

Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes

Part C: Context-Free Languages

March 11-15, 2024

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-23-24/foi/

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Example C.1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v are again expressions

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

 $\Rightarrow (E) * E$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \to 0 | 1 | E + E | E * E | (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

Example C.1 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

$$\Rightarrow (0 + 1) * 1$$

Context-Free Grammars I

Definition C.2

A context-free grammar (CFG) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- N is a finite set of nonterminal symbols
- ∑ is the (finite) alphabet of terminal symbols (disjoint from N)
- P is a finite set of production rules of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup \Sigma)^*$
- $S \in N$ is a start symbol

Context-Free Grammars II

Example C.3

For the above example, we have:

- *N* = {*E*}
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- *S* = *E*

Context-Free Grammars II

Example C.3

For the above example, we have:

- *N* = {*E*}
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \to 0, E \to 1, E \to E + E, E \to E * E, E \to (E)\}$
- *S* = *E*

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
- ⇒ grammar completely defined by productions

Definition C.4

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

• A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).

Definition C.4

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $i \in \{1, \ldots, n\}$ (notation: $\beta \Rightarrow^* \gamma$).

Definition C.4

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $i \in \{1, \ldots, n\}$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.

Definition C.4

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $i \in \{1, \ldots, n\}$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.
- The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.

Definition C.4

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $i \in \{1, \ldots, n\}$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.
- The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.

Definition C.4

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $i \in \{1, \ldots, n\}$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.
- The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_1 , G_2 are equivalent if $L(G_1) = L(G_2)$.

Example C.5

The language

$$\{a^nb^n\mid n\in\mathbb{N}\}$$

is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- N = {S}
- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb \mid \varepsilon\}$

(proof: generating a^nb^n requires exactly n applications of the first and one concluding application of the second rule)

Example C.5

The language

$$\{a^nb^n\mid n\in\mathbb{N}\}$$

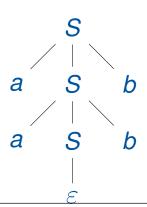
is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- N = {S}
- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb \mid \varepsilon\}$

(proof: generating a^nb^n requires exactly n applications of the first and one concluding application of the second rule)

Remark: illustration of derivations by derivation trees

- root labelled by start symbol
- leaves labelled by terminal symbols
- successors of node labelled according to right-hand side of production rule
- sequence of leaf symbols = generated word



Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Next:

Relation between context-free and regular languages

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Context-Free vs. Regular Languages

Theorem C.6

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

Context-Free vs. Regular Languages

Theorem C.6

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

Proof.

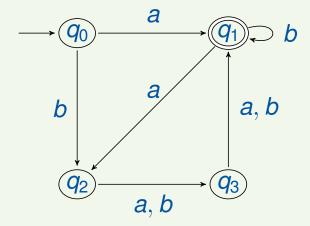
- 1. Let L be a regular language, and let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA which recognises L. $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ is defined as follows:
 - $-N:=Q, S:=q_0$
 - if $\delta(q, a) = q'$, then $q \to aq' \in P$
 - if q ∈ F, then q \rightarrow ε ∈ P

Obviously a w-labelled run in \mathfrak{A} from q_0 to F corresponds to a derivation of w in $G_{\mathfrak{A}}$, and vice versa. Thus $L(\mathfrak{A}) = L(G_{\mathfrak{A}})$ (example on the following slide).

2. An example is $\{a^nb^n \mid n \in \mathbb{N}\}$ (see Lesson 1). Intuitive reason for non-regularity: recognising this language requires "unbounded counting" capability.

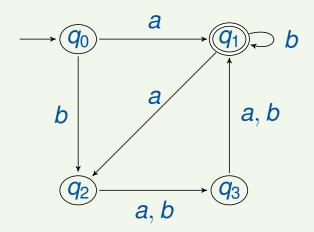
Example C.7

DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$:



Example C.7

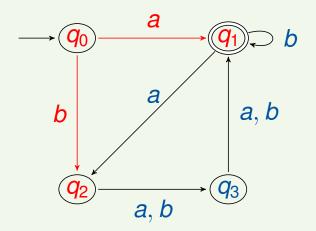
DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with N := Q, $S := q_0$:

Example C.7

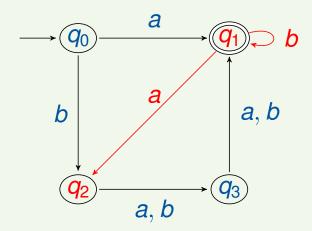
DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S \rangle$ with $N:=Q, S:=q_0$: $q_0 \to a \, q_1 \mid b \, q_2$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:

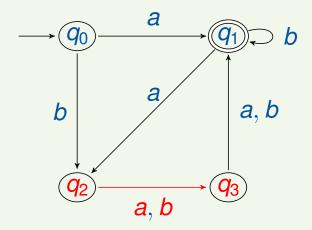


Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightarrow a q_1 \mid b q_2 \ q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:

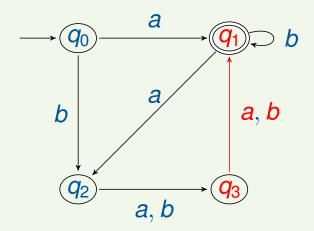


Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightarrow a q_1 \mid b q_2$$
 $q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightarrow a q_3 \mid b q_3$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:

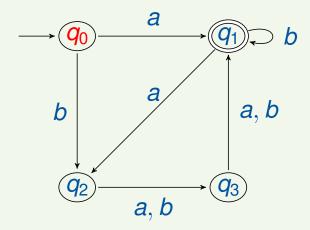


Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightharpoonup a q_1 \mid b q_2$$
 $q_1
ightharpoonup a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightharpoonup a q_3 \mid b q_3$
 $q_3
ightharpoonup a q_1 \mid b q_1$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

