

Foundations of Informatics: a Bridging Course

```
Week 3: Formal Languages and Processes
Part C: Context-Free Languages
March 6-10, 2023
Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University
https://moves.rwth-aachen.de/teaching/ws-22-23/foi/
```


Outline of Part C

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

Introductory Example I

Example C. 1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

```
\(\langle\) Expression〉 ::=0
Expression \(\rangle+\langle\) Expression \(\rangle\)
\(\langle\) Expression \(*\langle\) Expression \(\rangle\)
(〈Expression \(\rangle\) )
```

Meaning:
An expression is either 0 or 1 , or it is of the form $u+v, u * v$, or (u) where u, v are again expressions

Introductory Example II

Example C. 1 (continued)

Here we abbreviate 〈Expression〉 as E, and use " \rightarrow " instead of ": $:=$ ". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
E \Rightarrow E * E
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E
\end{aligned}
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1
\end{aligned}
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1 \\
& \Rightarrow(E+E) * 1
\end{aligned}
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of " $::=$ ". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1 \\
& \Rightarrow(E+E) * 1 \\
& \Rightarrow(0+E) * 1
\end{aligned}
$$

Introductory Example II

Example C. 1 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1 \\
& \Rightarrow(E+E) * 1 \\
& \Rightarrow(0+E) * 1 \\
& \Rightarrow(0+1) * 1
\end{aligned}
$$

Context-Free Grammars I

Definition C. 2

A context-free grammar (CFG) is a quadruple

$$
G=\langle N, \Sigma, P, S\rangle
$$

where

- N is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from N)
- \boldsymbol{P} is a finite set of production rules of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in(N \cup \Sigma)^{*}$
- $S \in N$ is a start symbol

Context-Free Grammars II

Example C. 3

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- $P=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Context-Free Grammars II

Example C. 3

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- P $=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
\Rightarrow grammar completely defined by productions

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $i \in\{1, \ldots, n\}$ (notation: $\beta \Rightarrow^{*} \gamma$).

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $i \in\{1, \ldots, n\}$ (notation: $\beta \Rightarrow^{*} \gamma$).
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $i \in\{1, \ldots, n\}$ (notation: $\beta \Rightarrow^{*} \gamma$).
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.
- The language generated by G is $L(G):=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$.

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $i \in\{1, \ldots, n\}$ (notation: $\beta \Rightarrow^{*} \gamma$).
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.
- The language generated by G is $L(G):=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$.
- A language $L \subseteq \Sigma^{*}$ is called context-free (CFL) if it is generated by some CFG.

Context-Free Languages I

Definition C. 4

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length $n \in \mathbb{N}$) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $i \in\{1, \ldots, n\}$ (notation: $\beta \Rightarrow^{*} \gamma$).
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.
- The language generated by G is $L(G):=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$.
- A language $L \subseteq \Sigma^{*}$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_{1}, G_{2} are equivalent if $L\left(G_{1}\right)=L\left(G_{2}\right)$.

Context-Free Languages II

Example C. 5

The language

$$
\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}
$$

is context-free. It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid \varepsilon\}$
(proof: generating $a^{n} b^{n}$ requires exactly n applications of the first and one concluding application of the second rule)

Context-Free Languages II

Example C. 5

The language

$$
\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}
$$

is context-free. It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid \varepsilon\}$
(proof: generating $a^{n} b^{n}$ requires exactly n applications of the first and one concluding application of the second rule)

Remark: illustration of derivations by derivation trees

- root labelled by start symbol
- leaves labelled by terminal symbols
- successors of node labelled according to right-hand side of production rule
- sequence of leaf symbols = generated word

Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Next:

- Relation between context-free and regular languages

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

Context-Free vs. Regular Languages

Theorem C. 6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.
(Thus: regular languages are a proper subset of CFLs.)

Context-Free vs. Regular Languages

Theorem C. 6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.
(Thus: regular languages are a proper subset of CFLs.)

Proof.

1. Let L be a regular language, and let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA which recognises L.
$G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ is defined as follows:
$-N:=Q, S:=q_{0}$

- if $\delta(q, a)=q^{\prime}$, then $q \rightarrow a q^{\prime} \in P$
- if $q \in F$, then $q \rightarrow \varepsilon \in P$

Obviously a w-labelled run in \mathfrak{A} from q_{0} to F corresponds to a derivation of w in $G_{\mathfrak{A}}$, and vice versa. Thus $L(\mathfrak{A})=L\left(G_{\mathfrak{A}}\right)$ (example on the following slide).
2. An example is $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (see Lesson 1).

Intuitive reason for non-regularity: recognising this language requires "unbounded counting" capability.

From Regular to Context-Free Languages

Example C. 7

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
q_{0} \rightarrow a q_{1} \mid b q_{2}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon
\end{aligned}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3}
\end{aligned}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$
q_{0} \Rightarrow b q_{2}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$
q_{0} \Rightarrow b q_{2} \Rightarrow b a q_{3}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$
q_{0} \Rightarrow b q_{2} \Rightarrow b a q_{3} \Rightarrow b a a q_{1}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$
q_{0} \Rightarrow b q_{2} \Rightarrow b a q_{3} \Rightarrow b a \operatorname{a} q_{1} \Rightarrow b a a b q_{1}
$$

From Regular to Context-Free Languages

Example C. 7

DFA $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle:$

Corresponding CFG $G_{\mathfrak{A}}:=\langle N, \Sigma, P, S\rangle$ with $N:=Q, S:=q_{0}$:

$$
\begin{aligned}
& q_{0} \rightarrow a q_{1} \mid b q_{2} \\
& q_{1} \rightarrow a q_{2}\left|b q_{1}\right| \varepsilon \\
& q_{2} \rightarrow a q_{3} \mid b q_{3} \\
& q_{3} \rightarrow a q_{1} \mid b q_{1}
\end{aligned}
$$

E.g., \mathfrak{A} 's run on input baab $\in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

$$
q_{0} \Rightarrow b q_{2} \Rightarrow b a q_{3} \Rightarrow b a a q_{1} \Rightarrow b a a b q_{1} \Rightarrow b a a b
$$

Summary: Context-Free vs. Regular Languages

Seen:

- CFLs are more expressive than regular languages

Summary: Context-Free vs. Regular Languages

Seen:

- CFLs are more expressive than regular languages

Next:

- Decidability of word problem

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

The Word Problem for CFL

Word Problem for CFL
Given CFG $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not.

