Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes
Part C: Context-Free Languages
March 6-10, 2023

Thomas Noll
Software Modeling and Verification Group

RWTH Aachen University
https://moves.rwth-aachen.de/teaching/ws-22-23/foi/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-22-23/foi/

Outline of Part C

Context-Free Grammars and Languages

2 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Introductory Example |

Example C.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression)

Expression) * { Expression)

= 0
1
(Expression) + (Expression)
(
((Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u x v, or (u) where u, v
are again expressions

30f48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023 ‘

RWTH

Software Modeling
Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:

E—0|1|E+E|ExE]|(E)

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E

RWTH

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)x E
= (E) * 1
4 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
= (E+E) x 1
4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling
March 6-10, 2023 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
= (E+E) x 1
= (04 E) * 1
4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o Rm
Software Modeling
March 6-10, 2023 Il and Verification Chair

Introductory Example Il

Example C.1 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=". Thus:
E —-O0|1|E+E|ExE]|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

RWTH

4 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Context-Free Grammars |

Definition C.2
A context-free grammar (CFQG) is a quadruple

G=(N,L,P,S)

where
e N is a finite set of nonterminal symbols
e 2_is the (finite) alphabet of terminal symbols (disjoint from N)
e P s a finite set of production rules of the form A — awhere A€ Nand o € (NU X)*
e S € Nis a start symbol

50f 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Context-Free Grammars Il

Example C.3

For the above example, we have:

o N={E}

'22{0717_'_7*7(7)}
eP={E—-0,E—-1E—-E+EE—ExEE— (E)}
e S=F

6 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

Context-Free Grammars Il

Example C.3

For the above example, we have:

o N={E}

oY ={0,1,+,%(,)}
eP={E—-0,E—-1E—-E+EE—>ExE E— (E)}
e S=F

Naming conventions:

e nonterminals start with uppercase letters

e terminals start with lowercase letters

e start symbol = symbol on LHS of first production
= grammar completely defined by productions

6 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Context-Free Languages |

Definition C.4
Let G= (N, %, P, S) be a CFG.
e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a€ Pand 51,52 € (NU Z)* such that B = 01Ad> and v = 0102
(notation: 5 = ~ or just 5 = 7).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G = (N, %, P,S) be a CFG.
e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A—a€ Pandd,do € (NUX)" such that § = 6;Ad> and v = 61>
(notation: 5 = ~ or just 5 = 7).
e A derivation (of length n € N) of ~ from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where dg = 3, 0p = v, and 9,1 = J; forevery i € {1,... n}
(notation: 5 =" 7).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G = (N, %, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A—a€ Pandd,do € (NUX)" such that § = 6;Ad> and v = 61>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of ~ from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where dg = 3, 0p = v, and 9,1 = J; forevery i € {1,... n}
(notation: 5 =" 7).

e Aword w € 2" is called derivable in G if S =" w.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G = (N, %, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A—a€ Pandd,do € (NUX)" such that § = 6;Ad> and v = 61>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of ~ from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where dg = 3, 0p = v, and 9,1 = J; forevery i € {1,... n}
(notation: 5 =" 7).

e Aword w € 2" is called derivable in G if S =" w.

e The language generated by Gis L(G) :={w € X" | S =" w}.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G = (N, %, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a€ Pandd, o € (NUZX) suchthat 5 = 0;Ad, and v = d1a0>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of ~ from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where dg = 3, 0p = v, and 9,1 = J; forevery i € {1,... n}
(notation: 5 =" 7).

e Aword w € 2" is called derivable in G if S =" w.

e The language generated by Gis L(G) :={w € X" | S =" w}.

e A language L C 2" is called context-free (CFL) if it is generated by some CFG.