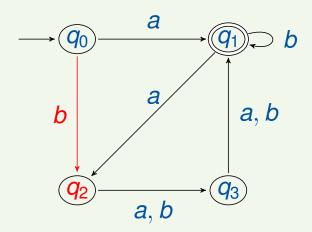
$$q_0
ightharpoonup a q_1 \mid b q_2$$
 $q_1
ightharpoonup a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightharpoonup a q_3 \mid b q_3$
 $q_3
ightharpoonup a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 q_0

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

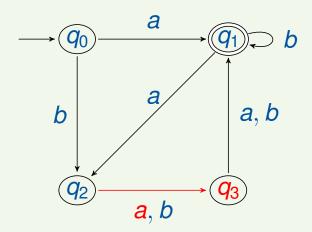
$$q_0
ightarrow a q_1 \mid b q_2 \ q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon \ q_2
ightarrow a q_3 \mid b q_3 \ q_3
ightarrow a q_1 \mid b q_1$$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$q_0 \Rightarrow b q_2$$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

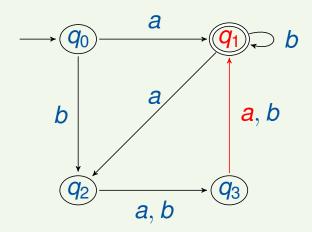
$$q_0
ightarrow a q_1 \mid b q_2$$
 $q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightarrow a q_3 \mid b q_3$
 $q_3
ightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$q_0 \Rightarrow b q_2 \Rightarrow b a q_3$$

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightharpoonup a q_1 \mid b q_2 \ q_1
ightharpoonup a q_2 \mid b q_1 \mid \varepsilon \ q_2
ightharpoonup a q_3 \mid b q_3 \ q_3
ightharpoonup a q_1 \mid b q_1$$

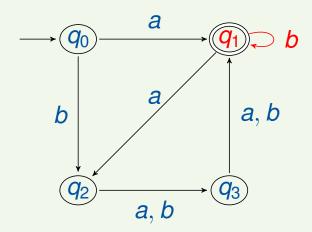
E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$q_0 \Rightarrow b q_2 \Rightarrow b a q_3 \Rightarrow b a a q_1$$

From Regular to Context-Free Languages

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightarrow a q_1 \mid b q_2$$
 $q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightarrow a q_3 \mid b q_3$
 $q_3
ightarrow a q_1 \mid b q_1$

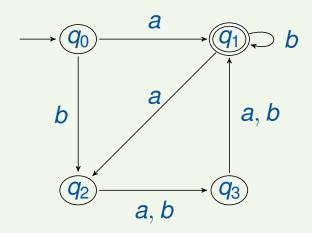
E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$q_0 \Rightarrow b \, q_2 \Rightarrow b \, a \, q_3 \Rightarrow b \, a \, a \, q_1 \Rightarrow b \, a \, a \, b \, q_1$$

From Regular to Context-Free Languages

Example C.7

DFA
$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$
:



Corresponding CFG
$$G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$$
 with $N := Q$, $S := q_0$:

$$q_0
ightarrow a q_1 \mid b q_2$$
 $q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightarrow a q_3 \mid b q_3$
 $q_3
ightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$q_0 \Rightarrow b \, q_2 \Rightarrow b \, a \, q_3 \Rightarrow b \, a \, a \, q_1 \Rightarrow b \, a \, a \, b \, q_1 \Rightarrow b \, a \, a \, b$$

Summary: Context-Free vs. Regular Languages

Seen:

• CFLs are more expressive than regular languages

Summary: Context-Free vs. Regular Languages

Seen:

CFLs are more expressive than regular languages

Next:

Decidability of word problem

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
 - syntax analysis of programming languages
 - HTML parsers

- ..

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
 - syntax analysis of programming languages
 - HTML parsers
 - **-** ..
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
 - syntax analysis of programming languages
 - HTML parsers
 - **—** ...
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- **Solution:** establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
- ⇒ Only finitely many combinations to be inspected

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Example C.9

Consider the grammar $S \to ab \mid aSb$, which generates $L := \{a^nb^n \mid n \ge 1\}$. An equivalent grammar in Chomsky NF is

```
S 	oup AB \mid AC (generates L)

A 	oup a (generates \{a\})

B 	oup b (generates \{b\})

C 	oup SB (generates \{a^nb^{n+1} \mid n \geq 1\})
```


Conversion to Chomsky Normal Form

Theorem C.10

Every CFL L (without ε -productions) can be generated by a CFG in Chomsky NF.

Conversion to Chomsky Normal Form

Theorem C.10

Every CFL L (without ε -productions) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G = \langle N, \Sigma, P, S \rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \to BC$ and $A \to a$ proceeds in three steps:

- 1. terminal symbols only in rules of the form $A \rightarrow a$ (thus all other rules have the shape $A \rightarrow A_1 \dots A_n$)
- 2. elimination of "chain rules" of the form $A \rightarrow B$
- 3. elimination of rules of the form $A \rightarrow A_1 \dots A_n$ where n > 2

(see following slides for details)

Step 1: Only $A \rightarrow a$

Procedure

- 1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_a \in N$.
- 2. Add corresponding productions $B_a \rightarrow a$ to P.
- 3. In each original production $A \to \alpha$, replace every $a \in \Sigma$ with B_a .

This yields G'.

