Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes
Part C: Context-Free Languages
March 11-15, 2024

Thomas Noll
Software Modeling and Verification Group

RWTH Aachen University
https://moves.rwth-aachen.de/teaching/ws-23-24/foi/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-23-24/foi/

Outline of Part C

Context-Free Grammars and Languages

2 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Introductory Example |

Example C.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression)

Expression) * { Expression)

=0
1
(Expression) + (Expression)
(
({Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v
are again expressions

30f48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024 ‘

RWTH

Software Modeling
Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:

E—0[1|E+E|E*E]|(E)

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)*x E

RWTH

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
4 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling
March 11-15, 2024 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)x E
= (E) * 1
= (E+ E) * 1
4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling
March 11-15, 2024 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E) * E
(E + E) * 1
= (0+ E) x 1
4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling

March 11-15, 2024 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

RWTH

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Context-Free Grammars |

Definition C.2
A context-free grammar (CFQG) is a quadruple

G=(N,X,P,S)

where
e N is a finite set of nonterminal symbols
e 2 is the (finite) alphabet of terminal symbols (disjoint from N)
e Pis a finite set of production rules of the form A — awhere A€ Nand o € (NU ¥)*
e S € Nis a start symbol

50f 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Context-Free Grammars Il

Example C.3

For the above example, we have:

o N={E}

oY ={0,1,+,%(,)}
eP={E—-0,E—~1E—-E+EE—ExEE— (E)}
e S=FEF

6 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

Context-Free Grammars Il

Example C.3

For the above example, we have:

o N={E}

oY ={0,1,+,%(,)}
eP={E—-0,E—~1E—-E+EE—ExEE— (E)}
e S=FE

Naming conventions:

e nonterminals start with uppercase letters

e terminals start with lowercase letters

e start symbol = symbol on LHS of first production
= grammar completely defined by productions

6 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.
e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandd,dr € (NUX)" such that § = 61Ad> and v = 61>
(notation: 5 = ~ or just 5 = 7).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.
e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— «a € Pandd, o € (NUZX)" suchthat 5 = ;A and v = d1ad>
(notation: 5 = ~ or just 5 = 7).
e A derivation (of length n € N) of v from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6;_1 = o; forevery i € {1,...,n}
(notation: 3 =" 7).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— «a € Pandd, o € (NUZX)" suchthat 5 = ;A and v = d1ad>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6;_1 = o; forevery i € {1,...,n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— «a € Pandd, o € (NUZX)" suchthat 5 = ;A and v = d1ad>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6;_1 = o; forevery i € {1,...,n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

e The language generated by Gis L(G) .= {w € ¥* | S =" w}.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— «a € Pandd, o € (NUZX)" suchthat 5 = ;A and v = d1ad>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6;_1 = o; forevery i € {1,...,n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

e The language generated by Gis L(G) .= {w € ¥* | S =" w}.

e A language L C 2" is called context-free (CFL) if it is generated by some CFG.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— «a € Pandd, o € (NUZX)" suchthat 5 = ;A and v = d1ad>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6;_1 = o; forevery i € {1,...,n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

e The language generated by Gis L(G) .= {w € ¥* | S =" w}.

e A language L C 2" is called context-free (CFL) if it is generated by some CFG.

e Two grammars Gy, G, are equivalent if L(G;) = L(G»).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages Il

Example C.5

The language
(20" | n € N}

is context-free. It is generated by the grammar G = (N, ¥, P, S) with

o N={S}

o) ={a b}

e P={S— aSb|¢}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

RWTH

8 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Context-Free Languages Il

Example C.5

The language
(20" | n € N}

is context-free. It is generated by the grammar G = (N, ¥, P, S) with

o N={S}

o) ={a b}

e P={S— aSb|¢}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
e root labelled by start symbol /
e leaves labelled by terminal symbols a
/
a

e successors of node labelled according to right-hand side
of production rule

e sequence of leaf symbols = generated word

AN
b
AN

b

H— WO —0—0

:

8 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

9 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

Next:
e Relation between context-free and regular languages

9 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

Context-Free vs. Regular Languages

10 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Context-Free vs. Regular Languages

Theorem C.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

11 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Context-Free vs. Regular Languages

Theorem C.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)
Proof.

1. Let L be a regular language, and let 2l = (Q. ¥, 9, qo, F) be a DFA which recognises L.
Gy = (N, X, P, S) is defined as follows:
-N:=Q,S = q
—ifd(g,a) = ¢, thenqg — aq' € P
—ifge F,theng > € P
Obviously a w-labelled run in %[from g to F corresponds to a derivation of w in Gy, and
vice versa. Thus L(2l) = L(Gsy) (example on the following slide).

2. An example is {a"b" | n € N} (see Lesson 1).

Intuitive reason for non-regularity: recognising this language requires “unbounded counting”
capability. =

RWTH

Part C: Context-Free Languages

11 of 48 Foundations of Informatics/Formal Languages and Processes o
March 11-15, 2024 ‘

Software Modeling
Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F):

@—2—@> b

b a, b

a,b

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

b a, b

a,b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@o b

Qo — agi | bage
b a, b

a,b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — agi | bage

z g — aq |bagi|e
b a, b

a,b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F):

Corresponding CFG Gy := (N, %, P, S)

with N .= Q, S := qp:

@@ b

b a, b

a,b

Qo — agi | bage
g — aqg|bg|¢
G — ags | bags

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

: Software Modeling

Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — agi | bag
Z g — aq: | bags | ¢
b a,b ® — ag|bgs
Qs — aq: | bag
a,b
12 of 48 E:Lrjtng?t(i:c;nnst :Xft_lr';:ce);mf;ir::;ﬁ;c;;rzal Languages and Processes o | Rm
March 11-15, 2024 | gﬂat‘\':":rrﬁi.m;ﬂ'gﬂair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@ b G — aq | bgs

s g1 — ag:| bqgs|e
b a, b ¢ — ag | bags
g5 — agqgi | bg
.

