jx := x − 1K (true))

= (x = 0) ∨ (x , 0 ∧ true)

= (x = 0) ∨ (x , 0)

2.3 reasoning about values 45

= true

We see that after only one iteration we have reached a fixed point. By mono-
tonicity of Φ , this is the greatest fixed point and we hence have

wlp Jwhile (x , 0) {x := x − 1 }K (x = 0) = true .

We have thus formally proven the partial correctness property that from all
initial states the program C2.9 sets x to 0 if it terminates.

2.3 R E A S O N I N G A B O U T VA LU E S

Up until now, we have recapped Dijkstra’s original weakest precondition
calculus which enables reasoning at the level of predicates over program

states. We will now see how to take this method of reasoning beyond the
level of predicates to more general functions.

Recall for this purpose our notion of predicates: We have identified a pred-
icate F with a subset of program states, i.e. F ∈ P (Σ). We also introduced
the Iverson bracket [F] which is the indicator function of F and is of type
Σ→ {0, 1}. It is obvious that, in principle, predicates F ∈ P (Σ) and their indi-
cator functions [F] : Σ→ {0, 1} are the same.

As a first step to go beyond predicates, we reformulate Dijkstra’s weakest
precondition calculus in terms of indicator functions, i.e. functions f of type
Σ → {0, 1}. The resulting definitions are given in Table 2.3. Let us go ex-
emplarily over the rules for assignment, conditional, and nondeterministic
choice: For the assignment, we have

wp Jx := EK (f) = f [x/E] ,

where f [x/E] is defined analogously to the case for predicates as

f [x/E] = λσ � f (x [x 7→ σ (E)]) .

This mimics the definition of wp of assignments for predicates.
For diverge, we have

wp JdivergeK (f) = 0 ,

This mimics the definition of wp of divergence for predicates since 0 = [false].
For the conditional choice we have

if (ϕ) {C1 } else {C2 } = [ϕ] ·wp JC1K (f) + [¬ϕ] ·wp JC2K (f) ,

where · and + are to be understood pointwise, i.e.

f1 · f2 = λσ � f1(σ) · f2(σ) and f1 + f2 = λσ � f1(σ) + f2(σ) .

46 weakest precondition reasoning

C wpJCK(f)

skip f

diverge 0

x := E f [x/E]

C1 # C2 wp JC1K
(
wp JC2K (f)

)
if (ϕ) {C1 } else {C2 } [ϕ] ·wp JC1K (f) + [¬ϕ] ·wp JC2K (f)

{C1 }2 {C2 } min
{
wp JC1K (f), wp JC2K (f)

}
while (ϕ) {C′ } lfp X� [¬ϕ] · f + [ϕ] ·wp JC′K (X)

Table 2.3: The weakest precondition transformer acting on indicator functions. This
transformer serves also as an anticipation transformer acting on more gen-
eral functions of type f : Σ→R

∞
≥0.

The definition of the conditional choice using · and + instead of ∧ and ∨ is
meaningful since for predicates F,G ∈ P (Σ) we have that

[F ∧G] = [F] · [G] and [F ∨G] = [F] + [G] ,

and thus ∧ corresponds to · and ∨ corresponds to +.
For the nondeterministic choice construct we have

{C1 }2 {C2 } = min {wp JC1K (f), wp JC2K (f) } ,

where min is also to be understood pointwise, i.e.

min {f1, f2 } = λσ � min {f1(σ), f2(σ) } .

This is meaningful since for predicates F,G ∈ P (Σ) we have that

[F ∧G] = min { [F], [G] } ,

and therefore ∧ not only corresponds to · but also to min. The choice of ·
for the conditional choice and min for the nondeterministic is somewhat ar-
bitrary at this point but we will say more about the role of min shortly. A
very high–level intuition at this point is that we want to express by a · b the
logical connective „both a and b must be true“, whereas by min {a, b }we want
to select the „least true option from a and b“.