Step 1: Only $A \rightarrow a$

Procedure

- 1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_a \in N$.
- 2. Add corresponding productions $B_a \rightarrow a$ to P.
- 3. In each original production $A \to \alpha$, replace every $a \in \Sigma$ with B_a .

This yields G'.

Example C.11

$$G: S \rightarrow ab \mid aSb$$

is converted to

$$G': S \rightarrow AB \mid ASB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

- 1. Determine all derivations $A_1 \Rightarrow ... \Rightarrow A_n$ with rules of the form $A \to B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
- 2. Determine all productions $A_n \to \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from P.

This yields G''.

Step 2: Elimination of Chain Rules A o B

Procedure

- 1. Determine all derivations $A_1 \Rightarrow ... \Rightarrow A_n$ with rules of the form $A \to B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
- 2. Determine all productions $A_n \to \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from P.

This yields G''.

$$G': S \rightarrow A$$
 $A \rightarrow B \mid C$
 $B \rightarrow A \mid DA$
 $C \rightarrow c$
 $D \rightarrow d$

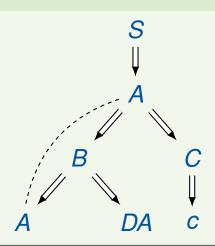
Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

- 1. Determine all derivations $A_1 \Rightarrow ... \Rightarrow A_n$ with rules of the form $A \to B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
- 2. Determine all productions $A_n \to \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from P.

This yields G''.

$$G': S \rightarrow A$$
 $A \rightarrow B \mid C$
 $B \rightarrow A \mid DA$
 $C \rightarrow C$
 $D \rightarrow d$



Step 2: Elimination of Chain Rules A o B

Procedure

- 1. Determine all derivations $A_1 \Rightarrow ... \Rightarrow A_n$ with rules of the form $A \to B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
- 2. Determine all productions $A_n \to \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from P.

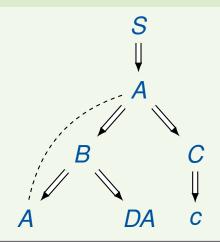
This yields G''.

Example C.12

$$G': S \rightarrow A$$
 $A \rightarrow B \mid C$
 $B \rightarrow A \mid DA$
 $C \rightarrow C$
 $D \rightarrow d$

is converted to

$$G'': S \rightarrow DA \mid c$$
 $A \rightarrow DA \mid c$
 $B \rightarrow DA \mid c$
 $C \rightarrow C$
 $D \rightarrow d$



Step 3: Elimination of Rules $A \rightarrow A_1 \dots A_n$ **with** n > 2

Procedure

Iteratively apply the following transformation:

- 1. For every $A \to A_1 \dots A_n$ with n > 2, introduce a new nonterminal symbol $B \in N$.
- 2. Replace original production by $A \rightarrow A_1 B$.
- 3. Add new production $B \rightarrow A_2 \dots A_n$.

This yields G'''.

Step 3: Elimination of Rules $A \rightarrow A_1 \dots A_n$ **with** n > 2

Procedure

Iteratively apply the following transformation:

- 1. For every $A \to A_1 \dots A_n$ with n > 2, introduce a new nonterminal symbol $B \in N$.
- 2. Replace original production by $A \rightarrow A_1B$.
- 3. Add new production $B \rightarrow A_2 \dots A_n$.

This yields G'''.

Example C.13

$$G'': S \rightarrow AB \mid ASB$$

 $A \rightarrow a$
 $B \rightarrow b$

$$G''': S \rightarrow AB \mid AC$$
 $A \rightarrow a$
 $B \rightarrow b$

 $C \rightarrow SB$

Summary: Chomsky Normal Form

Seen:

• Chomsky NF: all productions of the form $A \rightarrow BC$ or $A \rightarrow a$

Summary: Chomsky Normal Form

Seen:

• Chomsky NF: all productions of the form $A \rightarrow BC$ or $A \rightarrow a$

Next:

Exploit Chomsky Normal Form to solve word problem for CFL

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Word Problem for ε -free CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^+$, decide whether $w \in L(G)$ or not.

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Word Problem for ε -free CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^+$, decide whether $w \in L(G)$ or not.

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Algorithm C.14 (by Cocke, Younger, Kasami – CYK algorithm)

- 1. Transform G into Chomsky NF
- 2. Let $w = a_1 \dots a_n \ (n \ge 1)$
- 3. Let $w[i,j] := a_i \dots a_j$ for every $1 \le i \le j \le n$
- 4. Consider segments w[i,j] in order of increasing length, starting with $w[i,i] = a_i$ (i.e., letters)
- 5. In each case, determine $N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i,j]\}$ using a "dynamic programming" approach:

```
-i = j: N_{i,i} = \{A \in N \mid A \to a_i \in P\} 
- i < j: N_{i,j} = \{A \in N \mid \exists B, C \in N, k \in \{i, \dots, j-1\} : A \to BC \in P, B \in N_{i,k}, C \in N_{k+1,j}\}
```