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo
12 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling
March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@ b G — aqi | bg

s g1 — ag:| bqgs|e
b a, b ¢ — ag | bags
g5 — agqgi | bg
.

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = bqg>
12 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling
March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@ b Qo — aqi | ba

Z g — aq: | bags | ¢
b a, b Q@ — ag | bgs
Qs — ag: | bg;
.

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = bg = bags

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@ b Qo — aqi | ba

Z g — aq: | bags | ¢
b a, b Q@ — ag | bgs
Qs — aag: | bg
—

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bag; = baaag;

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@b Qo — aqi | ba

Z g — aq: | bag|¢
b a, b Q@ — ag | bgs
Qs — ag: | bg;
—

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bags = baaqg; = baabqg;

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7

DFARL = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
with N .= Q, S := qp:

a
(@ b Qo — aqi | ba

Z g — aq | bag|¢
b a, b Q@ — ag | bgs
Qs — ag: | bg;
—

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:
Q= bg = bags; = baaqg, = baabg; = baab

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages

13 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages

Next:
e Decidability of word problem

13 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

Chomsky Normal Form

RWTH

14 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € X", decide whether w € L(G) or not.

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € X", decide whether w € L(G) or not.

e Important problem with many applications
— syntax analysis of programming languages

— HTML parsers
15 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € X", decide whether w € L(G) or not.

e Important problem with many applications
— syntax analysis of programming languages
— HTML parsers

e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

RWTH

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € X", decide whether w € L(G) or not.

e Important problem with many applications
— syntax analysis of programming languages
— HTML parsers

e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

e Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

= Only finitely many combinations to be inspected

RWTH

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the

form
A—BC o A—a

16 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—BC o A—a

Example C.9

Consider the grammar S — ab | aSh, which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b™" | n > 1})

RWTH

16 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Conversion to Chomsky Normal Form

Theorem C.10
Every CFL L (without c-productions) can be generated by a CFG in Chomsky NF.

17 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Conversion to Chomsky Normal Form

Theorem C.10
Every CFL L (without c-productions) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, X, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:
1. terminal symbols only in rules of the form A — a

(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A ... A, where n > 2

(see following slides for details)

RWTH

17 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Step 1: Only A — a

Procedure

1. For every terminal symbol a € X, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € 2 with B,.

This yields G'.

18 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Step 1: Only A — a

Procedure

1. For every terminal symbol a € X, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € 2 with B,.

This yields G'.

Example C.11
G: S — ab|aSb is converted to G:S — AB| ASB
A — a
B — b
18 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;irt]:;ﬁ;;;rzal Languages and Processes o | Rm
March 11-15, 2024 ‘ | ggrjtv:;?ig?g)ﬂlgaair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — « with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — « with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12
/ .
G:S = A
A— B|C
B — A| DA
C —+c
D — d
19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling
March 11-15, 2024 ‘ Il and Verification Chair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — « with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12
S
/. U
G:S = A
A— B|C
B — A| DA / \
C —+c
D — d / \ U
C
19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling
March 11-15, 2024 ‘ Il and Verification Chair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — « with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12
is converted to S
G:S— A G': S — DAlc U
A= B|C A — DA|c
B — A| DA B — DA|c /\
C = c C = c
D — d D — d / \ U
C
19 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;iri:;ﬁ:ac;;rzal Languages and Processes o | Rm
March 11-15, 2024 ‘ | ggrjt‘\llvearri?ig(:ﬁﬁ:lgaair

Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A;... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — AB.

3. Add new production B — A ... A,.

This yields G"'.

20 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024 ‘

RWTH

Software Modeling
Il and Verification Chair

Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A;... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — AB.

3. Add new production B — A ... A,.

This yields G"'.

Example C.13
G': S — AB| ASB is converted to G": S — AB| AC
A — a A — a
B — b B — b
C — SB
20 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;irt]:;ﬁ;;;rzal Languages and Processes o | Rm
March 11-15, 2024 ‘ | gr(::jt‘\llv::i(feig(:gﬁ:lgaair

Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a

21 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a

Next:
e Exploit Chomsky Normal Form to solve word problem for CFL

21 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

The Word Problem for Context-Free Languages

22 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Word Problem for CFL

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such that e ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = £, then w € L(G) easily decidable for arbitrary G)

RWTH

Part C: Context-Free Languages

23 of 48 Foundations of Informatics/Formal Languages and Processes o
Software Modeling
March 11-15, 2024

Il and Verification Chair

The Word Problem for CFL

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such that e ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = £, then w € L(G) easily decidable for arbitrary G)

Algorithm C.14 (by Cocke, Younger, Kasami — CYK algorithm)

Transform G into Chomsky NF

Letw=ay...ap,(n>1)

Letw[i,jl:=a;...ajforevery1 <i<j<n

Consider segments wli, j| in order of increasing length, starting with wli, i] = a; (i.e., letters)
In each case, determine N;j .= {A € N | A=" wl[i,j]} using a “dynamic programming”
approach:

—I:jN,’,:{AGN’A%a,EP}
—i<j:Nj={AeN|3IB,CeNke{i,....j—1}:A— BC € P,BE Nix,C € Ni1,}