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages |

Definition C.4
Let G = (N, %, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a€ Pandd, o € (NUZX) suchthat 5 = 0;Ad, and v = d1a0>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of ~ from [is a sequence of direct derivations of the form
dp = 01 = ... = 0, where dg = 3, 0p = v, and 9,1 = J; forevery i € {1,... n}
(notation: 5 =" 7).

e Aword w € X" is called derivable in G if S =" w.

e The language generated by Gis L(G) :={w € X" | S =" w}.

e A language L C 2" is called context-free (CFL) if it is generated by some CFG.

e Two grammars Gy, Gy are equivalent if L(G;) = L(G»).

RWTH

7 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Context-Free Languages Il

Example C.5

The language
{a"b" | n € N}

is context-free. It is generated by the grammar G = (N, ¥, P, S) with

o N={S}

o) ={a b}

e P={S— aSb|¢}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

RWTH

8 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 6-10, 2023 Bl and Verification Chair

Context-Free Languages Il

Example C.5

The language
{a"b" | n € N}

is context-free. It is generated by the grammar G = (N, ¥, P, S) with

o N={S}

o) ={a b}

e P={S— aSb|¢}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
e root labelled by start symbol
e leaves labelled by terminal symbols

e successors of node labelled according to right-hand side
of production rule

e sequence of leaf symbols = generated word

VRN
a b
VRN
a b

HO—0O—0—O0

:

8 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

9 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

Next:
e Relation between context-free and regular languages

9 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

Context-Free vs. Regular Languages

10 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Context-Free vs. Regular Languages

Theorem C.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

11 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Context-Free vs. Regular Languages

Theorem C.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)
Proof.

1. Let L be a regular language, and let 2l = (Q, ¥, 9, qo, F) be a DFA which recognises L.
Gy = (N, X, P, S) is defined as follows:
-N:=Q,S = q
—ifd(g,a) = q,thenqg — aq € P
—ifge F,theng - ¢ € P
Obviously a w-labelled run in 2[from gy to F corresponds to a derivation of w in Gy, and
vice versa. Thus L(2l) = L(Gy) (example on the following slide).

2. An example is {a"b" | n € N} (see Lesson 1).

Intuitive reason for non-regularity: recognising this language requires “unbounded counting”
capability. u

11 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023 ‘

RWTH

Software Modeling
Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F):

@—2—@o b

b a, b

a, b

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

b a, b

a, b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 6-10, 2023 Bl and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

2 with N .= Q, S := qp:
@o b

Qo — agi | ba
b a, b

a, b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@— b

Qo — agi | bag

a g1 — agz| bgs|e
b a, b

a, b

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F):

Corresponding CFG Gy := (N, %, P, S)

with N .= Q, S := qp:

@—2—@o b

b a, b

a, b

Qo — agi | bag
g — ag|bag|¢
G — ags | bags

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

: Software Modeling

Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)
p with N .= Q, S := qp:
> b
Qo — ag | bag
s g — aq | bag ¢
b a,b R — ag|bags
Qs — aqs | bag
-

Part C: Context-Free Languages
March 6-10, 2023

: Software Modeling

Il and Verification Chair

RWTH

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqi | bg
3 g — aq|bag e
b a, b Q@ — ag | bags
Qs — aqq | bg
. a, b
E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:
Qo
12 of 48 Ezlrjtng?t(i:c;nnst :;t.lrll:c;:;mﬂfgézc;;n;al Languages and Processes o — Rm
March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqgi | bg
3 g — aq|bag e
b a, b Q@ — ag | bags
Qs — aqq | bg
. a, b
E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:
Qo = bQqy
12 of 48 Ezlrjtng?t(i:c;nnst :;t.lrll:c;:;mﬂfgézc;;n;al Languages and Processes o — Rm
March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqs | bqg
a g — aq | bag ¢
b a, b Q — aqs| bgs
Qs — aq | bag
b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = bg = bags

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqs | bqg
a g — aq | bag ¢
b a, b Q — aqs| bgs
Qs — aq | bag
s

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bag; = baaaqg;

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqs | bqg
a g — aq | bag|¢
b a, b Q — aqs| bgs
Qs — aq | bag
s