6. Test whether $S \in N_{1,n}$ (and thus, whether $S \Rightarrow^* w[1, n] = w$)

	a_1	a_2	a_3	• • •	a_n
$i \setminus j$	1	2	3		n
1	<i>N</i> _{1,1}	N _{1,2}	N _{1,3}		$N_{1,n}$
2	X	$N_{2,2}$	$N_{2,3}$		$N_{2,n}$
3	X	X	$N_{3,3}$		$N_{3,n}$
:	:	÷			:
n	X	X	• • •		$N_{n,n}$

$$N_{1,1} = \{ A \in N \mid A \to a_1 \in P \}
 N_{2,2} = \{ A \in N \mid A \to a_2 \in P \}$$

	a_1	a_2	a ₃	• • •	a_n
$i \setminus j$	1	2	3		n
1	<i>N</i> _{1,1}	<i>N</i> _{1,2}	N _{1,3}		$N_{1,n}$
2	X	$N_{2,2}$	$N_{2,3}$		$N_{2,n}$
3	X	X	$N_{3,3}$		$N_{3,n}$
i	:	÷			:
n	X	X		• • •	$N_{n,n}$

$$N_{1,1} = \{A \in N \mid A \to a_1 \in P\}$$

 $N_{2,2} = \{A \in N \mid A \to a_2 \in P\}$
 \vdots
 $N_{1,2} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,2}\}$
 $N_{2,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,3}\}$

$$N_{1,1} = \{A \in N \mid A \to a_1 \in P\}$$

$$N_{2,2} = \{A \in N \mid A \to a_2 \in P\}$$

$$\vdots$$

$$N_{1,2} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,2}\}$$

$$N_{2,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,3}\}$$

$$\vdots$$

$$N_{1,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,3}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,2}, C \in N_{3,3}\}$$

$$V_{2,4} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,4}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,4}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,4}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,3}, C \in N_{4,4}\}$$

$$\vdots$$

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1						
2	X					
3	X	X				
4	X	X	X			
5	X	X	X	X		
6	X	X	X	X	X	

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

	а	b	a	а	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ S }					
2	X					
3	X	X	$\{\mathcal{S}\}$			
4	X	X	X	$\{{\cal S}\}$		
5	X	X	X	X		
6	X	X	X	X	X	{ S }

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }					
2	X	$\{{\it B}\}$				
3	X	X	$\{\mathcal{S}\}$			
4	X	X	X	$\{\mathcal{S}\}$		
5	X	X	X	X	$\{{\it B}\}$	
6	X	X	X	X	X	$\{\mathcal{S}\}$

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

	а	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{S}	Ø				
2	X	{ <i>B</i> }				
3	X	X	$\{\mathcal{S}\}$	Ø		
4	X	X	X	$\{\mathcal{S}\}$	\emptyset	
5	X	X	X	X	$\{B\}$	
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

• w = abaaba

	а	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø				
2	X	$\{{\it B}\}$	{ A }			
3	X	X		Ø		
4	X	X	X	$\{\mathcal{S}\}$	Ø	
5	X	X	X	X	$\{{\it B}\}$	{ A }
6	X	X	X	X	X	$\{\mathcal{S}\}$

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø				
2	X	{ <i>B</i> }	$\{A, B\}$			
3	X	X	$\{{m S}\}$	\emptyset		
4	X	X	X	$\{\mathcal{S}\}$	\emptyset	
5	X	X	X	X	$\{{\it B}\}$	$\{m{A},m{B}\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	$\{B\}$	$\{A,B\}$			
3	X	X	$\{\mathcal{S}\}$	Ø		
4	X	X	X	{ <i>S</i> }	\emptyset	$\{{\cal S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	$\{B\}$	$\{A, B\}$	{A }		
3	X	X	$\{\mathcal{S}\}$	\emptyset		
4	X	X	X	$\{{m S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$		
3	X	X	$\{\mathcal{S}\}$	\emptyset		
4	X	X	X	$\{{m S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	$\{B\}$	$\{A,B\}$	$\{A,B\}$		
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{{\it B}\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }		
2	X	$\{B\}$	{ <i>A</i> , <i>B</i> }	$\{A,B\}$		
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }		
2	X	$\{B\}$	$\{A,B\}$	$\{A, B\}$	$\{{\it B}\}$	
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	{ B }	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }		
2	X	$\{B\}$	{ <i>A</i> , <i>B</i> }	$\{A,B\}$	$\{B\}$	
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }	Ø	
2	X	$\{B\}$	$\{A,B\}$	$\{A,B\}$	$\{B\}$	
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	<i>{B}</i>	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	<i>{S}</i>	Ø	
2	X	$\{B\}$	$\{A, B\}$	$\{A,B\}$	$\{{\it B}\}$	{ A }
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{{\cal S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }	Ø	
2	X	$\{B\}$	{ <i>A</i> , <i>B</i> }	$\{A,B\}$	$\{B\}$	$\{\pmb{A}, \pmb{B}\}$
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	<i>{B}</i>	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

•
$$G: S \rightarrow SA \mid a$$

 $A \rightarrow BS$
 $B \rightarrow BB \mid BS \mid b \mid c$

	a	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }	Ø	{ <i>S</i> }
2	X	$\{B\}$	{ <i>A</i> , <i>B</i> }	$\{A,B\}$	$\{B\}$	$\{A,B\}$
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

Example C.15

$$ullet$$
 $G:\ S
ightarrow SA\mid a$ $A
ightarrow BS$ $B
ightarrow BB\mid BS\mid b\mid c$

	а	b	a	a	b	a
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }	{ <i>S</i> }	Ø	{ <i>S</i> }
2	X	$\{B\}$	$\{A,B\}$	$\{A,B\}$	$\{{\it B}\}$	$\{A,B\}$
3	X	X	$\{\mathcal{S}\}$	\emptyset	Ø	\emptyset
4	X	X	X	$\{\mathcal{S}\}$	Ø	$\{\mathcal{S}\}$
5	X	X	X	X	$\{B\}$	$\{A,B\}$
6	X	X	X	X	X	$\{\mathcal{S}\}$

$$S \in N_{1,6} \implies w = abaaba \in L(G)$$

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Next:

Emptiness problem

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not.

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not.