6. Test whether S € Ny, (and thus, whether S =* w[1,n| = w)

ANl < A

23 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

3

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

: Software Modeling

‘ Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

N1 = {AEN‘A%31EP}
NQQ? {AGN’A%&QEP}

3

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

n

4

Software Modeling
Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

a ao as
iNj| 1 2 3
T Nyt Niz Ny N;
2| X Noo Nag No
30X X Ngg - Naj
Niy = {AEN|A— a €P} nl X X Np,n

No o = {AEN A%&QEP}

N, = {AEN|3IB,CEN:A—BCEP,BEN,{,CE Ny}
Nog = {AEN|IB,CEN:A— BCEP,BE Nyp, CE Nas}

RWTH

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Matrix Representation of CYK Algorithm

a ao as
i\j 1 2 3
T INi 4 Nyg Nyg -+ Nyp
2| X Noo Nog --+ Nojp
3 X X Nsz -+ N3,
Nyt = {AEN|A— a € P} n| X X -+ - Ny
N272 = {AEN A%&QEP}
Nip = {A€EN|3B,CEN:A— BCEP,BE N4, CE Ny}
Npg = {A€EN|3B,CEN:A— BCEP,BE Nyp, CE Nyg}
Nig = {A€EN|3IB,CEN:A—BCEP,BENCE Nz}
U{AeN|IB,CEN:A— BCEP,BE N, CE Ny3}
N2’4 — {AEN EIB,CEN:A%BCGP,BENQ’Q,CENQ,A}
U{AEN|IB,CEN:A— BCEP,BE N3 CE Nyy}
24 of 48 :Lrjtn(d;t(i:c;nnst :;t_lr;frzremf;f;;zgal Languages and Processes o s - M d I m

Applying the CYK Algorithm

Example C.15

eG: S—SA|a
A— BS
B—BB|BS|b|c
e W = abaaba

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

.

4

Software Modeling
Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15

Q

eG: S—SA|a

A — BS
B—BB|BS|b|c
e W = abaaba

S N
X X X X X

X X X X

X X X

X X

RWTH

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

o

Q

eG: S—SA|a

N

A — BS
B—BB|BS|b|c
e W = abaaba

—~—
——

XX XX X0

X X X X

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

: Software Modeling

Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15

eG: S—SA|a

A — BS
B—BB|BS|b|c
e W = abaaba

—~—
——

mm.hoom—uz
XX X X X W —=2o

X X {8

25 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

Q

eG: S—SA|a

w
I

A — BS
B—BB|BS|b|c
e W = abaaba

—~—
——

XXX XX®0-o

—~—
X XXX DS o
—

—~—
X X X W
——

—~—

—

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

: Software Modeling

Il and Verification Chair

‘RW“-I

Applying the CYK Algorithm

Example C.15

QD
oy
QD

I
(&)
(@)

eG: S—SA|a

A — BS
B—BB|BS|b|c
e W = abaaba

—~—
X XXX X0
——

——
—
=

1B} {A }
1S}

X X =

——

XXXXDsSNTS
——

>

(D(J'I-BOOI\)—L(_
——
r—'-\b

X X X W w|
——
——

25 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

QD
QD
oy
QD

w
N
(@)
(@))

eG: S—SA|a

A — BS
B—BB|BS|b|c
e W = abaaba

—~—
——

XXX XX®0-o

1B} {A B}
X S}

~—
XX XXDSNo

)

~—

>

vy

——~
X X =

——
X X X WO
——

——

——

=

25 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

a b a d g 2
eG: S—S5SA|a / \/ 1 B 3 4 > °
A— BS 1 {S}) 1S}
B BB|BS|b|c 2 x {B} {AB}
e w — abaaba 3, X x {s} 0
4 x x x {s} 0 {s}
5 X X X X {B} {AB)
6 X X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a d g 2
eG: S—SA|a | 1 2 5 : > 2
A— BS 1 {S}) 15}
B—BB|BS|b|c 2. x {B} {AB}{A }
o w = abaaba 3, X x {s} 0
4 x X x {s} 0 {s
5 X X X X {B} {AB)
6 x X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a d g 2
eG: S—SA|a | 1 2 5 : > 2
A— BS 1 {S}) 15}
B— BB|BS|b|c 2 X {B} {AB} {AB}
e w — abaaba 3, X x {s} 0
4 x x x {s} 0 {s}
5 X X X X {B} {AB)
6 x X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a d g 2
eG: S—SA|a / \/ 1 B 3 4 > °
A— BS 1 {S}) 1S}
B— BB|BS|b|c 2 X {B} {AB} {AB}
e w — abaaba 3, X x {s} 0 ;
4 x x x {s} 0 {s}
5 X X X X {B} {AB)
6 x X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a & g 2
eG: S—SA|a | 1 2 5 . > 2
A BS sy 0 S {S)
B— BB|BS|b|c 2 X {B} {AB} {AB}
o w = abaaba 3, X x {s} 0 0
4 x X x {s} 0 {s
5 X X X X {B} {AB)
6 x X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a & g 2
eG: S S5A|a i 1 2 £ 4 ° °
A— BS 1Sy 0 1S} 1S}
B—BB|BS|bl|c 2| x {B} {AB} {AB} {B}
e w — abaaba 3, X x {s} 0 0
4 x X x {s} 0 {s
5 X X X X {B} {AB)
6 x X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgél;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a z b a
eG: S—SA|a AV 2 3 . > °
A— BS sy 0 1S} 1S}
B—BB|BS|b|c 2| X {B} {AB} {AB} {B;
e w = abaaba 3| X x {st 0 0 D
4 X X x {s} 0 {s
5. X X X X {B {AB
6 X X X X x {s}
T e hom gy o0 o D s | TN