The Word Problem for CFL

Word Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
- syntax analysis of programming languages
- HTML parsers
- ...

The Word Problem for CFL

Word Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
- syntax analysis of programming languages
- HTML parsers
- ...
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?

Software Modeling

The Word Problem for CFL

Word Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
- syntax analysis of programming languages
- HTML parsers
- ...
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- Solution: establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
\Rightarrow Only finitely many combinations to be inspected

Chomsky Normal Form

Definition C. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a
$$

Chomsky Normal Form

Definition C. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a
$$

Example C. 9

Consider the grammar $S \rightarrow a b \mid a S b$, which generates $L:=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. An equivalent grammar in Chomsky NF is

$$
\begin{array}{ll}
S \rightarrow A B \mid A C & \\
A \rightarrow a & (\text { generates } L) \\
B \rightarrow b & \\
B \rightarrow S B & \\
C \text { generates }\{a\}) \\
C b\}) \\
\left(\text { generates }\left\{a^{n} b^{n+1} \mid n \geq 1\right\}\right)
\end{array}
$$

Conversion to Chomsky Normal Form

Theorem C. 10

Every CFL L (without ε-productions) can be generated by a CFG in Chomsky NF.

Conversion to Chomsky Normal Form

Theorem C. 10

Every CFL L (without ε-productions) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G=\langle N, \Sigma, P, S\rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \rightarrow B C$ and $A \rightarrow$ a proceeds in three steps:

1. terminal symbols only in rules of the form $A \rightarrow a$
(thus all other rules have the shape $A \rightarrow A_{1} \ldots A_{n}$)
2. elimination of "chain rules" of the form $A \rightarrow B$
3. elimination of rules of the form $A \rightarrow A_{1} \ldots A_{n}$ where $n>2$
(see following slides for details)

Step 1: Only $A \rightarrow a$

Procedure

1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_{a} \in N$.
2. Add corresponding productions $B_{a} \rightarrow a$ to P.
3. In each original production $A \rightarrow \alpha$, replace every $a \in \Sigma$ with B_{a}. This yields G^{\prime}.

Step 1: Only $A \rightarrow a$

Procedure

1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_{a} \in N$.
2. Add corresponding productions $B_{a} \rightarrow$ a to P.
3. In each original production $A \rightarrow \alpha$, replace every $a \in \Sigma$ with B_{a}.

This yields G^{\prime}.

Example C. 11

$$
\begin{aligned}
G: S \rightarrow a b \mid a S b \quad \text { is converted to } \quad G^{\prime}: S & \rightarrow A B \mid A S B \\
A & \rightarrow a \\
B & \rightarrow b
\end{aligned}
$$

Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

1. Determine all derivations $A_{1} \Rightarrow \ldots \Rightarrow A_{n}$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
2. Determine all productions $A_{n} \rightarrow \alpha$ with $\alpha \notin N$.
3. Add corresponding productions $A_{1} \rightarrow \alpha$ to P.
4. Remove all chain rules from P.

This yields $G^{\prime \prime}$.

Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

1. Determine all derivations $A_{1} \Rightarrow \ldots \Rightarrow A_{n}$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
2. Determine all productions $A_{n} \rightarrow \alpha$ with $\alpha \notin N$.
3. Add corresponding productions $A_{1} \rightarrow \alpha$ to P.
4. Remove all chain rules from P.

This yields $G^{\prime \prime}$.

Example C. 12

$$
\begin{aligned}
G^{\prime}: & S \rightarrow A \\
A & \rightarrow B \mid C \\
B & \rightarrow A \mid D A \\
C & \rightarrow C \\
D & \rightarrow d
\end{aligned}
$$

Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

1. Determine all derivations $A_{1} \Rightarrow \ldots \Rightarrow A_{n}$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
2. Determine all productions $A_{n} \rightarrow \alpha$ with $\alpha \notin N$.
3. Add corresponding productions $A_{1} \rightarrow \alpha$ to P.
4. Remove all chain rules from P.

This yields $G^{\prime \prime}$.

Example C. 12

$$
\begin{aligned}
G^{\prime}: & S
\end{aligned} \rightarrow A=\left\{\begin{aligned}
& \rightarrow B \mid C \\
B & \rightarrow A \mid D A \\
C & \rightarrow C \\
D & \rightarrow d
\end{aligned}\right.
$$

Step 2: Elimination of Chain Rules $A \rightarrow B$

Procedure

1. Determine all derivations $A_{1} \Rightarrow \ldots \Rightarrow A_{n}$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\Longrightarrow only finitely many!).
2. Determine all productions $A_{n} \rightarrow \alpha$ with $\alpha \notin N$.
3. Add corresponding productions $A_{1} \rightarrow \alpha$ to P.
4. Remove all chain rules from P.

This yields $G^{\prime \prime}$.

Example C. 12

is converted to

$$
\begin{array}{rlrl}
G^{\prime}: S & \rightarrow A & G^{\prime \prime}: S & \rightarrow D A \mid C \\
A & \rightarrow B \mid C & A & \rightarrow D A \mid C \\
B & \rightarrow A \mid D A & B & \rightarrow D A \mid C \\
C & \rightarrow c & C & \rightarrow c \\
D & \rightarrow d & D & \rightarrow d
\end{array}
$$

Step 3: Elimination of Rules $A \rightarrow A_{1} \ldots A_{n}$ with $n>2$

Procedure

Iteratively apply the following transformation:

1. For every $A \rightarrow A_{1} \ldots A_{n}$ with $n>2$, introduce a new nonterminal symbol $B \in N$.
2. Replace original production by $A \rightarrow A_{1} B$.
3. Add new production $B \rightarrow A_{2} \ldots A_{n}$.

This yields $G^{\prime \prime \prime}$.