- Important problem with many applications
 - consistency of context-free language definitions
 - correctness properties of recursive programs

- ..

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not.

- Important problem with many applications
 - consistency of context-free language definitions
 - correctness properties of recursive programs

- ...

- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

Algorithm C.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive; repeat
    if there is A \to \alpha \in P such that all symbols in \alpha productive then mark A as productive end until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```


Algorithm C.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive; repeat
    if there is A \to \alpha \in P such that all symbols in \alpha productive then mark A as productive end until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

$$G: S \rightarrow AB \mid CA$$
 $A \rightarrow a$
 $B \rightarrow BC \mid AB$
 $C \rightarrow aB \mid b$

Algorithm C.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive; repeat
    if there is A \to \alpha \in P such that all symbols in \alpha productive then mark A as productive end until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

Example C.17

$$G: S
ightarrow AB \mid CA \ A
ightarrow a \ B
ightarrow BC \mid AB \ C
ightarrow aB \mid b$$

1. Initialisation

Algorithm C.16 (Emptiness Test)

$$G: S \rightarrow AB \mid CA \ A \rightarrow a \ B \rightarrow BC \mid AB \ C \rightarrow aB \mid b$$

- 1. Initialisation
- 2. 1st iteration

Algorithm C.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive; repeat
        if there is A \to \alpha \in P such that all symbols in \alpha productive then mark A as productive end until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

$$G: S \rightarrow AB \mid CA$$
 $A \rightarrow a$
 $B \rightarrow BC \mid AB$
 $C \rightarrow aB \mid b$

- 1. Initialisation
- 2. 1st iteration
- 3. 2nd iteration

Algorithm C.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive; repeat
    if there is A \to \alpha \in P such that all symbols in \alpha productive then mark A as productive end until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

$$G: S o AB \mid CA$$
 1. Initialisation $A o a$ 2. 1st iteration $B o BC \mid AB$ 3. 2nd iteration $C o aB \mid b$ S productive $\implies L(G) \neq \emptyset$

Summary: The Emptiness Problem for Context-Free Languages

Seen:

• Emptiness problem decidable based on productivity of symbols

Summary: The Emptiness Problem for Context-Free Languages

Seen:

Emptiness problem decidable based on productivity of symbols

Next:

Closure properties of CFLs

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Theorem C.18

The set of CFLs is closed under concatenation, union, and iteration.

Theorem C.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$, and let $S \notin N_1 \cup N_2$ be a fresh nonterminal. Then

Theorem C.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$, and let $S \notin N_1 \cup N_2$ be a fresh nonterminal. Then

• $L_1 \cdot L_2$ is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and

$$P := \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2$$

Theorem C.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$, and let $S \notin N_1 \cup N_2$ be a fresh nonterminal. Then

• $L_1 \cdot L_2$ is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and

$$P:=\{S\to S_1S_2\}\cup P_1\cup P_2$$

• $L_1 \cup L_2$ is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and

$$P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$$

Theorem C.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$, and let $S \notin N_1 \cup N_2$ be a fresh nonterminal. Then

• $L_1 \cdot L_2$ is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and

$$P:=\{S\to S_1S_2\}\cup P_1\cup P_2$$

• $L_1 \cup L_2$ is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and

$$P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$$

• L_1^* is generated by $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1$ and

$$P := \{S \rightarrow \varepsilon \mid S_1 S\} \cup P_1$$

Negative Results

Theorem C.19

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem C.19

The set of CFLs is not closed under intersection and complement.

Proof.

Intersection: both

$$L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AC, A \to aAb \mid \varepsilon, C \to Cc \mid \varepsilon$)

and

$$L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AB, A \to aA \mid \varepsilon, B \to bBc \mid \varepsilon$)

are CFLs,

Negative Results

Theorem C.19

The set of CFLs is not closed under intersection and complement.

Proof.

Intersection: both

$$L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AC, A \to aAb \mid \varepsilon, C \to Cc \mid \varepsilon$)

and

$$L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AB, A \to aA \mid \varepsilon, B \to bBc \mid \varepsilon$)

are CFLs, but not

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

(without proof).

Negative Results

Theorem C.19

The set of CFLs is not closed under intersection and complement.

Proof.

Intersection: both

$$L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AC, A \to aAb \mid \varepsilon, C \to Cc \mid \varepsilon$)

and

$$L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$$
 (generated by $S \to AB, A \to aA \mid \varepsilon, B \to bBc \mid \varepsilon$)

are CFLs, but not

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

(without proof).

• Complement: if CFLs were closed under complement, then also under intersection (as $L_1 \cap L_2 = \overline{L_1 \cup L_2}$).

Overview of Decidability and Closure Results

Decidability Results						
Class	$w \in L$	$L = \emptyset$	$L_1 = L_2$			
Reg	+	+	+			
CFL	+	+	_			

Overview of Decidability and Closure Results

Decidability Results						
Class	$w \in L$	$L = \emptyset$	$L_1 = L_2$			
Reg	+	+	+			
CFL	+	+	_			

Closure Results							
Class	$L_1 \cdot L_2$	$L_1 \cup L_2$	$L_1 \cap L_2$	L	L *		
Reg	+	+	+	+	+		
CFL	+	+	_	_	+		

Summary: Closure Properties of Context-Free Languages

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Summary: Closure Properties of Context-Free Languages

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Next:

Automata model for CFLs

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\{a^nb^n \mid n \ge 1\}$)

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\{a^nb^n \mid n \ge 1\}$)
- DFA will be extended to pushdown automata by
 - adding a pushdown store which stores symbols from a pushdown alphabet and uses a special bottom symbol
 - adding push and pop operations to transitions

Pushdown Automata II

Definition C.20

A pushdown automaton (PDA) is of the form $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ where

- Q is a finite set of states
- ∑ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq (Q \times \Gamma \times \Sigma_{\varepsilon}) \times (Q \times \Gamma^*)$ is a finite set of transitions
- $q_0 \in Q$ is the initial state
- Z₀ is the (pushdown) bottom symbol
- F ⊆ Q is a set of final states

Interpretation of $((q, Z, x), (q', \delta)) \in \Delta$: if the PDA $\mathfrak A$ is in state q where Z is on top of the stack and x is the next input symbol (or empty), then $\mathfrak A$ reads x, replaces Z by δ , and changes into the state q'.