Applying the CYK Algorithm

Example C.15

a b a z b a
eG: S—SA|a AV 2 3 . > °
A— BS tsy 0 isp {sp 0
B—BB|BS|b|c 2| X {B} {AB} {AB} {B;
e w = abaaba 3| X x {st 0 0 D
4 X X x {s} 0 {s
5. X X X X {B {AB
6 X X X X x {s}
T e hom gy o0 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a = b a
eG: S—SA|a i \j 1 2 < : ° °
A— BS thsy 0 18y {sp 0
B—BB|BS|b|c 2 X {B} {AB} {AB} {B} {A }
o w = abaaba 3| x Xx {s} 0 0 0
4 X X X {st 0 {s}
5. X X X X {B {AB
6 X X X X x {s}
T e hom gy o0 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a z b a
eG: S—SA|a AV 2 3 . > °
A— BS thsy 0 18y {sp 0
B— BB|BS|b|c 2 X {B} {AB; {AB} {B} 1AB;
e w = abaaba 3, X x {st 0 0 D
4 X X x {s} 0 {s
5. X X X X {B {AB
6 X X X X x {s}
T e hom gy o0 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a a b a
eG: S—S5SA|a I \j 1 2 £ 4 ° °
A— BS tpisy 0 sy {sp 0 {5}
B BB|BS|b|c 2| X {B} {AB} {AB} {B} {AB)
o w = abaaba 3| X x {s} 0 0 0
4 x x x {s} 0 {s}
6 X X X X x {s}
T e hom gy o0 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a a b a
eG: S SA|a iNj| 1 2 3 4 5 6
A BS 1 {sy 0 {s} {st 0 {s!
B—BB|BS|b|c 2| X {B} {AB} {A B} {B} {AB}
e w = abaaba 3| X X {S} 0 0 0
4. X X x {sr 0 {s}
5 X X X X {B} {AB]}
6| X X X X X {S}
S € Njg = w = abaaba € L(G)
RWTH

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity

26 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity

Next:
e Emptiness problem

26 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

The Emptiness Problem for Context-Free Languages

27 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, %, P, S), decide whether L(G) = () or not.

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

e Important problem with many applications
— consistency of context-free language definitions
— correctness properties of recursive programs

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

e Important problem with many applications
— consistency of context-free language definitions
— correctness properties of recursive programs

e For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

e Here: test whether start symbol is productive, i.e., whether it generates a terminal word

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

if thereis A — « € P such that all symbols in o productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

RWTH

Part C: Context-Free Languages
March 11-15, 2024

29 of 48 Foundations of Informatics/Formal Languages and Processes o

Software Modeling
Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
if thereis A — « € P such that all symbols in o productive then
mark A as productive

end
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB| CA
A— a
B — BC | AB
C—aB|b
29 of 48 Foundati f Inf tics/F I L. dP
S e) RWTH
Software Modeling
March 11-15, 2024 Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
if thereis A — « € P such that all symbols in o productive then
mark A as productive

end
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example C.17
G:- S— AB | CA 1. Initialisation
A— a
B— BC | AB
C—aB|b
29 of 48 Foundations of Informatics/Formal Languages and Processes
PalrJt C: Context-Free Languages ’ o _ Rm
March 11-15, 2024 m §ﬂ5t‘\":':rri?i2"a?ﬂ$'3ﬂair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
if there is A — « € P such that all symbols in a productive then

mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example C.17

G: S— AB| CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB
C—aB|b

29 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling ‘
March 11-15, 2024 Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

if there is A — « € P such that all symbols in & productive then
mark A as productive
end
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB | CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b
29 of 48 E:Lrjtng?t(i:c;nnst (:)(ft_lrlll;ce);mf;ir::;ﬁ;c;;rzal Languages and Processes o | Rm
March 11-15, 2024 | ggatvgrziig‘:g]ﬂlgﬂair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G= (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

if thereis A — « € P such that all symbols in o productive then
mark A as productive
end
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB | CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b S productive = L(G) # ()
29 of 48 E:Lrjtng?t(i:c;nnst (:)(ft_lrlll;c;;mf;ir::;ﬁ;c;;n;al Languages and Processes o | Rm
March 11-15, 2024 | gr(::ltv:rri?iggs)ﬂlgﬂair

Summary: The Emptiness Problem for Context-Free Languages

Seen:
e Emptiness problem decidable based on productivity of symbols

30 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: The Emptiness Problem for Context-Free Languages

Seen:
e Emptiness problem decidable based on productivity of symbols

Next:
e Closure properties of CFLs

30 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

Closure Properties of Context-Free Languages

31 0f 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Positive Resulis

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Positive Resulis

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G;= (N, X, P, S;) with L; := L(G;) and N; N N, = (), and let
S ¢ N; U N, be a fresh nonterminal. Then

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Positive Resulis

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G;= (N, X, P, S;) with L; := L(G;) and N; N N, = (), and let
S ¢ N; U N, be a fresh nonterminal. Then

e L Lyisgeneratedby G := (N, X, P, S) with N .= {S} UN; UN, and
P = {S% S1SQ}UP1 U Po

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Positive Resulis

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G;= (N, X, P, S;) with L; := L(G;) and N; N N, = (), and let
S ¢ N; U N, be a fresh nonterminal. Then

e L Lyisgeneratedby G := (N, X, P, S) with N .= {S} UN; UN, and
P:={S— $S:}UP;UP;

e [ULyisgeneratedby G:= (N, X, P, S) with N := {S} UN; U N, and
P={S— S |S:}UPUP;