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = bg = bag; = baag; = baabq;

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

From Regular to Context-Free Languages

Example C.7
DFARI = (Q, %, 0, qo, F): Corresponding CFG Gy := (N, %, P, S)

p with N .= Q, S := qp:
@ b

Qo — aqs | bqg
a g1 — ag| bags|e
b a, b Q — aqs| bgs
Qs — aq | bag
s

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bag; = baaqg, = baabg; = baab

RWTH

12 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages

13 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages

Next:
e Decidability of word problem

13 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

Chomsky Normal Form

RWTH

14 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, %, P, S) and w € ¥*, decide whether w € L(G) or not.

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € ¥L*, decide whether w € L(G) or not.

e Important problem with many applications
— syntax analysis of programming languages

— HTML parsers
15 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € ¥L*, decide whether w € L(G) or not.

e Important problem with many applications

— syntax analysis of programming languages
— HTML parsers

e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

RWTH

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € ¥L*, decide whether w € L(G) or not.

e Important problem with many applications

— syntax analysis of programming languages
— HTML parsers

e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

e Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

= Only finitely many combinations to be inspected

RWTH

15 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the

form
A—BC o A— a

16 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Chomsky Normal Form

Definition C.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—BC o A— a

Example C.9

Consider the grammar S — ab | aSh, which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b""' | n > 1})

RWTH

16 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Conversion to Chomsky Normal Form

Theorem C.10
Every CFL L (without c-productions) can be generated by a CFG in Chomsky NF.

17 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Conversion to Chomsky Normal Form

Theorem C.10
Every CFL L (without c-productions) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, X, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:

1. terminal symbols only in rules of the form A — a
(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A ... A, where n > 2

(see following slides for details)

RWTH

17 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

Software Modeling
March 6-10, 2023 Bl and Verification Chair

Step 1: Only A — a

Procedure

1. For every terminal symbol a € X, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € > with B,.

This yields G'.

18 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Step 1: Only A — a

Procedure

1. For every terminal symbol a € X, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € > with B,.

This yields G'.

Example C.11
G: S — ab|aSb is converted to G:S — AB| ASB
A — a
B — b
18 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;iri:glﬁl;c;];rzal Languages and Processes o | Rm
March 6-10, 2023 ‘ - ggatvglri?ig?gﬁ:lgaair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — a with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — a with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12

G: S — A
A— B|C
B — A| DA
C —c
D — d

RWTH

19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — a with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12

G:S — A U
A— B|C

B — A| DA /\

C — ¢

D — d /\ U

C

RWTH

19 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals (= only finitely many!).

2. Determine all productions A, — a with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example C.12
is converted to S
G:S— A G': S — DAlc U
A— B|C A— DA|c
B — A| DA B — DAlc /\
C —c C — ¢
D - d D~ d / \ U
C
19 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;iri:;ﬁ;c;;rzal Languages and Processes o | Rm
March 6-10, 2023 ‘ | ggatvglri?ig(:ﬁﬁ:lggair

Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A; ... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — A{B.

3. Add new production B — A, ... A,.

This yields G".

20 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A; ... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — A{B.

3. Add new production B — A, ... A,.

This yields G".

Example C.13
G': S — AB| ASB is converted to G": S — AB| AC
A — a A — a
B — b B — b
Cc — SB
20 of 48 Ezl:tng?t(i:c;nnstgt_lr'lfrc;;mf;iri:glﬁl;c;];rzal Languages and Processes o | Rm
March 6-10, 2023 ‘ - ggatvglri?ig?gﬁ:lgaair

Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a

21 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a

Next:
e Exploit Chomsky Normal Form to solve word problem for CFL

21 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

The Word Problem for Context-Free Languages

22 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Word Problem for CFL

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such thate ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

RWTH

Part C: Context-Free Languages

23 of 48 Foundations of Informatics/Formal Languages and Processes o
Software Modeling
March 6-10, 2023