2.3.1 Anticipated Values

We saw how to reformulate the weakest precondition calculus to act on func-
tions of type f : Σ → {0, 1}. In terms of the reformulated calculus, we can

2.3 reasoning about values 47

reason about whether program C will terminate in a state satisfying a predi-
cate F by calculating

wp JCK ([F]) .

So from any state σ with wp JCK ([F]) (σ) = 1 the program C will terminate in
a state τ |= F, and from any state σ with wp JCK ([F]) (σ) = 0 the program C
will either terminate in a state τ 6|= F or not terminate at all. This means that
wp JCK ([F]) is a function that anticipates the truth of F after termination of C,
or in other words:

wp JCK ([F]) is the anticipated value of [F].

Now that we know that we can use wp to anticipate values of functions of
type Σ→ {0, 1}, a natural question arises:

Can we anticipate values of more general functions?

For example: can we anticipate the value of program variable x after termi-
nation of C; or as another example: can we anticipate the value of y2 + |sinz|?
It turns out that the answer to that question is yes.

2.3.2 An Anticipated Value Calculus for Deterministic Programs

Consider for the moment only deterministic programs. We would now like to
reason about anticipated values of a more general class of functions, namely
functions from the set of anticipations:

Definition 2.10 (Anticipations):
a. The set of anticipations is defined as

A =
{
f

∣∣∣ f : Σ→R
∞
≥0

}
,

where R∞≥0 is the set of non–negative real numbers with an ad-
joined∞ element which is larger than every real number.

b. A complete lattice on A is induced by the partial order

f1 � f2 iff ∀σ ∈ Σ : f1(σ) ≤ f2(σ) .

The least element of the complete lattice (A, �) is the function that
maps every program state to 0, i.e. the function

λσ � 0 ,

which we (overloadingly) also denote by 0. The supremum of a
subset S ⊆A is constructed pointwise as

sup S = λσ � sup
f ∈S

f (σ) .

48 weakest precondition reasoning

It turns out that for anticipating values of functions, we can just reuse the
calculus from Table 2.3 but have the f ’s be taken from A. In that sense, the
transformer from Table 2.3 also serves as an anticipated value transformer. So
if we want to know the value that an f ∈A has after executing C, we just use
f as the postanticipation and determine the preanticipation wp JCK (f) accord-
ing to Table 2.3. In that way we obtain the sought–after anticipated value
of f . The completeness of the lattice (A, �) ensures existence of least fixed
points and thereby well–definedness of wp for loops. Notice that functions as

x = λσ � σ (x) and y2 + |sinz| = λσ � σ (y)2 + |sinσ (z)|

are both members of A.7 Notice furthermore that the wp calculus acting on
A subsumes Dijkstra’s original calculus since for every predicate F we have
[F] ∈ A and to all intents and purposes, wp JCK (F) = wp JCK ([F]). Even the
order � on anticipations subsumes the order =⇒ on predicates since for
predicates F1 and F2 we have

F1 =⇒ F2 iff [F1] � [F2] .

Example 2.11 (Anticipated Values of Deterministic Programs):
a. We reconsider the program C2.2 from Example 2.2 on page 25 and

instead of reasoning whether y2 > 2, we will now directly anticipate
the value of y2 after execution of C2.2. We will reuse our annotation
style from earlier, i.e.

((g′

((g

C

((f

expresses the fact that g = wp JCK (f) and moreover that g ′ = g. Since
we want to anticipate the value of y2, we will use the function y2 as
postanticipation and annotate C2.2 using the rules from Table 2.3 as
shown in Figure 2.9 (again: read from bottom to top).

In words, wp JCK
(
y2

)
= [y > 0] · 4 + [y ≤ 0] tells us that from any ini-

tial state σ with y > 0 we will end up in some final state with y2 = 4,
whereas if initially y ≤ 0 we will end up in some final state with y2 = 1.

b. Reconsider the program C2.3 from Example 2.3:

7 We tacitly assume that x takes only positive values. Otherwise λσ � σ (x) would technically not be
a member ofA. A more appropriate choice would be the function [x > 0]·x = λσ � [x > 0](σ)·σ (x)
which is a member of A, but we did not want to clutter the presentation above.