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Positive Resulis

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G;= (N, X, P, S;) with L; := L(G;) and N; N N, = (), and let
S ¢ N; U N, be a fresh nonterminal. Then

e L Lyisgeneratedby G := (N, X, P, S) with N .= {S} UN; UN, and
P:={S— $S:}UP;UP;
e [ULyisgeneratedby G:= (N, X, P, S) with N := {S} UN; U N, and
P={S— S |S:}UPUP;
e L} is generated by G := (N, X, P, S) with N := {S} UN, and
P={S—¢e| S$S}tUP

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={ab’c' | k,1 € N} (generatedby S — AC,A — aAb| e, C — Cc | <)
and
L, .= {ab'c' | k,l e N} (generatedby S — AB,A — aA|es,B — bBc | ¢)
are CFLs,

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={ab’c' | k,1 € N} (generatedby S — AC,A — aAb| e, C — Cc | <)
and
L, .= {ab'c' | k,l e N} (generatedby S — AB,A — aA|es,B — bBc | ¢)

are CFLs, but not
LiNL = {a”b”c” | n c N}

(without proof).

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={ab’c' | k,1c N} (generatedby S — AC,A — aAb| e, C — Cc | ¢)
and
L, .= {ab'c' | k,l e N} (generatedby S — AB,A — aA|es,B — bBc | ¢)

are CFLs, but not
LiNL = {a”b”c” | n c N}

(without proof).

e Complement: if CFLs were closed under complement, then also under intersection (as
LiN Ly =Ly UL).

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Overview of Decidability and Closure Results

Decidability Results

Class

Reg
CFL

+ +
+ +

34 of 48

Foundations of Informatics/Formal Languages and Processes

Part C: Context-Free Languages
March 11-15, 2024

)

4

Software Modeling
Il and Verification Chair

RWTH

Overview of Decidability and Closure Results

Decidability Results

Class | welL L=0 Li=1L

Reg + + +

CFL + + -

Closure Results

Class | Ly-L, LiULly, LiNL L L
Reg + + + + 4+
CFL + + - -+

34 of 48

Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

n

4

Software Modeling
Il and Verification Chair

‘RW“-I

Summary: Closure Properties of Context-Free Languages

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement

35 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Closure Properties of Context-Free Languages

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement

Next:
e Automata model for CFLs

35 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

Pushdown Automata

36 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Pushdown Automata |

e Goal: introduce an automata model which exactly accepts CFLs

e Clear: DFA not sufficient
(missing “counting capability”, e.g. for {a"b"” | n > 1})

37 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Pushdown Automata |

e Goal: introduce an automata model which exactly accepts CFLs

e Clear: DFA not sufficient
(missing “counting capability”, e.g. for {a"b"” | n > 1})
e DFA will be extended to pushdown automata by

— adding a pushdown store which stores symbols from a pushdown alphabet and uses a special
bottom symbol
— adding push and pop operations to transitions

37 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Pushdown Automata ll

Definition C.20

A pushdown automaton (PDA) is of the form 2l = (Q, %, T, A, qo, Zy, F) where
e () is a finite set of states
e) is the (finite) input alphabet
e [is the (finite) pushdown alphabet
e AC(QxTxX.)x(QxT*)is afinite set of transitions
e o € Qs the initial state
e Z; is the (pushdown) bottom symbol
e F C Qis a set of final states

Interpretation of ((q, Z, x), (¢, 9)) € A: if the PDA 2l is in state g where Z is on top
of the stack and x is the next input symbol (or empty), then %l reads x, replaces Z by
0, and changes into the state ¢'.

RWTH

38 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Configurations, Runs, Acceptance

Definition C.21
Let2l = (Q, X, T, A, qu, Z, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2L.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {¢} x {e}.
e If ((g,Z,x),(q,0)) € A, then (q, Z, xw) = (@', 6, w) for every v € T'*, w € ¥*.

RWTH

39 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Configurations, Runs, Acceptance

Definition C.21
Let2l = (Q, X, T, A, qu, Z, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2L.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {¢} x {e}.
e If ((g,Z,x),(q,0)) € A, then (q, Z, xw) = (@', 6, w) for every v € T'*, w € ¥*.
e 2 accepts w € X" if (qo, Zo, W) F* (q, £,) for some g € F.
e The language accepted by 2 is L(2A) := {w € £* | 2l accepts w}.
e A language L is called PDA-recognisable if L = L(%2l) for some PDA 2I.
e Two PDA 2,2, are called equivalent if L(2(1) = L(%l>).

RWTH

39 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
2 = <Qv Za ra Aa Qo, 207 F> is given by

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, qo,Z,F) is given by

® Q — {q07 q17 q2}
— Qo construction of PD while reading a’s
— @q;: deconstruction while reading b’s
— Qo: accepting state

40 of 48 Foundations of Informatics/Formal Languages and Processes nm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, qo,Z,F) is given by

® Q — {q07 q17 q2}
— Qo construction of PD while reading a’s
— @q;: deconstruction while reading b’s
— Qo: accepting state

o> ={a b}
40 of 48 Foundations of Informatics/Formal Languages and Processes nm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, qo,Z,F) is given by

® Q — {q07 q17 q2}
— Qo construction of PD while reading a’s
— @q;: deconstruction while reading b’s
— Qo: accepting state

o> ={a b}
(] F — {Zo, Z }
— Zy = bottom
— #Z on PD = #a — #b read so far
o F={0g}
40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o nm
Software Modeling
March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A = <Q7 Za r) A7 Qo, 207 F> is given by

e Q={qo, g1} o A: (9o, Zo, @),(qo, ZZ)) read first a

— Qo: construction of PD while reading a’s ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4: deconstruction while reading b’s ((q0, Z, b) ,(q1,¢)) read first b

p (2 CEECIRIIRIES ((g1,Z,b) ,(q1,€)) read following b's
oY ={a b} (g1, 2,),(qz, £)) change to final state
{ F = {Zo, Z}