Configurations, Runs, Acceptance

Definition C.21

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

- An element of $Q \times \Gamma^* \times \Sigma^*$ is called a configuration of \mathfrak{A} .
- The initial configuration for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .
- The set of final configurations is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.
- If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.

Configurations, Runs, Acceptance

Definition C.21

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

- An element of $Q \times \Gamma^* \times \Sigma^*$ is called a configuration of \mathfrak{A} .
- The initial configuration for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .
- The set of final configurations is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.
- If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.
- \mathfrak{A} accepts $w \in \Sigma^*$ if $(q_0, Z_0, w) \vdash^* (q, \varepsilon, \varepsilon)$ for some $q \in F$.
- The language accepted by $\mathfrak A$ is $L(\mathfrak A):=\{w\in\Sigma^*\mid \mathfrak A \text{ accepts }w\}.$
- A language L is called PDA-recognisable if $L = L(\mathfrak{A})$ for some PDA \mathfrak{A} .
- Two PDA $\mathfrak{A}_1, \mathfrak{A}_2$ are called equivalent if $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

$$\mathfrak{A} = \langle \textit{Q}, \Sigma, \Gamma, \Delta, \textit{q}_0, \textit{Z}_0, \textit{F} \rangle$$
 is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$
 is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $\bullet F = \{q_2\}$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$
 is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $\bullet F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ $((q_0, Z, a), (q_0, ZZ))$ $((q_0, Z, b), (q_1, \varepsilon))$ $((q_1, Z, b), (q_1, \varepsilon))$ $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$
- read first *a*read following *a*'s
 read first *b*read following *b*'s
 change to final state

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$
 is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ...

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

(remember: if
$$((q, Z, x), (q', \delta)) \in \Delta$$
, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb)$$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

(remember: if
$$((q, Z, x), (q', \delta)) \in \Delta$$
, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb) \vdash (q_0, ZZ_0, abb)$$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

(remember: if
$$((q, Z, x), (q', \delta)) \in \Delta$$
, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb) \vdash (q_0, ZZ_0, abb) \vdash (q_0, ZZZ_0, bb)$$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

(remember: if
$$((q, Z, x), (q', \delta)) \in \Delta$$
, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb) \vdash (q_0, ZZ_0, abb) \vdash (q_0, ZZZ_0, bb) \vdash (q_1, ZZ_0, b)$$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

(remember: if
$$((q, Z, x), (q', \delta)) \in \Delta$$
, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb) \vdash (q_0, ZZ_0, abb) \vdash (q_0, ZZZ_0, bb) \vdash (q_1, ZZ_0, b) \vdash (q_1, Z_0, \varepsilon)$$

Example C.22 (PDA for $L = \{a^nb^n \mid n \ge 1\}$)

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q = \{q_0, q_1, q_2\}$
 - $-q_0$: construction of PD while reading a's
 - $-q_1$: deconstruction while reading b's
 - $-q_2$: accepting state
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, Z\}$
 - $-Z_0 = bottom$
 - # Z on PD = # a # b read so far
- $F = \{q_2\}$

- Δ : $((q_0, Z_0, a), (q_0, ZZ_0))$ read first a $((q_0, Z, a), (q_0, ZZ))$ read following a's $((q_0, Z, b), (q_1, \varepsilon))$ read first b $((q_1, Z, b), (q_1, \varepsilon))$ read following b's $((q_1, Z_0, \varepsilon), (q_2, \varepsilon))$ change to final state
- Observation: no transitions for
 - $-(q_0, Z_0, b)$: input must start with a
 - $-(q_1, Z, a)$: no a's following b's
 - $-(q_1, Z_0, b)$: more b's than a's

– ..

Accepting run of PDA for input w = aabb:

(remember: if $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$)

$$(q_0, Z_0, aabb) \vdash (q_0, ZZ_0, abb) \vdash (q_0, ZZZ_0, bb) \vdash (q_1, ZZ_0, b) \vdash (q_1, Z_0, \varepsilon) \vdash (q_2, \varepsilon, \varepsilon)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

Idea: 1. 21 pushes input w

- 2. switches nondeterministically to the w^R recognition phase
- 3. compares w and w^R symbol-wise by matching steps
- 4. accepts with empty pushdown

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

Idea: 1. 21 pushes input w

- 2. switches nondeterministically to the w^R recognition phase
- 3. compares w and w^R symbol-wise by matching steps
- 4. accepts with empty pushdown

Formally: $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$

•
$$Q = \{q_0, q_1, q_2\}$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w

- 2. switches nondeterministically to the w^R recognition phase
- 3. compares w and w^R symbol-wise by matching steps
- 4. accepts with empty pushdown

Formally: $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally: $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z_0, a, b\}$
- $F = \{q_2\}$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_1, aZ_0, a)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_1, aZ_0, a) \vdash (q_1, Z_0, \varepsilon)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_1, aZ_0, a) \vdash (q_1, Z_0, \varepsilon) \vdash (q_2, \varepsilon, \varepsilon)$$

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

Accepting run of PDA for input w = abba:

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_1, aZ_0, a) \vdash (q_1, Z_0, \varepsilon) \vdash (q_2, \varepsilon, \varepsilon)$$

Observation: \mathfrak{A} is nondeterministic – in a configuration of the form (q_0, cv, cw) $(c \in \Sigma, v, w \in \Sigma^*)$, both (1) and (2) are applicable.