Il and Verification Chair

The Word Problem for CFL

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such thate ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Algorithm C.14 (by Cocke, Younger, Kasami — CYK algorithm)

Transform G into Chomsky NF

Letw=ay...a,(n>1)

Letwli,j| =a;j...a forevery1 <i<j<n

Consider segments wli, j| in order of increasing length, starting with wli il = a; (i.e., letters)
In each case, determine N;j .= {A € N | A=" wl[i,j]} using a “dynamic programming”
approach:

—i=j:N;,={AeN|A— a € P}

—I<_/N,’II{A€N’EIB,CEN,/(E {1771—1}A—>BC€ P,BG N/’k,CE Nk—|—1,j}

6. Test whether S € Ny , (and thus, whether S =* w[1,n| = w)

ok i~

23 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

3

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

: Software Modeling

‘ Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

Ny, = {AGN’A%EHEP}
NQQ% {AEN’A%&QGP}

3

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

n

4

Software Modeling
Il and Verification Chair

RWTH

Matrix Representation of CYK Algorithm

a ao as
iNj| 1 2 3
T Nyt Nip Nis Ni
2| X Nop Nos No
30X X Nag - Ny
Nt ={AeN|A— a €P} nl X X N,

N22 : {AEN A—>32€P}

N~|2 = {AEN HB,CEN:A%BCEP,B€N1_’1,CEN2_’2}
N23 — {AEN HB,CEN:A—)BCEP,B€N272,CEN373}

RWTH

24 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Matrix Representation of CYK Algorithm

a ao as
Nl 1 2 3
TNy 4 Nig Nyg -+ Ny
2| X Nop Nog --+ Nop
3/ X X Ngs - Nip
N171:{AEN A%&‘]EP} n X X c e © e Nnn
N272 - {AEN A—>32€P}
Nip = {ACN|3IB,CEN:A—=BCECP,BECN1,CE Ny}
Nog = {AEN|IB,CEN:A— BCEP,BE Nyp, CE Nas}
Nis = {AEN|3B,CEN:A—BCEP,BEN,CE Ny}
JU{AeN|3IB,CEN:A—BCEP,BEN;,CE Na3}
N274 — {AEN EIB,CEN:A—)BCEP,BEN272,CEN374}
U {AEN ElB,CéN:A-)BCEP,B€N273,C€N4’4}
24 of 48 :Lrjtn(d;t(i:c;nnst :;t_lr;frzremf;f;;zgal Languages and Processes o s - M d I m

Applying the CYK Algorithm

Example C.15

eG: S—SA|a
A — BS
B—BB|BS|b|c
e W = abaaba

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

)

4

Software Modeling
Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15

eG: S—>SA|a

A — BS
B—BB|BS|b|c
e W — abaaba

G N
X X X X X

X X X X

X X X

X X

RWTH

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

N
w
N
@)

eG: S—>SA|a

A — BS
B—BB|BS|b|c
e W — abaaba

G N
—~—

XXXXX0—o
—

X X X X

RWTH

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

QD
QD
oy
QD

N
w
N
@)
(@))

eG: S—>SA|a

A — BS
B—BB|BS|b|c
e W — abaaba

—
—

X X XXX W=

1S}

X X {8

G N
—~—

X XXX
—

—~—
X X X W
—

25 of 48 Foundations of Informatics/Formal Languages and Processes o Rm
Software Modeling