— Zy = bottom

— #Z on PD = #a — #b read so far
o F={q}
40 of 48 :lrjtng?t(i:c;nnst :)(ft_lr';:ce);ml_egir::;lﬁl;c;;rzal Languages and Processes o | Rm

March 11-15, 2024 ‘ | ggrltv:rri?ig?g]ﬂlgaair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %L, I, A, q, 2, F) is given by

® Q — {q07 q17 q2}
— Qo construction of PD while reading a’s
— @q;: deconstruction while reading b’s
— Qo: accepting state

o> ={a b}
o[= {ZO,Z}
— Zy = bottom

— #Z on PD = #a — #b read so far
o F={q}

Qo, 2o, a),(qo, ZZy)) read first a
Qo,Z,a) ,(qv,ZZ)) read following a’s
)) read first b
q:1,Z,b) ,(qg1,¢)) read following b’s
(g1, 2,¢),(92, €)) change to final state
e Observation: no transitions for

— (qo, Zy, b): input must start with a
— (g4, Z, a): no &' following b’s
~ (g4, Z, b): more b’s than a’s

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024

: Software Modeling

‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} ((q1,20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(q07 ZO; aabb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, Z2y)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} ((q1,20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(q07 ZO? aabb) = (QOa ZZO7 abb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} ((q1,20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(qo, 2o, @aabb) - (qo, 22y, abb) - (qov, ZZZ,, bb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} ((q1,20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(q07207 aabb) = (QO72207 abb) = (q07ZZZ()7 bb) = (Cﬁ,ZZo, b)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 11-15, 2024 - and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} ((q1,20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(q07207 aabb) = (QO72207 abb) = (q07ZZZ()7 bb) = (Cﬁ,ZZo, b) = (q17207€)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 11-15, 2024 - and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, I, A, q, 2, F) is given by

e Q=1{q, 91,9} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qo construction of PD while reading a’s ((qo7 Z, a) 7(qo7 ZZ)) read following a's

— @y deconstruction while reading b’s ((q0, Z, b) ,(q4,¢)) read first b

~ e accepting state ((91,Z, b) (q1, e)) read following b’s
oY ={a b} (g1, 20,€),(qe, €)) change to final state
o[={2%,2} e Observation: no transitions for

Al ~ (o, Zy, b): input must start with a

~ #Z on PD = 7fa — 7fb read so far ~ (g4, Z, a): no &' following b’s
o F={q} ~ (g4, Z, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) &= (q', 67, w))

(q07207 aabb) = (QO72207 abb) = (q07ZZZ()7 bb) = (Cﬁ,ZZo, b) = (q17207€) = (q27575)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 11-15, 2024 - and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, 2o, F)
e Q=1{q,q1,q}

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, 2o, F)
e Q=1{q,q1,q}

o> =1{a b}
41 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, 2o, F)
e Q=1{q,q1,q}

o> =1{a b}
o ={2,a b}
o F={0g}
41 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 11-15, 2024 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZeTl,cex
° Q={q,q,q} ((q0.c,c) (g1,€)) forceX
oY ={a,bl ((q0, 2,),(671 Z))
o[={2,a,b} ((g1,¢,¢) ,(gq1,e)) forceX
o F={q} (91, Z,)7(CI27 e))
e Part G: GomextFroe Languages - ? S RWTH
March 11-15, 2024 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: % = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZel,cexX (1)
e Q=1{q,0q1,)} ((qo, ¢, ¢) ,(q1,¢) force X (2)
oY ={ab} ((qo, 2o,),(Ch %)) (2)
o[= {Zo, a, b} ((q17 C, C) ()) force X (3)
o = {CIQ} ((q17207)7(q27)) (4)
Accepting run of PDA for input w = abba:

(q07 207 abba)
et o o e s n...... |FWNH
March 11-15, 2024 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (g0, cZ)) forZel,cex (1)
e Q=1{q,q,q)} ((qo, ¢, ¢) ,(q1,¢) force X (2)
oY ={ab} ((qo, 2o,),(Ch %)) (2)
o[= {Zo, a, b} ((q17 C, C) ()) force X (3)
o = {CIQ} ((q17207)7(q27)) (4)
Accepting run of PDA for input w = abba:

(C]o, Zo, abba) - ((]0, aZo7 bba)
41 of 48 Ezlrjtng?t(i:c:)nnst:xft_lr'l:c;;mf;ir::;ﬁ;c;;n;al Languages and Processes ? _— Rm
March 11-15, 2024 | andVerificationGgair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (g0, cZ)) forZel,cex (1)
e Q=1{q,q,q)} ((qo, ¢, ¢) ,(q1,¢) force X (2)
oY ={ab} ((qo, 2o,),(Ch %)) (2)
o[= {Zo, a, b} ((q17 C, C) ()) force X (3)
o = {CIQ} ((q17207)7(q27)) (4)
Accepting run of PDA for input w = abba:

(q07 ZO> abba) - (QO> aZO7 bba) - (q07 baZOa ba)
41 of 48 Ezlrjtng?t(i:c;nnst:xft_lr'l:c;;mf;ir::;ﬁ;c;;n;al Languages and Processes ? _— Rm
March 11-15, 2024 | andVerificationGgair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZeTl,cex
o Q= {quQhCIZ} ((QO707 C) () force X
oY ={ab) ((qo, 2o,),(Ch 2o))
o ={Z, ab} ((gi,c.c) (gr,€)) forcek
o F={q} (91, Z,)7(CI27 e))