Example C.23 (PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length))

- Idea: 1. \mathfrak{A} pushes input w
 - 2. switches nondeterministically to the w^R recognition phase
 - 3. compares w and w^R symbol-wise by matching steps
 - 4. accepts with empty pushdown

Formally:
$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z_0, a, b\}$$

•
$$F = \{q_2\}$$

•
$$\Delta$$
: $((q_0, Z, c), (q_0, cZ))$ for $Z \in \Gamma, c \in \Sigma$ (1)

$$((q_0, c, c), (q_1, \varepsilon))$$
 for $c \in \Sigma$ (2)

$$((q_0, Z_0, \varepsilon), (q_1, Z_0)) \tag{2}$$

$$((q_1, c, c), (q_1, \varepsilon)) \quad \text{for } c \in \Sigma$$
 (3)

$$((q_1, Z_0, \varepsilon), (q_2, \varepsilon)) \tag{4}$$

Accepting run of PDA for input w = abba:

$$(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_1, aZ_0, a) \vdash (q_1, Z_0, \varepsilon) \vdash (q_2, \varepsilon, \varepsilon)$$

Observation: \mathfrak{A} is nondeterministic – in a configuration of the form (q_0, cv, cw) $(c \in \Sigma, v, w \in \Sigma^*)$, both (1) and (2) are applicable. This yields rejecting runs, e.g., $(q_0, Z_0, abba) \vdash (q_0, aZ_0, bba) \vdash (q_0, baZ_0, ba) \vdash (q_0, bbaZ_0, a) \vdash (q_0, abbaZ_0, \varepsilon) \nvdash$

Deterministic PDA

Definition C.24

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

- 1. if $((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$
- 2. if $((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

Deterministic PDA

Definition C.24

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

- 1. if $((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$
- 2. if $((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

Corollary C.25

In a DPDA, every configuration has at most one ⊢-successor.

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Example C.26

The set of palindromes of even length is PDA-recognisable, but not DPDA-recognisable (without proof).

Summary: Pushdown Automata

Seen:

- Extension of finite automata by pushdown store
- Enables "counting" (e.g., $\{a^nb^n \mid n \ge 1\}$)
- Determinism restricts expressivity (in contrast to finite automata)

Summary: Pushdown Automata

Seen:

- Extension of finite automata by pushdown store
- Enables "counting" (e.g., $\{a^nb^n \mid n \ge 1\}$)
- Determinism restricts expressivity (in contrast to finite automata)

Next:

Relation between PDA and context-free languages

Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for Context-Free Languages

Closure Properties of Context-Free Languages

Pushdown Automata

Pushdown Automata and Context-Free Languages

Theorem C.27

A language is context-free iff it is PDA-recognisable.

Theorem C.27

A language is context-free iff it is PDA-recognisable.

Proof.

"←": omitted

" \Rightarrow ": let $G = \langle N, \Sigma, P, S \rangle$ be a CFG. Construction of PDA \mathfrak{A}_G recognising L(G):

- \mathfrak{A}_G simulates a derivation of G where always the leftmost nonterminal of a sentence is replaced ("leftmost derivation")
- begin with S on pushdown
- if nonterminal on top: apply a corresponding production rule
- if terminal on top: match with next input symbol

(cf. formal construction on following slide)

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q := \{q_0\}$
- $\Gamma := N \cup \Sigma$
- $Z_0 := S$

- for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")
- for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")
- *F* := *Q*

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- \bullet $Z_0 = S$

 $\begin{array}{ll} \bullet \ \Delta \colon ((q_0,S,\varepsilon),(q_0,\langle\rangle)) & ((q_0,\langle,\langle),(q_0,\varepsilon)) \\ & ((q_0,S,\varepsilon),(q_0,\langle S\rangle)) & ((q_0,\rangle,\rangle),(q_0,\varepsilon)) \\ & ((q_0,S,\varepsilon),(q_0,SS)) \end{array}$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0, \mathcal{S}, \langle \langle \rangle \rangle \langle \rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0, S, \langle \langle \rangle \rangle \langle \rangle) \vdash (q_0, SS, \langle \langle \rangle \rangle \langle \rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, \mathbf{S}, \varepsilon), (q_0, \langle \mathbf{S} \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0, \mathcal{S}, \langle\langle\rangle\rangle\langle\rangle) \vdash (q_0, \mathcal{SS}, \langle\langle\rangle\rangle\langle\rangle) \vdash (q_0, \langle\mathcal{S}\rangle\mathcal{S}, \langle\langle\rangle\rangle\langle\rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \to \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}$, $\Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0, \mathcal{S}, \langle \langle \rangle \rangle \langle \rangle) \quad \vdash \ (q_0, \mathcal{SS}, \langle \langle \rangle \rangle \langle \rangle) \ \vdash \ (q_0, \langle \mathcal{S} \rangle \mathcal{S}, \langle \langle \rangle \rangle \langle \rangle) \ \vdash \ (q_0, \mathcal{S} \rangle \mathcal{S}, \langle \rangle \rangle \langle \rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