Part C: Context-Free Languages
March 6-10, 2023 Il and Verification Chair

Applying the CYK Algorithm

Example C.15

QD
QD

eG: S—SA|a

w
TN

A — BS
B—BB|BS|b|c
e W — abaaba

—
—

X X XXX W=

—~—
XX XXDSNo
—

—~—
X X X O
—

—~—

—

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

: Software Modeling

Il and Verification Chair

‘RW“-I

Applying the CYK Algorithm

Example C.15

Q

eG: S—SA|a

TN

A — BS
B—BB|BS|b|c
e W — abaaba

—
—

X X XXX W=

—~—
X XXX Dshdo
——
>
X X X W W
——
H_J

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

: Software Modeling

Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15

eG: S—>SA|a

A — BS
B—BB|BS|b|c
e W — abaaba

—
—

X X XXX W=

{

—

1A, Bj

XX XX DsSNo

oA WN S
e
X X X W
——
—~—
—
=

25 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15

a b a 2 : 2
eG: S—>SA|a / \j 1 E S 4 > °
A— BS 1 {S}) 15}
B—BB|BS|b|c 2| X {B} {A B}
e W — abaaba 3 X X {S} @
40 X X x {sy 0 {s}
6 X X X X X {s
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;irfgl/JI;Zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a 2 : 2
eG: S—>SA|a / \j 1 E S 4 > °
A— BS 1 {S}) 15}
B—BB|BS|b|c 2 | X {Bf {AB}{A }
e W = abaaba 3 X X {S} @
4 X X x {s} 0 {s
6 X X X X x {s
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;:;él;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a 2 : 2
eG: S—>SA|a / \j 1 E S 4 > °
A— BS 1 {S}) 15}
B—BB|BS|b|c 2 X {B} {A B} {AB;]
e W = abaaba 3 X X {S} @
4 X X x {s} 0 {s
6 X X X X x {s
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;:;él;zrerzal Languages and Processes o N R“u I I I

Applying the CYK Algorithm

Example C.15

a b a 2 : 2
eG: S—>SA|a / \j 1 E S 4 > °
A— BS 1 {S} 0 1S}
B— BB|BS|b|c 2 X {B} {A B} {AB;]
e W — abaaba 3 X X {S} @ @
40 X x X {s} 0 {s}
6 X X X X x {s
25 of 48 Foundations of Informatics/Formal Languages and Processes o Software Modelin R

Part C: Context-Free Languages
March 6-10, 2023

Il and Verification Chair

Applying the CYK Algorithm

Example C.15

a b a 2 : 2
eG: S—>SA|a / \j 1 E S 4 > °
A BS sy 0 {sp {S)
B— BB|BS|b|c 2 X {Bf {A B} {AB;]
e W — abaaba 3 X X {S} @ @
4 X X x {s} 0 {s
6 X X X X x {s
25 of 48 Foundations of Informatics/Formal Languages and Processes o Software Modelin R

Part C: Context-Free Languages
March 6-10, 2023

Il and Verification Chair

Applying the CYK Algorithm

Example C.15

a b a a b a
eG: S—>SA|a I \f 1 2 3 4 0 £
A — BS 11 {s} 0 {s} {s}
B BB|BS|b|c 2 x {B} {AB} {AB} {B}
e W = abaaba 3 X X {S} 0)
4. X X x {s} 0 {s}
50 X X X x {B} {AB}
6. X X X X X {s}
25 of 48 Ezl:tn(d;t(i:c;nnst gt]r;:c;remf;:;él;zrerzal Languages and Processes o N R“TH

Applying the CYK Algorithm

Example C.15

a b a 2 £ 2
«G: S—SA|a N[1 2 3 i 2 °
A BS sy 0 {sp {S)
B BB|BS|b|c 2| X {B} {A B} {AB} {B}
e W = abaaba 3 X X {S} @ Q) (b
4. X X x {st 0 {s}
5. X X X X {B {AB
6 X X X X x {s
25 of 48 Eztltn(d:?t(i:c;nnstgt_lr;:c;;mlflatir(]:;ﬁ;zrerzal Languages and Processes 0 N Rer'I