Accepting run of PDA for input w = abba:
(q07 207 abba) = (QO7 aZO7 bba) = (q07 baZO) ba) = (Q17 aZO7 a)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZeTl,cex
o Q= {quQhCIZ} ((QO707 C) () force X
oY ={ab) ((qo, 2o,),(Ch 2o))
o ={Z, ab} ((gi,c.c) (gr,€)) forcek
o F={q} (91, Z,)7(CI27 e))

Accepting run of PDA for input w = abba:
(q07 207 abba) = (QO7 aZO7 bba) = (q07 baZO) ba) = (Q17 aZO7 a) = ((‘71) 207 6)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZeTl,cex
o Q= {quQhCIZ} ((QO707 C) () force X
oY ={ab) ((qo, 2o,),(Ch 2o))
o ={Z, ab} ((gi1,c.c) (gr,€)) forcek
o F={q} (91, Z,)7(CI27 e))

Accepting run of PDA for input w = abba:
(q07 207 abba) = (QO7 aZO7 bba) = (q07 baZO) ba) = (Q17 aZO7 a) = (q1) ZO7 6) = (q27 g, 8)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZeTl,cex
e Q=1{q0,q,} ((qo, ¢, ¢) ,(q1,¢) force &
oY ={ab) ((qo, 2o,),(Ch 2o))
o[={Z, a b} ((g1,c,¢) ,(g1,e)) forceX
o F ={q} (91, Z,)7(572, e))

Accepting run of PDA for input w = abba:
(q07 207 abba) = (QO7 aZO7 bba) = (q07 baZO7 ba) = (Q17 aZO7 a) = (q1) ZO) 5) = (q27 €, 8)

Observation: 2l is nondeterministic — in a configuration of the form (qo, cv, cw)
(c € X, v,w € X7"), both (1) and (2) are applicable.

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

|ldea: 1. 2l pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w” symbol-wise by matching steps
4. accepts with empty pushdown

Formally: % = (Q, X, I, A, g0, 20, F) e A: ((qo,Z,¢) (o, cZ)) forZel,cexX (1)
* Q=1{q,q1,q} ((go, ¢, ¢) (g1,¢)) forceX 2)
e} ={a,b} ((90, 2o,),(671 2y)) (2)
o[={Z, a b} ((g1,¢,¢) ,(gq1,e)) forceX (3)
o F={q} (a1, 2o,)»(Clza €)) (4)

Accepting run of PDA for input w = abba:

(qo, 2, abba) &= (qo, aZo, bba) &= (qo, baZy, ba) = (g1, 8o, a) - (a1, Zo,€) F (e, €, €)
Observation: 2l is nondeterministic — in a configuration of the form (qo, cv, cw)
(ce X, v,w e L"), both (1) and (2) are applicable. This yields rejecting runs, e.g.,

(qo, Zo, abba) - (qo, a2y, bba) - (qo, bazy, ba) - (qo, bbazy, a) - (qo, abbazy, €) t/

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Deterministic PDA

Definition C.24

APDAR = (Q,%, I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € ¥, then there is no (q, Z, £)-transition in A,

Remark: this excludes two types of nondeterminism:
1.1 ((9,Z, x), (g1, 61)), (9, Z, x), (@2, 02)) € A:

(qq) 5177 W) n (q7 Z/% XW) = (q/27 5277 W)
2. if ((qa 27 a)> (qq) 51))7 ((q7 Za 5)7 (q,27 52)) € A:

(q4751f}/7 W) _| (q7 ZW? aW) l_ (q./27 5277 aW)

RWTH

42 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Deterministic PDA

Definition C.24

APDAR = (Q,%, I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € ¥, then there is no (q, Z, £)-transition in A,

Remark: this excludes two types of nondeterminism:

1. if ((Q7 Z7 X)? (q4751))7 ((qa 27 X)? (qéh 52)) € A:

(QQ75177 W) . (qa Z/%XW) - (Q./Qa 5277 W)
2. f ((QJ Z, a)? (qq) 51))7 ((qv Z, 5)7 (q./27 52)) € A:

(q4751f}/7 W) - (qa ZfYa aW) - (q./27 5277 aW)

Corollary C.25

In a DPDA, every configuration has at most one —-successor.

RWTH

42 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not

true for PDA-recognisable languages)

RWTH

43 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages ‘

March 11-15, 2024

Software Modeling
Il and Verification Chair

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not
true for PDA-recognisable languages)

Example C.26

The set of palindromes of even length is PDA-recognisable, but not
DPDA-recognisable (without proof).

43 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 11-15, 2024 ‘

RWTH

Software Modeling
Il and Verification Chair

Summary: Pushdown Automata

Seen:
e Extension of finite automata by pushdown store
e Enables “counting” (e.g., {a"b" | n > 1})
e Determinism restricts expressivity (in contrast to finite automata)

44 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Pushdown Automata

Seen:
e Extension of finite automata by pushdown store
e Enables “counting” (e.g., {a"b" | n > 1})
e Determinism restricts expressivity (in contrast to finite automata)

Next:
e Relation between PDA and contexi-free languages

44 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Outline of Part C

Pushdown Automata and Context-Free Languages

45 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

PDA and Context-Free Languages |

Theorem C.27

A language is context-free iff it is PDA-recognisable.

46 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

PDA and Context-Free Languages |

Theorem C.27
A language is context-free iff it is PDA-recognisable.