Step 3: Elimination of Rules $A \rightarrow A_{1} \ldots A_{n}$ with $n>2$

Procedure

Iteratively apply the following transformation:

1. For every $A \rightarrow A_{1} \ldots A_{n}$ with $n>2$, introduce a new nonterminal symbol $B \in N$.
2. Replace original production by $A \rightarrow A_{1} B$.
3. Add new production $B \rightarrow A_{2} \ldots A_{n}$.

This yields $G^{\prime \prime \prime}$.

Example C. 13

$$
\begin{aligned}
G^{\prime \prime}: S & \rightarrow A B \mid A S B \quad \text { is converted to } \quad G^{\prime \prime \prime}: S \\
A & \rightarrow a \\
B & \rightarrow b \\
& \rightarrow a \mid A C \\
& B \rightarrow b \\
& C \rightarrow S B
\end{aligned}
$$

Summary: Chomsky Normal Form

Seen:

- Chomsky NF: all productions of the form $A \rightarrow B C$ or $A \rightarrow a$

Summary: Chomsky Normal Form

Seen:

- Chomsky NF: all productions of the form $A \rightarrow B C$ or $A \rightarrow a$

Next:

- Exploit Chomsky Normal Form to solve word problem for CFL

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

The Word Problem for CFL

Word Problem for ε-free CFL
Given CFG $G=\langle N, \Sigma, P, S\rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^{+}$, decide whether $w \in L(G)$ or not.
(If $w=\varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

The Word Problem for CFL

Word Problem for ε-free CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^{+}$, decide whether $w \in L(G)$ or not.
(If $w=\varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Algorithm C. 14 (by Cocke, Younger, Kasami - CYK algorithm)

1. Transform G into Chomsky NF
2. Let $w=a_{1} \ldots a_{n}(n \geq 1)$
3. Let $w[i, j]:=a_{i} \ldots a_{j}$ for every $1 \leq i \leq j \leq n$
4. Consider segments $w[i, j]$ in order of increasing length, starting with $w[i, i]=a_{i}$ (i.e., letters)
5. In each case, determine $N_{i, j}:=\left\{A \in N \mid A \Rightarrow^{*} w[i, j]\right\}$ using a "dynamic programming" approach:

$$
\begin{aligned}
& -i=j: N_{i, i}=\left\{A \in N \mid A \rightarrow a_{i} \in P\right\} \\
& -i<j: N_{i, j}=\left\{A \in N \mid \exists B, C \in N, k \in\{i, \ldots, j-1\}: A \rightarrow B C \in P, B \in N_{i, k}, C \in N_{k+1, j}\right\}
\end{aligned}
$$

6. Test whether $S \in N_{1, n}$ (and thus, whether $S \Rightarrow^{*} w[1, n]=w$)

Matrix Representation of CYK Algorithm

	a_{1}	a_{2}	a_{3}	\cdots	a_{n}
$i \backslash j$	1	2	3	\cdots	n
1	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$	\cdots	$N_{1, n}$
2	X	$N_{2,2}$	$N_{2,3}$	\cdots	$N_{2, n}$
3	X	X	$N_{3,3}$	\cdots	$N_{3, n}$
\vdots	\vdots	\vdots		\cdots	\vdots
n	X	X	\cdots	\cdots	$N_{n, n}$

Matrix Representation of CYK Algorithm

$$
\begin{aligned}
& N_{1,1}=\left\{A \in N \mid A \rightarrow a_{1} \in P\right\} \\
& N_{2,2}=\left\{A \in N \mid A \rightarrow a_{2} \in P\right\}
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	\cdots	a_{n}
$i \backslash j$	1	2	3	\cdots	n
1	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$	\cdots	$N_{1, n}$
2	X	$N_{2,2}$	$N_{2,3}$	\cdots	$N_{2, n}$
3	X	X	$N_{3,3}$	\cdots	$N_{3, n}$
\vdots	\vdots	\vdots		\cdots	\vdots
n	X	X	\cdots	\cdots	$N_{n, n}$

Matrix Representation of CYK Algorithm

$$
\begin{array}{rl|l}
N_{1,1} & =\left\{A \in N \mid A \rightarrow a_{1} \in P\right\} \\
N_{2,2} & =\left\{A \in N \mid A \rightarrow a_{2} \in P\right\} & n \\
& \vdots \\
N_{1,2}=\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{1,1}, C \in N_{2,2}\right\} \\
N_{2,3}=\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{2,2}, C \in N_{3,3}\right\}
\end{array}
$$

Matrix Representation of CYK Algorithm

$$
\begin{aligned}
N_{1,1} & =\left\{A \in N \mid A \rightarrow a_{1} \in P\right\} \\
N_{2,2} & =\left\{A \in N \mid A \rightarrow a_{2} \in P\right\} \\
& \vdots \\
N_{1,2} & =\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{1,1}, C \in N_{2,2}\right\} \\
N_{2,3} & =\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{2,2}, C \in N_{3,3}\right\} \\
& \vdots \\
N_{1,3} & =\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{1,1}, C \in N_{2,3}\right\} \\
& \cup\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{1,2}, C \in N_{3,3}\right\} \\
N_{2,4} & =\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{2,2}, C \in N_{3,4}\right\} \\
& \cup\left\{A \in N \mid \exists B, C \in N: A \rightarrow B C \in P, B \in N_{2,3}, C \in N_{4,4}\right\}
\end{aligned}
$$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1						
2	X					
3	X	X				
4	X	X	X			
5	X	X	X	X		
6	X	X	X	X	X	

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$					
2	X					
3	X	X	$\{S\}$			
4	X	X	X	$\{S\}$		
5	X	X	X	X		
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$					
2	X	$\{B\}$				
3	X	X	$\{S\}$			
4	X	X	X	$\{S\}$		
5	X	X	X	X	$\{B\}$	
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset				
2	X	$\{B\}$				
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	
5	X	X	X	X	$\{B\}$	
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset				
2	X	$\{B\}$	$\{A$	$\}$		
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	
5	X	X	X	X	$\{B\}$	$\{A$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset				
2	X	$\{B\}$	$\{A, B\}$			
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$			
2	X	$\{B\}$	$\{A, B\}$			
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$			
2	X	$\{B\}$	$\{A, B\}$	$\{A$	$\}$	
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$			
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$		
3	X	X	$\{S\}$	\emptyset		
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$			
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$		
3	X	X	$\{S\}$	\emptyset	\emptyset	
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$		
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$		
3	X	X	$\{S\}$	\emptyset	\emptyset	
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$		
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	
3	X	X	$\{S\}$	\emptyset	\emptyset	
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$		
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$	\emptyset	
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$	\emptyset	
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	$\{A$
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$	\emptyset	
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	$\{A, B\}$
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$	\emptyset	$\{S\}$
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	$\{A, B\}$
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