Applying the CYK Algorithm

Example C.15
a b a 2 : 2
«G: S—SA|a N[1 2 3 i 2 °
A BS to{sy 0 {sy (s} 0
B BB|BS|b|c 2| X {B} {A B} {AB} {B}
e W = abaaba 3 X X {S} @ Q) @
4. X X x {st 0 {s}
5. X X X X {B {AB
6 X X X X x {s
T e hon anquages 005 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a 2 : 2
«G: S—SA|a N[1 2 3 i 2 °
A BS to{sy 0 {sy (s} 0
B BB|BS|b|c 2| X {B} {ABj{AB} {B} {A }
e W = abaaba 3 X X {S} @ Q) @
40 X X x {sy 0 {s}
5. X X X X {B {AB
6 X X X X x {s
T e hon anquages 005 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a a b a
eG: S—SA|a iNj| 1 2 3 4 5 6
A= BS o {sy 0 {s;p {s} 0
B—BB|BS|b|c 2| X {B} {AB} {A B} {B} {AB}
e W = abaaba 3 X X {S} @ @ @
4 X X X {s} 0 {s}
5| X X X X {B} {A, B}
6| X X X X X {S}

Part C: Context-Free Languages
March 6-10, 2023

: Software Modeling

Il and Verification Chair

RWTH

Applying the CYK Algorithm

Example C.15
a b a 2 : 2
«G: S SA|a N[1 2 3 i 2 °
A BS trisy 0 {s} {5} 0 {S}
B BB|BS|b|c 2 X {Bj {AB} {AB} (B} {AB;]
e W = abaaba 3 X X {S} @ Q) @
4. X X x {st 0 {s}
5. X X X X {B {AB
6 X X X X x {s
T e hon anquages 005 o D s | TN

Applying the CYK Algorithm

Example C.15
a b a a b a
eG: S—SA|a iNj| 1 2 3 4 5 6
A BS 1 {s} 0 {s} {st 0 {s}
B—BB|BS|b|c 2| X {B} {AB} {A B} {B} {AB}
e w = abaaba 3 X X {s}]] 0
4| X X X {S} 0 {S}
3) X X X X {B} {A, B}
6 X X X X x {s}
S € Njg = w = abaaba € L(G)
25 of 48 EZLrJtn(d;t(i:c;nnst eoxft_lr;frc;mf:rtl:;ﬁ;c;rerzal Languages and Processes o N Rm

March 6-10, 2023

Il and Verification Chair

Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥*, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity

26 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥*, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity

Next:
e Emptiness problem

26 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

The Emptiness Problem for Context-Free Languages

27 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

e Important problem with many applications

— consistency of context-free language definitions
— correctness properties of recursive programs

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

e Important problem with many applications

— consistency of context-free language definitions
— correctness properties of recursive programs

e For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

e Here: test whether start symbol is productive, i.e., whether it generates a terminal word

28 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in c«c productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

RWTH

Part C: Context-Free Languages
March 6-10, 2023

29 of 48 Foundations of Informatics/Formal Languages and Processes o

Software Modeling
Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in c«c productive then
mark A as productive

end
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB| CA
A— a
B — BC | AB
C—aB|b
29 of 48 Foundati f Inf tics/F I'L dP
e e e N RWTH
Software Modeling
March 6-10, 2023 Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in c«c productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB| CA 1. Initialisation
A— a
B — BC | AB
C—aB|b

RWTH

Part C: Context-Free Languages
March 6-10, 2023

29 of 48 Foundations of Informatics/Formal Languages and Processes o

Software Modeling
Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

if there is A — « € P such that all symbols in @ productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example C.17
G- S—>AB| CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB
C—aB|b

Part C: Context-Free Languages
March 6-10, 2023

29 of 48 Foundations of Informatics/Formal Languages and Processes 0 Rm
Software Modeling
Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in c«c productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB| CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b

RWTH

Part C: Context-Free Languages
March 6-10, 2023

29 of 48 Foundations of Informatics/Formal Languages and Processes o

Software Modeling
Il and Verification Chair

The Emptiness Test

Algorithm C.16 (Emptiness Test)

Input: G = (N, ¥, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in c«c productive then
mark A as productive
end