Proof.
“«<=": omitted

‘=" let G = (N, X, P,S) be a CFG. Construction of PDA 2 recognising L(G):
e s simulates a derivation of G where always the leftmost nonterminal of a
sentence is replaced (“leftmost derivation”)
e begin with S on pushdown
e if nonterminal on top: apply a corresponding production rule
e if terminal on top: match with next input symbol

(cf. formal construction on following slide)

RWTH

46 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages ‘

March 11-15, 2024

Software Modeling
Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).
“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (o, @)) € A (“expansion”)
o[=NUX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
o, =S o F =Q
47 of 48 E:lrjtng?t(i:c;nnst :Xft_lr';:ce);mf;ir::;ﬁ;c;;rzal Languages and Processes o | Rm
March 11-15, 2024 ‘ | gg:lt‘\nllearri(feig?i(:::lgﬂair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qo7 ZO7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

® Q = F = {C]o} o A: ((q07 87 5)7(q07 <>)) ((q07 <7 <)7(q07 5))
X ={(\)hHT=1{5()} ((9, S,€),(q0, (S))) ((q0:),)),(%;¢))
[Zo =S ((q07 Sa 5)7(q07 SS))
47 of 48 E:lrjtng?t(i:c;nnst:xft_lr;:c;;mﬂi;:;ﬁl;c;;n;al Languages and Processes o _ . Rm
March 11-15, 2024 | andVerificationGgair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).
“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(90, S, (()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, {()()) F (a0, S8S,{()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes o Rm
Software Modeling

Part C: Context-Free Languages
March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, () F (9,88, {()) F (a0 (5)S, {()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes o Rm
Software Modeling

Part C: Context-Free Languages
March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, () F (9,88,{()() F (q0,(5)S,{())() F (a0, 5)S, ()0

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, {())) F (,85,{())() F (q0,(5)S,{())() F (%, 5)S, ()0
= (9, ()S; ()

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, {())) (9,88, {()() F (a0, (5)S,{())() F (%, 5)S,())0))
= (%, (1S, 0)0) F (9,))8,))0)

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A, €), (o, @)) € A (“expansion”)
o[=NUX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
e/, =S e F =Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(90, S, (0)(Q) F (90, S5,(0)))) F (a0, (5)S, (()))) = (%, 5)S,0)0)
= (20, (1S, N0 F (90,08, 0)0) F (%,)S,)

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A, €), (o, @)) € A (“expansion”)
o[=NUX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
e/, =S e F =Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, () F (0,88, {()() F (q,(5)S,{())() F (a,5)S,))())
= (9, ()S:()0) F ()8 00)) F S,) -

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A, €), (o, @)) € A (“expansion”)
o[=NUX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
e/, =S e F =Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, (1)) F (9,85, (0)()) F (a0, (S)S, (0))) F (a0,85)S, ())())
t qu,8>~<9>a)<>><>) = (9,08 0){() F S,) -
Qo, \)»

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qu Zo7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <),(CIO,5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((qm S? 5)7(q07 SS))

Accepting run for input w = (())():

(90, S, ((NQ)) F (0,88, (0)()) F (a0,(S)S, (00) F (% 5)S,))())
= (90, (1S, (N 0) F (%,))S))0) F S,) -
= (QO7<>7<>) = (QO7>7>)

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 11-15, 2024 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

u:>u: Forma”y, Q[G — <Q’ Z, r’ A, qo7 ZO7 F> |S g|Ven by

e Q:={q} e foreach A — a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUYX e foreach ac ¥: ((qo, a, a),(qo, ¢)) € A (“matching”)
[ZO — S o = Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
Q[G = <Q, Z, r7 A, Qo, Zo, F> with

e Q=F = {qO} o A: ((qm 87 5);(Q0, <>)) ((q07 <7 <)7(CI0:5))
o> ={()1LT={S ()} ((90, S,€).(q0,(S))) ((q0.),)):(q,¢))
® Zo =S ((QO, S? 5)7(q07 SS))

Accepting run for input w = (())():

(G0, S, () F (4,88, {())()) F (a0 (5)S, {()){)) t (90, S)S, 1)) ()

- S,
= (g0, (0)S,) 0) F (a0,))S, 1)) F (q0,)S,)() (%, S, ()
- (QO7<>7<>) - (QO7>7>) - (qm)
T e e N |RWTH

Summary: Pushdown Automata and Context-Free Languages

Seen:
e Construction of PDA for given CFG (= parser generation!)
e Reverse direction also possible
e Thus: PDA and CFG equivalent

48 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

RWTH

Summary: Pushdown Automata and Context-Free Languages

Seen:
e Construction of PDA for given CFG (= parser generation!)
e Reverse direction also possible
e Thus: PDA and CFG equivalent

Outlook:

e Equivalence problem for CFG and PDA (“L(X7) = L(X2)?"):
generally undecidable, but decidable for DPDA

e Pumping Lemma for CFL (e.g., to prove that {a"b"c” | n > 1} not context-free)
e Greibach Normal Form for CFG
e Systematic construction of deterministic and efficient parsers for compilers
(LL/LR grammars)
e Non-context-free grammars and languages
(e.g., context-sensitive languages such as {a"b"c" | n > 1})

RWTH

48 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 11-15, 2024 ‘ Il and Verification Chair

	Context-Free Languages
	Context-Free Grammars and Languages
	Context-Free vs. Regular Languages
	Chomsky Normal Form
	The Word Problem for Context-Free Languages
	The Emptiness Problem for Context-Free Languages
	Closure Properties of Context-Free Languages
	Pushdown Automata
	Pushdown Automata and Context-Free Languages