Applying the CYK Algorithm

Example C. 15

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$

	a	b	a	a	b	a
$i \backslash j$	1	2	3	4	5	6
1	$\{S\}$	\emptyset	$\{S\}$	$\{S\}$	\emptyset	$\{S\}$
2	X	$\{B\}$	$\{A, B\}$	$\{A, B\}$	$\{B\}$	$\{A, B\}$
3	X	X	$\{S\}$	\emptyset	\emptyset	\emptyset
4	X	X	X	$\{S\}$	\emptyset	$\{S\}$
5	X	X	X	X	$\{B\}$	$\{A, B\}$
6	X	X	X	X	X	$\{S\}$

$$
S \in N_{1,6} \Longrightarrow w=a b a a b a \in L(G)
$$

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Next:

- Emptiness problem

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$, decide whether $L(G)=\emptyset$ or not.

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$, decide whether $L(G)=\emptyset$ or not.

- Important problem with many applications
- consistency of context-free language definitions
- correctness properties of recursive programs

The Emptiness Problem

Emptiness Problem for CFL

Given CFG $G=\langle N, \Sigma, P, S\rangle$, decide whether $L(G)=\emptyset$ or not.

- Important problem with many applications
- consistency of context-free language definitions
- correctness properties of recursive programs
- ...
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

The Emptiness Test

Algorithm C. 16 (Emptiness Test)

```
    Input: \(G=\langle N, \Sigma, P, S\rangle\)
Question: \(L(G)=\emptyset\) ?
Procedure: mark every \(a \in \Sigma\) as productive;
    repeat
            if there is \(A \rightarrow \alpha \in P\) such that all symbols in \(\alpha\) productive then
                mark \(A\) as productive
            end
    until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"
```


The Emptiness Test

Algorithm C. 16 (Emptiness Test)

$$
\text { Input: } G=\langle N, \Sigma, P, S\rangle
$$

Question: $L(G)=\emptyset$?
Procedure: mark every $a \in \Sigma$ as productive; repeat
if there is $A \rightarrow \alpha \in P$ such that all symbols in α productive then mark A as productive
end
until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"

Example C. 17

$G: S \rightarrow A B \mid C A$
$A \rightarrow a$
$B \rightarrow B C \mid A B$
$C \rightarrow a B \mid b$

The Emptiness Test

Algorithm C. 16 (Emptiness Test)

$$
\text { Input: } G=\langle N, \Sigma, P, S\rangle
$$

Question: $L(G)=\emptyset$?
Procedure: mark every $a \in \Sigma$ as productive; repeat
if there is $A \rightarrow \alpha \in P$ such that all symbols in α productive then mark A as productive
end
until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"

Example C. 17

$$
\begin{aligned}
G: & S \rightarrow A B \mid C A \\
& A \rightarrow a \\
B & \rightarrow B C \mid A B \\
& C \rightarrow a B \mid b
\end{aligned}
$$

RWTHAACHEN

The Emptiness Test

Algorithm C. 16 (Emptiness Test)

Input: $G=\langle N, \Sigma, P, S\rangle$
Question: $L(G)=\emptyset$?
Procedure: mark every $a \in \Sigma$ as productive; repeat
if there is $A \rightarrow \alpha \in P$ such that all symbols in α productive then mark A as productive
end
until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"

Example C. 17

$$
\begin{aligned}
& G: S \rightarrow A B \mid C A \\
& A \rightarrow a \\
& B \rightarrow B C \mid A B \\
& C \rightarrow a B \mid b
\end{aligned}
$$

Software Modeling

The Emptiness Test

Algorithm C. 16 (Emptiness Test)

$$
\text { Input: } G=\langle N, \Sigma, P, S\rangle
$$

Question: $L(G)=\emptyset$?
Procedure: mark every $a \in \Sigma$ as productive; repeat
if there is $A \rightarrow \alpha \in P$ such that all symbols in α productive then mark A as productive
end
until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"

Example C. 17

$$
\begin{aligned}
G: & S \rightarrow A B \mid C A \\
& A \rightarrow a \\
& \text { 1. Initialisation } \\
& \text { 2. 1st teration } \\
& C B C \mid A B \\
& \text { 3. 2nd iteration } \\
&
\end{aligned}
$$

The Emptiness Test

Algorithm C. 16 (Emptiness Test)

Input: $G=\langle N, \Sigma, P, S\rangle$
Question: $L(G)=\emptyset$?
Procedure: mark every $a \in \Sigma$ as productive; repeat
if there is $A \rightarrow \alpha \in P$ such that all symbols in α productive then mark A as productive
end
until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"

Example C. 17

$$
\begin{array}{rll}
G: & S \rightarrow A B \mid C A & \text { 1. Initialisation } \\
& A \rightarrow a & \text { 2. 1st iteration } \\
& B \rightarrow B C \mid A B & \text { 3. 2nd iteration } \\
& C \rightarrow a B \mid b & \text { S productive } \Longrightarrow L(G) \neq \emptyset
\end{array}
$$

Summary: The Emptiness Problem for Context-Free Languages

Seen:

- Emptiness problem decidable based on productivity of symbols

Summary: The Emptiness Problem for Context-Free Languages

Seen:

- Emptiness problem decidable based on productivity of symbols

Next:

- Closure properties of CFLs

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

Positive Results

Theorem C. 18

The set of CFLs is closed under concatenation, union, and iteration.