• $Q = F = \{q_0\}$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$

 $((q_0,\mathcal{S},\varepsilon),(q_0,\langle\mathcal{S}\rangle)) \quad ((q_0,\rangle,\rangle),(q_0,\varepsilon))$

• $Z_0 = S$

 $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0, S, \langle\langle\rangle\rangle\langle\rangle) \vdash (q_0, SS, \langle\langle\rangle\rangle\langle\rangle) \vdash (q_0, \langle S \rangle S, \langle\langle\rangle\rangle\langle\rangle) \vdash (q_0, S \rangle S, \langle\rangle\rangle\langle\rangle)$$

 $\vdash (q_0, \langle\rangle\rangle S, \langle\rangle\rangle\langle\rangle)$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0,S,\langle\langle\rangle\rangle\langle\rangle) \vdash (q_0,SS,\langle\langle\rangle\rangle\langle\rangle) \vdash (q_0,\langle S\rangle S,\langle\langle\rangle\rangle\langle\rangle) \vdash (q_0,S\rangle S,\langle\rangle\rangle\langle\rangle)$$

 $\vdash (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \vdash (q_0,\rangle\rangle S,\rangle\rangle\langle\rangle)$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- \bullet $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0,S,\langle\langle\rangle\rangle\langle\rangle) \; dash (q_0,SS,\langle\langle\rangle\rangle\langle\rangle) \; dash (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \; dash (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \; dash (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \; dash (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \; dash (q_0,\langle\rangle) S,\langle\rangle\langle\rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \to \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- \bullet $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

$$(q_0,S,\langle\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,SS,\langle\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle\rangle) S,\langle\rangle\rangle\langle\rangle) \;dash \; (q_0,\langle\rangle) S,\langle\rangle\rangle\langle\rangle)$$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}$, $\Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

Accepting run for input $w = \langle \langle \rangle \rangle \langle \rangle$:

$$(q_0,S,\langle\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,SS,\langle\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle S
angle S,\langle\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle\rangle\rangle S,\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle\rangle) S,\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle\rangle) S,\langle\rangle\rangle\langle\rangle) \; dash \; (q_0,\langle S
angle S,\langle S
angle S$$

 $\vdash (q_0, \langle \rangle, \langle \rangle)$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

• *F* := *Q*

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

• $Q = F = \{q_0\}$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle \rangle, (q_0, \varepsilon)))$
- $\Sigma = \{\langle, \rangle\}$, $\Gamma = \{S, \langle, \rangle\}$

 $((q_0, \mathcal{S}, \varepsilon), (q_0, \langle \mathcal{S} \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$

• $Z_0 = S$

 $((q_0, S, \varepsilon), (q_0, SS))$

Accepting run for input $w = \langle \langle \rangle \rangle \langle \rangle$:

$$(q_0, S, \langle \langle \rangle \rangle \langle \rangle) \vdash (q_0, SS, \langle \langle \rangle \rangle \langle \rangle) \vdash (q_0, \langle S \rangle S, \langle \langle \rangle \rangle \langle \rangle) \vdash (q_0, S \rangle S, \langle \rangle \rangle \langle \rangle)$$
 $\vdash (q_0, \langle \rangle \rangle S, \langle \rangle \rangle \langle \rangle) \vdash (q_0, \rangle S, \rangle \langle \rangle) \vdash (q_0, \rangle S, \rangle \langle \rangle) \vdash (q_0, S, \langle \rangle)$

 $\vdash (q_0, \langle \rangle, \langle \rangle) \qquad \vdash (q_0, \rangle, \rangle)$

Proof of Theorem C.27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

• $Q := \{q_0\}$

• for each $A \to \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$ ("expansion")

• $\Gamma := N \cup \Sigma$

• for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$ ("matching")

• $Z_0 := S$

 \bullet F := Q

Example C.28 ("Bracket language" given by $G: S \rightarrow \langle \rangle \mid \langle S \rangle \mid SS \rangle$)

 $\mathfrak{A}_G = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ with

- $Q = F = \{q_0\}$
- $\Sigma = \{\langle, \rangle\}, \Gamma = \{S, \langle, \rangle\}$
- $Z_0 = S$

- Δ : $((q_0, S, \varepsilon), (q_0, \langle \rangle))$ $((q_0, \langle , \langle \rangle, (q_0, \varepsilon)))$
 - $((q_0, S, \varepsilon), (q_0, \langle S \rangle)) \quad ((q_0, \rangle, \rangle), (q_0, \varepsilon))$
 - $((q_0, S, \varepsilon), (q_0, SS))$

- $\vdash (q_0, \langle \rangle, \langle \rangle) \qquad \vdash (q_0, \rangle, \rangle) \qquad \vdash (q_0, \varepsilon, \varepsilon)$

Summary: Pushdown Automata and Context-Free Languages

Seen:

- Construction of PDA for given CFG (⇒ parser generation!)
- Reverse direction also possible
- Thus: PDA and CFG equivalent

Summary: Pushdown Automata and Context-Free Languages

Seen:

- Construction of PDA for given CFG (⇒ parser generation!)
- Reverse direction also possible
- Thus: PDA and CFG equivalent

Outlook:

- Equivalence problem for CFG and PDA (" $L(X_1) = L(X_2)$?"): generally undecidable, but decidable for DPDA
- Pumping Lemma for CFL (e.g., to prove that $\{a^nb^nc^n \mid n \geq 1\}$ not context-free)
- Greibach Normal Form for CFG
- Systematic construction of deterministic and efficient parsers for compilers (LL/LR grammars)
- Non-context-free grammars and languages (e.g., context-sensitive languages such as $\{a^nb^nc^n\mid n\geq 1\}$)