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example C.17
G: S— AB| CA 1. Initialisation
A— g 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b S productive = L(G) # ()

RWTH

Part C: Context-Free Languages
March 6-10, 2023

29 of 48 Foundations of Informatics/Formal Languages and Processes o

Software Modeling
Il and Verification Chair

Summary: The Emptiness Problem for Context-Free Languages

Seen:
e Emptiness problem decidable based on productivity of symbols

30 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: The Emptiness Problem for Context-Free Languages

Seen:
e Emptiness problem decidable based on productivity of symbols

Next:
e Closure properties of CFLs

30 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

Closure Properties of Context-Free Languages

31 0f 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Positive Results

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Positive Results

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’, Z, P,', S,> with L,' L= L(G,) and N1 M Ng = @, and let
S ¢ N; U N» be a fresh nonterminal. Then

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Positive Results

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’, Z, P,', S,> with L,' L= L(G,) and N1 M Ng = @, and let
S ¢ N; U N» be a fresh nonterminal. Then

e L Lyisgeneratedby G:= (N,X, P, S) with N := {S} UN; U N, and
P = {S% 8182}U P1 UP2

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Positive Results

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’, Z, P,', S,> with L,' L= L(G,) and N1 M Ng = @, and let
S ¢ N; U N» be a fresh nonterminal. Then

e L -Lyisgeneratedby G:= (N, %, P, S) with N := {S} UN; UN, and
P:={S— $S:}UPUP;

e L ULyisgeneratedby G := (N, X, P, S) with N := {S} UN; U N, and
P={S— S |S:}UPUP,

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Positive Results

Theorem C.18
The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’, Z, P,', S,> with L,' L= L(G,) and N1 M Ng = @, and let
S ¢ N; U N» be a fresh nonterminal. Then

e L -Lyisgeneratedby G:= (N, %, P, S) with N := {S} UN; UN, and
P:={S— $S:}UP UP;
e L ULyisgeneratedby G := (N, X, P, S) with N := {S} UN; U N, and
P={S— S |S:}UPUP,
e [iis generated by G := (N, %, P, S) with N := {S} U Ny and
P:={S—¢c|S5S}UP;

RWTH

32 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={abfc' | k,l e N} (generatedby S — AC,A — aAb| e, C — Cc | ¢)
and
L, := {ab'c' |k, e N} (generatedby S — AB,A — aA| s, B — bBc| <)
are CFLs,

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={abfc' | k,l e N} (generatedby S — AC,A — aAb| e, C — Cc | ¢)
and
L, .= {ab'c' | k,1 e N} (generatedby S — AB,A — aA|e,B — bBc | ¢)

are CFLs, but not
LinL,={a"b"c" | ne N}

(without proof).

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Negative Results

Theorem C.19
The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both
Ly :={abfc' | k,l e N} (generatedby S — AC,A — aAb| e, C — Cc | ¢)
and
L, := {ab'c' |k, e N} (generatedby S — AB,A — aA| s, B — bBc| <)

are CFLs, but not
LinL,={a"b"c" | ne N}

(without proof).

e Complement: if CFLs were closed under complement, then also under intersection (as
LiNLy=LqULy).

RWTH

33 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Overview of Decidability and Closure Results

Decidability Results

Class

Reg
CFL

+ +
+ +

34 of 48

Foundations of Informatics/Formal Languages and Processes

Part C: Context-Free Languages
March 6-10, 2023

.