Positive Results

Theorem C. 18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$, and let $S \notin N_{1} \cup N_{2}$ be a fresh nonterminal. Then

Positive Results

Theorem C. 18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$, and let $S \notin N_{1} \cup N_{2}$ be a fresh nonterminal. Then

- $L_{1} \cdot L_{2}$ is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and

$$
P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}
$$

Positive Results

Theorem C. 18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$, and let $S \notin N_{1} \cup N_{2}$ be a fresh nonterminal. Then

- $L_{1} \cdot L_{2}$ is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and

$$
P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}
$$

- $L_{1} \cup L_{2}$ is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and

$$
P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}
$$

Positive Results

Theorem C. 18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$, and let $S \notin N_{1} \cup N_{2}$ be a fresh nonterminal. Then

- $L_{1} \cdot L_{2}$ is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and

$$
P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}
$$

- $L_{1} \cup L_{2}$ is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and

$$
P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}
$$

- L_{1}^{*} is generated by $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1}$ and

$$
P:=\left\{S \rightarrow \varepsilon \mid S_{1} S\right\} \cup P_{1}
$$

Negative Results

Theorem C. 19

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem C. 19

The set of CFLs is not closed under intersection and complement.

Proof.

- Intersection: both

$$
L_{1}:=\left\{a^{k} b^{k} c^{\prime} \mid k, I \in \mathbb{N}\right\} \quad(\text { generated by } S \rightarrow A C, A \rightarrow a A b|\varepsilon, C \rightarrow C c| \varepsilon)
$$

and

$$
L_{2}:=\left\{a^{k} b^{\prime} c^{\prime} \mid k, I \in \mathbb{N}\right\} \quad \text { (generated by } S \rightarrow A B, A \rightarrow a A|\varepsilon, B \rightarrow b B c| \varepsilon \text {) }
$$

are CFLs,

Negative Results

Theorem C. 19

The set of CFLs is not closed under intersection and complement.

Proof.

- Intersection: both

$$
L_{1}:=\left\{a^{k} b^{k} c^{\prime} \mid k, I \in \mathbb{N}\right\} \quad(\text { generated by } S \rightarrow A C, A \rightarrow a A b|\varepsilon, C \rightarrow C c| \varepsilon)
$$

and

$$
L_{2}:=\left\{a^{k} b^{\prime} c^{\prime} \mid k, l \in \mathbb{N}\right\} \quad(\text { generated by } S \rightarrow A B, A \rightarrow a A|\varepsilon, B \rightarrow b B c| \varepsilon)
$$

are CFLs, but not

$$
L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

(without proof).

Negative Results

Theorem C. 19

The set of CFLs is not closed under intersection and complement.

Proof.

- Intersection: both

$$
L_{1}:=\left\{a^{k} b^{k} c^{\prime} \mid k, I \in \mathbb{N}\right\} \quad(\text { generated by } S \rightarrow A C, A \rightarrow a A b|\varepsilon, C \rightarrow C c| \varepsilon)
$$

and

$$
L_{2}:=\left\{a^{k} b^{\prime} c^{\prime} \mid k, l \in \mathbb{N}\right\} \quad \text { (generated by } S \rightarrow A B, A \rightarrow a A|\varepsilon, B \rightarrow b B c| \varepsilon \text {) }
$$ are CFLs, but not

$$
L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

(without proof).

- Complement: if CFLs were closed under complement, then also under intersection (as $\left.L_{1} \cap L_{2}=\overline{\overline{L_{1}}} \cup \overline{L_{2}}\right)$.

Overview of Decidability and Closure Results

Decidability Results			
Class	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	+	+	+
CFL	+	+	-

Overview of Decidability and Closure Results

Decidability Results			
Class	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	+	+	+
CFL	+	+	-

Closure Results						
Class	$L_{1} \cdot L_{2}$	$L_{1} \cup L_{2}$	$L_{1} \cap L_{2}$	\bar{L}	L^{*}	
Reg	+	+	+	+	+	
CFL	+	+	-	-	+	

Summary: Closure Properties of Context-Free Languages

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Summary: Closure Properties of Context-Free Languages

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Next:

- Automata model for CFLs

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$)
- DFA will be extended to pushdown automata by
- adding a pushdown store which stores symbols from a pushdown alphabet and uses a special bottom symbol
- adding push and pop operations to transitions

Pushdown Automata II

Definition C. 20

A pushdown automaton (PDA) is of the form $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq\left(Q \times \Gamma \times \Sigma_{\varepsilon}\right) \times\left(Q \times \Gamma^{*}\right)$ is a finite set of transitions
- $q_{0} \in Q$ is the initial state
- Z_{0} is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Interpretation of $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$: if the PDA \mathfrak{A} is in state q where Z is on top of the stack and x is the next input symbol (or empty), then \mathfrak{A} reads x, replaces Z by δ, and changes into the state q^{\prime}.

Configurations, Runs, Acceptance

Definition C. 21

Let $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ be a PDA.

- An element of $Q \times \Gamma^{*} \times \Sigma^{*}$ is called a configuration of \mathfrak{A}.
- The initial configuration for input $w \in \Sigma^{*}$ is given by $\left(q_{0}, Z_{0}, w\right)$.
- The set of final configurations is given by $F \times\{\varepsilon\} \times\{\varepsilon\}$.
- If $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$ for every $\gamma \in \Gamma^{*}, w \in \Sigma^{*}$.

Configurations, Runs, Acceptance

Definition C. 21

Let $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ be a PDA.

- An element of $Q \times \Gamma^{*} \times \Sigma^{*}$ is called a configuration of \mathfrak{A}.
- The initial configuration for input $w \in \Sigma^{*}$ is given by $\left(q_{0}, Z_{0}, w\right)$.
- The set of final configurations is given by $F \times\{\varepsilon\} \times\{\varepsilon\}$.
- If $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$ for every $\gamma \in \Gamma^{*}, w \in \Sigma^{*}$.
- \mathfrak{A} accepts $w \in \Sigma^{*}$ if $\left(q_{0}, Z_{0}, w\right) \vdash^{*}(q, \varepsilon, \varepsilon)$ for some $q \in F$.
- The language accepted by \mathfrak{A} is $L(\mathfrak{A}):=\left\{w \in \Sigma^{*} \mid \mathfrak{A}\right.$ accepts $\left.w\right\}$.
- A language L is called PDA-recognisable if $L=L(\mathfrak{A})$ for some PDA \mathfrak{A}.
- Two PDA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ are called equivalent if $L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right)$.