2.3 reasoning about values 49

C2.3 � z := y #
while (x > 0) {

z := z+ 1 #
x := x − 1

}

We want to reason about the value that program variable z has after
the execution of C2.3, i.e. about postanticipation z. The characteristic
function of the loop with respect to postanticipation z is given by

Φ(X) = [x ≤ 0] · z + [0 < x] ·wp Jz := z+ 1 # x := x − 1K (X) .

The first three iterations of the fixed point iteration for Φ are:

Φ(0) = [x ≤ 0] · z + [0 < x ≤ 0] · dxe
Φ2(0) = [x ≤ 1] · z + [0 < x ≤ 1] · dxe
Φ3(0) = [x ≤ 2] · z + [0 < x ≤ 2] · dxe

Detailed calculations can be found in Appendix C.2. After three itera-
tions, we can already start seeing a pattern for n > 1:

Φn(0) = [x ≤ n− 1] · z + [0 < x ≤ n− 1] · dxe

Again we omit proving the above pattern correct. By inspection of this
pattern, we see that the preanticipation of the loop converges to

wp Jwhile (x > 0) { . . . }K (z)

= sup
n∈N

[x ≤ n− 1] · z + [0 < x ≤ n− 1] · dxe

= z + [0 < x] · dxe

For the whole program, we can finally make these annotations:

((y + [0 < x] · dxe
z := y #
((z + [0 < x] · dxe (see above)

while (x > 0) {
z := z+ 1 #
x := x − 1

}
((z

50 weakest precondition reasoning

We have thus proven wp JC2.3K (z) = y+[0 < x]·dxe. This means that from
all initial states C2.3 terminates and the value of z after termination is
the initial value of y plus — in case that x was initially positive — the
initial value of dxe.

One issue we have not investigated so far is the anticipated value of a non-
terminating program execution. Since it is not immediately clear, what the
anticipated value should be, a remark on that matter is in order:

Remark 2.12 (Anticipated Values and Nontermination). Evaluation of the weak-
est preexpectation wp JCK (f) at σ is (and indeed has to be) 0 if C does not
terminate on σ . Thus, when observing e.g. wp JCK (x) (σ) = 0 alone, we can-
not know offhand whether C terminates on σ in a state with x = 0 or whether
C does not terminate on σ .

While it might seem somewhat arbitrary at first glance, we can get an in-
tuition for that 0 by looking at the anticipated value of C with respect to
1 = [true]. Recall that wp JCK (1) (σ) evaluates to 0 exactly if C does not ter-
minate on σ and for reasons of continuity wp JCK (f) (σ) has to evaluate to 0
for any f in case C does not terminate on σ . 4

2.3.3 Anticipated Value Calculi for Nondeterministic Programs

We now turn towards anticipated values of nondeterministic programs. As
we know, the nondeterministic choice {C1 } 2 {C2 } executes either C1 or C2
and we have no information on what is going to happen. We can therefore
not speak of the anticipated value of a function f since there might be multi-
ple values that a program can yield. For instance, the program

x := 0 #
{c := 0 }2 {c := 1 } #
while (c = 1) {

x := x+ 1 #
{c := 0 }2 {c := 1 }

}

may even yield any natural number for x or not terminate at all. The range
of anticipated values of x is therefore infinite here.

For weakest preconditions of nondeterministic programs it made sense
to choose the least true value min {wp JC1K (F), wp JC2K (F) } as the weakest
precondition of {C1 }2 {C2 }with respect to postcondition F. For anticipated
values, this is a meaningful possible choice as well, i.e. we can define

wp J{C1 }2 {C2 }K (f) = min {wp JC1K (f), wp JC2K (f) } ,

2.3 reasoning about values 51

(([y > 0] · 4 + [y ≤ 0]

(([y > 0] · 4 + [y ≤ 0] · 1
if (y > 0) {

((4

(((5− 3)2

x := 5

(((x − 3)2

}else {
((1

(((2− 3)2

x := 2

(((x − 3)2

} #
(((x − 3)2

y := x − 3 #

((y2

skip

((y2

Figure 2.9: Anticipated value annotations for Example 2.11 a.

