
Foundations of Informatics: a Bridging Course
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/people/noll/

https://moves.rwth-aachen.de/people/noll/

Introductory Example I

Example

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0
| 1
| 〈Expression〉 + 〈Expression〉
| 〈Expression〉 ∗ 〈Expression〉
| (〈Expression〉)

Meaning:
An expression is either 0 or 1, or it is of the form u + v, u ∗ v, or (u) where u, v
are again expressions

2 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E

⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E

⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1

⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1

⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1

⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Introductory Example II

Example (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

3 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Grammars I

Definition

A context-free grammar (CFG) is a quadruple

G = 〈N,Σ,P,S〉
where
• N is a finite set of nonterminal symbols
• Σ is the (finite) alphabet of terminal symbols (disjoint from N)
• P is a finite set of production rules of the form A→ α where A ∈ N and α ∈ (N ∪ Σ)∗

• S ∈ N is a start symbol

4 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Grammars II

Example

For the above example, we have:
• N = {E}
• Σ = {0, 1,+, ∗, (,)}
• P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E)}
• S = E

Naming conventions:
• nonterminals start with uppercase letters
• terminals start with lowercase letters
• start symbol = symbol on LHS of first production
⇒ grammar completely defined by productions

5 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Grammars II

Example

For the above example, we have:
• N = {E}
• Σ = {0, 1,+, ∗, (,)}
• P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E)}
• S = E

Naming conventions:
• nonterminals start with uppercase letters
• terminals start with lowercase letters
• start symbol = symbol on LHS of first production
⇒ grammar completely defined by productions

5 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).

• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).
• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).

• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).
• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .

• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).
• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.

• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).
• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.

• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages I

Definition

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).
• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

6 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages II

Example

The language {anbn | n ∈ N} is context-free. It is generated by the grammar
G = 〈N,Σ,P,S〉 with
• N = {S}
• Σ = {a, b}
• P = {S → aSb | ε}

(proof: generating anbn requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
• root labelled by start symbol
• leaves labelled by terminal symbols
• successors of node labelled according to right-hand side of production rule
• sequence of leaf symbols = generated word

7 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Context-Free Languages II

Example

The language {anbn | n ∈ N} is context-free. It is generated by the grammar
G = 〈N,Σ,P,S〉 with
• N = {S}
• Σ = {a, b}
• P = {S → aSb | ε}

(proof: generating anbn requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
• root labelled by start symbol
• leaves labelled by terminal symbols
• successors of node labelled according to right-hand side of production rule
• sequence of leaf symbols = generated word

7 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Summary: Context-Free Grammars and Languages

Seen:
• Context-free grammars
• Derivations
• Context-free languages

Next:
• Relation between context-free and regular languages

8 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

Summary: Context-Free Grammars and Languages

Seen:
• Context-free grammars
• Derivations
• Context-free languages

Next:
• Relation between context-free and regular languages

8 of 8 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Lesson 1: Introduction to Context-Free Grammars and Languages

	Context-Free Languages