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)
$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
$-q_{1}$: deconstruction while reading b's
$-q_{2}$: accepting state

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)
$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$-q_{0}$: construction of PD while reading a's
$-q_{1}$: deconstruction while reading b 's
$-q_{2}$: accepting state
- $\Sigma=\{a, b\}$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$-q_{0}$: construction of PD while reading a's
$-q_{1}$: deconstruction while reading b 's
$-q_{2}$: accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
$-Z_{0}=$ bottom
$-\# Z$ on $P D=\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$-q_{0}$: construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on $\mathrm{PD}=\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b 's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$-q_{0}$: construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on $\mathrm{PD}=\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
- $\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on PD = $\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b 's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
$-\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Accepting run of PDA for input $w=a a b b$:
(remember: if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$)

$$
\left(q_{0}, Z_{0}, a a b b\right)
$$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on $\mathrm{PD}=\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b 's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
- $\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Accepting run of PDA for input $w=a a b b$:
(remember: if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$)

$$
\left(q_{0}, Z_{0}, a a b b\right) \vdash\left(q_{0}, z Z_{0}, a b b\right)
$$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
- q_{1} : deconstruction while reading b 's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on PD = $\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
- $\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Accepting run of PDA for input $w=a a b b$:
(remember: if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$)

$$
\left(q_{0}, Z_{0}, a a b b\right) \vdash\left(q_{0}, z Z_{0}, a b b\right) \vdash\left(q_{0}, Z Z Z_{0}, b b\right)
$$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on PD = $\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
- $\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Accepting run of PDA for input $w=a a b b$:
(remember: if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $\left.(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)\right)$

$$
\left(q_{0}, Z_{0}, a a b b\right) \vdash\left(q_{0}, z Z_{0}, a b b\right) \vdash\left(q_{0}, z z Z_{0}, b b\right) \vdash\left(q_{1}, z Z_{0}, b\right)
$$

Examples of PDA I

Example C． 22 （PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$ ）

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by
－$Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
－q_{0} ：construction of PD while reading a＇s
－q_{1} ：deconstruction while reading b＇s
－q_{2} ：accepting state
－$\Sigma=\{a, b\}$
－$\Gamma=\left\{Z_{0}, Z\right\}$
－$Z_{0}=$ bottom
$-\# Z$ on PD＝$\# a-\# b$ read so far
－$F=\left\{q_{2}\right\}$
－$\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a＇s $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b＇s $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
－Observation：no transitions for
－$\left(q_{0}, Z_{0}, b\right)$ ：input must start with a
－$\left(q_{1}, Z, a\right)$ ：no a＇s following b＇s
－$\left(q_{1}, Z_{0}, b\right)$ ：more b＇s than a＇s
－．．．

Accepting run of PDA for input $w=a a b b$ ：
（remember：if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$ ，then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$ ）

$$
\left(q_{0}, Z_{0}, \text { aabb }\right) \vdash\left(q_{0}, Z Z_{0}, a b b\right) \vdash\left(q_{0}, Z Z Z_{0}, b b\right) \vdash\left(q_{1}, Z Z_{0}, b\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right)
$$

Examples of PDA I

Example C. 22 (PDA for $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$)

$\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- q_{0} : construction of PD while reading a's
- q_{1} : deconstruction while reading b's
- q_{2} : accepting state
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, Z\right\}$
- $Z_{0}=$ bottom
$-\# Z$ on PD = $\# a-\# b$ read so far
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z_{0}, a\right),\left(q_{0}, Z Z_{0}\right)\right) \quad$ read first a $\left(\left(q_{0}, Z, a\right),\left(q_{0}, Z Z\right)\right) \quad$ read following a's $\left(\left(q_{0}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read first b $\left(\left(q_{1}, Z, b\right),\left(q_{1}, \varepsilon\right)\right) \quad$ read following b's $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \quad$ change to final state
- Observation: no transitions for
- $\left(q_{0}, Z_{0}, b\right)$: input must start with a
- $\left(q_{1}, Z, a\right)$: no a's following b's
- $\left(q_{1}, Z_{0}, b\right)$: more b's than a's
- ...

Accepting run of PDA for input $w=a a b b$:
(remember: if $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$)

$$
\left(q_{0}, Z_{0}, a a b b\right) \vdash\left(q_{0}, z Z_{0}, a b b\right) \vdash\left(q_{0}, z z Z_{0}, b b\right) \vdash\left(q_{1}, z Z_{0}, b\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right) \vdash\left(q_{2}, \varepsilon, \varepsilon\right)
$$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- 「 $=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad$ for $Z \in \Gamma, c \in \Sigma$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right)$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- 「 $=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad$ for $Z \in \Gamma, c \in \Sigma$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right)$

Accepting run of PDA for input $w=a b b a$:
$\left(q_{0}, Z_{0}, a b b a\right)$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$
- $\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad$ for $Z \in \Gamma, c \in \Sigma$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right)$

Accepting run of PDA for input $w=a b b a$:
$\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right)$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad$ for $Z \in \Gamma, c \in \Sigma$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right)$
- $F=\left\{q_{2}\right\}$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right)
$$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

$$
\begin{align*}
&-\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad \text { for } Z \in \Gamma, c \in \Sigma \tag{1}\\
&\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad \text { for } c \in \Sigma \tag{2}\\
&\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right) \tag{2}\\
&\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad \text { for } c \in \Sigma \tag{3}\\
&\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \tag{4}\\
&
\end{align*}
$$

- $F=\left\{q_{2}\right\}$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{1}, a Z_{0}, a\right)
$$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

$$
\begin{align*}
&-\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad \text { for } Z \in \Gamma, c \in \Sigma \tag{1}\\
&\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad \text { for } c \in \Sigma \tag{2}\\
&\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right) \tag{2}\\
&\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad \text { for } c \in \Sigma \tag{3}\\
&\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \tag{4}\\
&
\end{align*}
$$

- $F=\left\{q_{2}\right\}$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{1}, a Z_{0}, a\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right)
$$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $\Delta:\left(\left(q_{0}, Z, c\right),\left(q_{0}, c Z\right)\right) \quad$ for $Z \in \Gamma, c \in \Sigma$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$
- $\Sigma=\{a, b\}$ $\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right)$
- $F=\left\{q_{2}\right\}$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{1}, a Z_{0}, a\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right) \vdash\left(q_{2}, \varepsilon, \varepsilon\right)
$$

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$ $\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$

$$
\begin{equation*}
\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \tag{3}
\end{equation*}
$$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{1}, a Z_{0}, a\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right) \vdash\left(q_{2}, \varepsilon, \varepsilon\right)
$$

Observation: \mathfrak{A} is nondeterministic - in a configuration of the form ($\left.q_{0}, c v, c w\right)$ ($c \in \Sigma, v, w \in \Sigma^{*}$), both (1) and (2) are applicable.