52 weakest precondition reasoning

where min is again meant pointwise, i.e.

min {f1, f2 } = λσ � min {f1(σ), f2(σ) } .

wp J{C1 }2 {C2 }K (f) thus assigns to each initial state the least anticipated
value of f . We call this the demonic model of nondeterminism. This model
enjoys the nice property that it subsumes the weakest precondition calculus
for nondeterministic programs and hence we will continue to use the symbol
wp in the context of demonic nondeterminism.

While we just saw that min is a quite natural choice, there are use cases
where choosing max instead of min is more meaningful, e.g. when reasoning
about expected runtimes (see Chapter 7). In this case, we employ a so–called
angelic model of nondeterminism, which gives us a different transformer awp
for greatest anticipated values. This transformer is defined analogously to wp
except on nondeterministic choice constructs, on which it is given as

awp J{C1 }2 {C2 }K (f) = max {awp JC1K (f), awp JC2K (f) } .

Note that wp and awp obviously coincide on deterministic programs.
Both angelic and demonic nondeterminism are in some sense extremal and

one could certainly think of other models. The advantage of these two mod-
els, however, is that they yield relatively easy definitions and the resulting
calculi enjoy several nice properties.

Example 2.13 (Anticipated Values of Nondeterministic Programs):
We will reconsider the program C2.7 from Example 2.7 and reason about the
least anticipated value of y2 as shown in Figure 2.10. By these annotation,
we have established wp JCK

(
y2

)
= 1 + [y > 1] · 3. This tells us that from any

initial state in which y is larger than 1, C will terminate in a state where y is
at least 4, and if initially y ≤ 1 then in a state τ where y is at least 1.

Notice that even from a state in which y ≤ 1 it is still possible that the
program terminates in a state where y2 is at least 4, namely if in the nonde-
terministic choice the left branch y := 1 is executed.

2.3 reasoning about values 53

((1 + [y > 1] · 3
((min

{
4, [y > 1] · 4 + [y ≤ 1]

}
{

((4

(([1 > 0] · 4 + [1 ≤ 0]

y := 1

(([y > 0] · 4 + [y ≤ 0]

}2 {
(([y > 1] · 4 + [y ≤ 1]

(([y − 1 > 0] · 4 + [y − 1 ≤ 0]

y := y − 1

(([y > 0] · 4 + [y ≤ 0]

} #
(([y > 0] · 4 + [y ≤ 0] (see Example 2.11)

if (y > 0) {x := 5 } else {x := 2 } #
y := x − 3 #
skip

((y2

Figure 2.10: Anticipated value annotations for Example 2.13.

	Abstract
	Abstract
	Abstract
	Contents
	1 Overview
	-.55exClassical Weakest Preexpectation Reasoning
	2 Weakest Precondition Reasoning
	3 Probabilistic Computations
	4 Weakest Preexpectation Reasoning
	5 Proof Rules for Loops
	6 Probabilistic Termination

	-.55exAdvanced Weakest Preexpectation Reasoning
	7 Expected Runtimes
	8 Conditioning
	9 Mixed–Sign Expectations

	-.55exComputational Hardness
	10 The Arithmetical Hierarchy
	11 Approximating Preexpectations
	12 Deciding Probabilistic Termination
	13 Approximating Covariances
	14 Conclusion and Future Work

	-.55exAppendices
	A Domain Theory
	B Markov Decision Processes
	C Omitted Calculations
	D A More Detailed Note on Contributions of the Author
	Bibliography
	index
	Eidesstattliche Erklärung