Examples of PDA II

Example C. 23 (PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length))

Idea: 1. \mathfrak{A} pushes input w
2. switches nondeterministically to the w^{R} recognition phase
3. compares w and w^{R} symbol-wise by matching steps
4. accepts with empty pushdown

Formally: $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{a, b\}$
- $\Gamma=\left\{Z_{0}, a, b\right\}$
- $F=\left\{q_{2}\right\}$

$$
\begin{equation*}
\left(\left(q_{0}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad \text { for } c \in \Sigma \tag{1}
\end{equation*}
$$ $\left(\left(q_{0}, Z_{0}, \varepsilon\right),\left(q_{1}, Z_{0}\right)\right)$ $\left(\left(q_{1}, c, c\right),\left(q_{1}, \varepsilon\right)\right) \quad$ for $c \in \Sigma$

$$
\begin{equation*}
\left(\left(q_{1}, Z_{0}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right) \tag{3}
\end{equation*}
$$

Accepting run of PDA for input $w=a b b a$:

$$
\left(q_{0}, Z_{0}, a b b a\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{1}, a Z_{0}, a\right) \vdash\left(q_{1}, Z_{0}, \varepsilon\right) \vdash\left(q_{2}, \varepsilon, \varepsilon\right)
$$

Observation: \mathfrak{A} is nondeterministic - in a configuration of the form ($\left.q_{0}, c v, c w\right)$ ($c \in \Sigma, v, w \in \Sigma^{*}$), both (1) and (2) are applicable. This yields rejecting runs, e.g.,

$$
\left(q_{0}, Z_{0}, \text { abba }\right) \vdash\left(q_{0}, a Z_{0}, b b a\right) \vdash\left(q_{0}, b a Z_{0}, b a\right) \vdash\left(q_{0}, b b a Z_{0}, a\right) \vdash\left(q_{0}, a b b a Z_{0}, \varepsilon\right) \nvdash
$$

Deterministic PDA

Definition C. 24

A PDA $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε)-transition in Δ.

Remark: this excludes two types of nondeterminism:

1. if $\left((q, Z, x),\left(q_{1}^{\prime}, \delta_{1}\right)\right),\left((q, Z, x),\left(q_{2}^{\prime}, \delta_{2}\right)\right) \in \Delta$:

$$
\left(q_{1}^{\prime}, \delta_{1} \gamma, w\right) \dashv(q, Z \gamma, x w) \vdash\left(q_{2}^{\prime}, \delta_{2} \gamma, w\right)
$$

2. if $\left((q, Z, a),\left(q_{1}^{\prime}, \delta_{1}\right)\right),\left((q, Z, \varepsilon),\left(q_{2}^{\prime}, \delta_{2}\right)\right) \in \Delta$:

$$
\left(q_{1}^{\prime}, \delta_{1} \gamma, w\right) \dashv(q, Z \gamma, a w) \vdash\left(q_{2}^{\prime}, \delta_{2} \gamma, a w\right)
$$

Deterministic PDA

Definition C. 24

A PDA $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε)-transition in Δ.

Remark: this excludes two types of nondeterminism:

1. if $\left((q, Z, x),\left(q_{1}^{\prime}, \delta_{1}\right)\right),\left((q, Z, x),\left(q_{2}^{\prime}, \delta_{2}\right)\right) \in \Delta$:

$$
\left(q_{1}^{\prime}, \delta_{1} \gamma, w\right) \dashv(q, Z \gamma, x w) \vdash\left(q_{2}^{\prime}, \delta_{2} \gamma, w\right)
$$

2. if $\left((q, Z, a),\left(q_{1}^{\prime}, \delta_{1}\right)\right),\left((q, Z, \varepsilon),\left(q_{2}^{\prime}, \delta_{2}\right)\right) \in \Delta$:

$$
\left(q_{1}^{\prime}, \delta_{1} \gamma, w\right) \dashv(q, Z \gamma, a w) \vdash\left(q_{2}^{\prime}, \delta_{2} \gamma, a w\right)
$$

Corollary C. 25

In a DPDA, every configuration has at most one \vdash-successor.

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Example C. 26

The set of palindromes of even length is PDA-recognisable, but not DPDA-recognisable (without proof).

Summary: Pushdown Automata

Seen:

- Extension of finite automata by pushdown store
- Enables "counting" (e.g., $\left.\left\{a^{n} b^{n} \mid n \geq 1\right\}\right)$
- Determinism restricts expressivity (in contrast to finite automata)

Summary: Pushdown Automata

Seen:

- Extension of finite automata by pushdown store
- Enables "counting" (e.g., $\left.\left\{a^{n} b^{n} \mid n \geq 1\right\}\right)$
- Determinism restricts expressivity (in contrast to finite automata)

Next:

- Relation between PDA and context-free languages

Outline of Part C

Context-Free Grammars and Languages
Context-Free vs. Regular Languages
Chomsky Normal Form
The Word Problem for Context-Free Languages
The Emptiness Problem for Context-Free Languages
Closure Properties of Context-Free Languages
Pushdown Automata
Pushdown Automata and Context-Free Languages

PDA and Context-Free Languages I

Theorem C. 27

A language is context-free iff it is PDA-recognisable.

PDA and Context-Free Languages I

Theorem C. 27

A language is context-free iff it is PDA-recognisable.

Proof.

" \Leftarrow ": omitted
" \Rightarrow ": let $G=\langle N, \Sigma, P, S\rangle$ be a CFG. Construction of PDA \mathfrak{A}_{G} recognising $L(G)$:

- \mathfrak{A}_{G} simulates a derivation of G where always the leftmost nonterminal of a sentence is replaced ("leftmost derivation")
- begin with S on pushdown
- if nonterminal on top: apply a corresponding production rule
- if terminal on top: match with next input symbol
(cf. formal construction on following slide)

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- $Z_{0}:=S$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- $Z_{0}:=S$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$$
\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle \text { with }
$$

- $Q=F=\left\{q_{0}\right\}$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
- $Z_{0}=S$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- 「:= N $\cup \Sigma$
- $Z_{0}:=S$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:
$\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right)$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \quad \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right)
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right)
$$

PDA and Context－Free Languages II

Proof of Theorem C． 27 （continued）．

＂\Rightarrow＂：Formally， $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by
－$Q:=\left\{q_{0}\right\}$
－for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$（＂expansion＂）
－「：＝N $\cup \Sigma$
－for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$（＂matching＂）
－$Z_{0}:=S$
－$F:=Q$

Example C． 28 （＂Bracket language＂given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$ ）

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with
－$Q=F=\left\{q_{0}\right\}$
－$\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
－$\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
－$Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$ ：

$$
\left.\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle)
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
& \left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \\
\vdash & \left.\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
& \left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \\
\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle) & \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle\langle \rangle) \vdash\left(q_{0},\langle \rangle S,\langle \rangle S,\langle \rangle\langle \rangle\right\rangle\right)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
&\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \\
& \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle\langle \rangle) \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle) \\
&\left.\left.\left.\left.\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle\right\rangle S,\right\rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle S,\right\rangle\rangle)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- 「:= N $\cup \Sigma$
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $Z_{0}:=S$
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
& \left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \\
\vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) & \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \\
\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\left\langle q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle) & \left.\left.\vdash\left(q_{0},\right\rangle\right\rangle S,\langle \rangle\right\rangle\langle\rangle) \\
\left.\vdash\left(q_{0},\right\rangle S,\right\rangle\rangle) & \vdash\left(q_{0}, S,\langle \rangle\right)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- $Z_{0}:=S$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
& \left.\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle) \\
& \left.\left.\left.\left.\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle\right\rangle S,\right\rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle S,\right\rangle\rangle) \vdash\left(q_{0}, S,\langle \rangle\right) \\
& \vdash\left(q_{0},\langle \rangle,\langle \rangle\right)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- 「:=N $\cup \Sigma$
- $Z_{0}:=S$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{aligned}
& \left.\left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \vdash\left(q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle) \\
& \left.\left.\left.\left.\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle\right\rangle S,\right\rangle\right\rangle\rangle) \vdash\left(q_{0},\right\rangle S,\right\rangle\rangle) \vdash\left(q_{0}, S,\langle \rangle\right) \\
& \left.\left.\vdash\left(q_{0},\langle \rangle,\langle \rangle\right) \quad \vdash\left(q_{0},\right\rangle,\right\rangle\right)
\end{aligned}
$$

PDA and Context-Free Languages II

Proof of Theorem C. 27 (continued).

" \Rightarrow ": Formally, $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- $Z_{0}:=S$
- for each $A \rightarrow \alpha \in P:\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$ ("expansion")
- for each $a \in \Sigma:\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$ ("matching")
- $F:=Q$

Example C. 28 ("Bracket language" given by $G: S \rightarrow\langle \rangle|\langle S\rangle| S S$)

$\mathfrak{A}_{G}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=F=\left\{q_{0}\right\}$
- $\Delta:\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle \rangle\right)\right) \quad\left(\left(q_{0},\left\langle,\langle),\left(q_{0}, \varepsilon\right)\right)\right.\right.$
- $\Sigma=\{\langle\rangle\},, \Gamma=\{S,\langle\rangle$,
$\left.\left.\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0},\langle S\rangle\right)\right) \quad\left(\left(q_{0},\right\rangle,\right\rangle\right),\left(q_{0}, \varepsilon\right)\right)$
- $Z_{0}=S$
$\left(\left(q_{0}, S, \varepsilon\right),\left(q_{0}, S S\right)\right)$

Accepting run for input $w=\langle\langle \rangle\rangle\langle \rangle$:

$$
\begin{array}{rlrl}
& \left(q_{0}, S,\langle\langle \rangle\rangle\langle \rangle\right) & \vdash\left(q_{0}, S S,\langle\langle \rangle\rangle\langle \rangle\right) & \vdash\left(q_{0},\langle S\rangle S,\langle\langle \rangle\rangle\langle \rangle\right) \\
\left.\vdash\left(q_{0}, S\right\rangle S,\langle \rangle\right\rangle\rangle) \\
\left.\vdash\left(q_{0},\langle \rangle\right\rangle S,\langle \rangle\right\rangle\rangle) & \left.\left.\left.\vdash\left(q_{0},\right\rangle\right\rangle S,,\right\rangle\right\rangle\rangle) & \left.\vdash\left(q_{0},\right\rangle S,\right\rangle\rangle) & \vdash\left(q_{0}, S,\langle \rangle\right) \\
\vdash\left(q_{0},\langle \rangle,\langle \rangle\right) & \left.\left.\vdash\left(q_{0},\right\rangle,\right\rangle\right) & \vdash\left(q_{0}, \varepsilon, \varepsilon\right) & \\
\hline
\end{array}
$$

Summary: Pushdown Automata and Context-Free Languages

Seen:

- Construction of PDA for given CFG (\Rightarrow parser generation!)
- Reverse direction also possible
- Thus: PDA and CFG equivalent

Summary: Pushdown Automata and Context-Free Languages

Seen:

- Construction of PDA for given CFG (\Rightarrow parser generation!)
- Reverse direction also possible
- Thus: PDA and CFG equivalent

Outlook:

- Equivalence problem for CFG and PDA (" $L\left(X_{1}\right)=L\left(X_{2}\right)$?"): generally undecidable, but decidable for DPDA
- Pumping Lemma for CFL (e.g., to prove that $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ not context-free)
- Greibach Normal Form for CFG
- Systematic construction of deterministic and efficient parsers for compilers (LL/LR grammars)
- Non-context-free grammars and languages
(e.g., context-sensitive languages such as $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$)