4

Software Modeling
Il and Verification Chair

RWTH

Overview of Decidability and Closure Results

Decidability Results

Class | wel L=0 L, =1L

Reg + + +

CFL + + —

Closure Results

Class | Ly-L, LiUL LiNL L L
Reg + + + + o+
CFL + + - -+

34 of 48

Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023

n

4

Software Modeling
Il and Verification Chair

‘RW“-I

Summary: Closure Properties of Context-Free Languages

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement

35 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Closure Properties of Context-Free Languages

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement

Next:
e Automata model for CFLs

35 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

Pushdown Automata

36 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Pushdown Automata |

e Goal: introduce an automata model which exactly accepts CFLs

e Clear: DFA not sufficient
(missing “counting capability”, e.g. for {a"b" | n > 1})

37 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Pushdown Automata |

e Goal: introduce an automata model which exactly accepts CFLs

e Clear: DFA not sufficient
(missing “counting capability”, e.g. for {a"b" | n > 1})
e DFA will be extended to pushdown automata by

— adding a pushdown store which stores symbols from a pushdown alphabet and uses a special
bottom symbol
— adding push and pop operations to transitions

37 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Pushdown Automata ll

Definition C.20

A pushdown automaton (PDA) is of the form 2L = (Q, L, [, A, qo, Z, F) where
e Q) is a finite set of states
e 2 is the (finite) input alphabet
e [is the (finite) pushdown alphabet
e AC (QxTI xX.)x(QxT7)is afinite set of transitions
e o € Qs the initial state
e / is the (pushdown) bottom symbol
e F C Qis a set of final states

Interpretation of ((q, Z, x),(q’,d)) € A: if the PDA 2l is in state g where Z is on top
of the stack and x is the next input symbol (or empty), then 2l reads x, replaces Z by
0, and changes into the state ¢'.

RWTH

38 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Configurations, Runs, Acceptance

Definition C.21
Let2l = (Q, X, T, A, qo, Z, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2L.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {e} x {¢}.
e If ((q9,Z,x),(q,6)) € A, then (q, Zv, xw) F (q', 0, w) forevery y € ", w € *.

RWTH

39 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Configurations, Runs, Acceptance

Definition C.21
Let2l = (Q, X, T, A, qo, Z, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2L.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {e} x {¢}.
e If ((q9,Z,x),(q,6)) € A, then (q, Zv, xw) F (q', 0, w) forevery y € ", w € *.
e 2 accepts w € X" if (qo, 2o, W) F* (g, ¢, ¢) for some q € F.
e The language accepted by 2 is L(2A) := {w € L* | 2 accepts w}.
e A language L is called PDA-recognisable if L = L(2l) for some PDA 2I.
e Two PDA 24,2, are called equivalent if L(2(;) = L(%2>).

RWTH

39 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, A q, 2, F) is given by

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, q,Z,F) is given by

i Q — {QO; as, q2}
— Qo: construction of PD while reading a’s
— @¢: deconstruction while reading b’s
— Q. accepting state

40 of 48 Foundations of Informatics/Formal Languages and Processes nm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, q,Z,F) is given by

i Q — {QO; as, q2}
— Qo: construction of PD while reading a’s
— @¢: deconstruction while reading b’s
— Q. accepting state

oY ={a b}
40 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})

A=(Q, %, A, q,Z,F) is given by

i Q — {QO; as, q2}
— Qo: construction of PD while reading a’s
— @¢: deconstruction while reading b’s
— Q. accepting state

oY ={a b}
o[={4,Z}
— Zy = bottom
— #Z on PD = #a — #b read so far
o F={qg}
40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages o nm
Software Modeling
March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %L, A q, 2, F) is given by

e Q=1{qo,q1,q} o A: ((qo, 2, @),(qov, ZZy)) read first a

— qo: construction of PD while reading a’s ((q0,Z, a) ,(qo, ZZ)) read following a’s

— q;: deconstruction while reading b’s ((q0, Z, b) ,(q1,¢)) read first b

~ Ge: accepting state ((g1,Z,b) ,(g1,€)) read following b’s
oY ={a, b} (g1, 2,¢),(qe,€)) change to final state
o[={4,Z}

— Zy = bottom

— #Z on PD = #a — #b read so far
o = {C]g}
40 of 48 E:lrjtng?t(i:c;nnst :Xft_lr'_ll;ce);ml_egir::;ﬁ;c;;rr;al Languages and Processes o | Rm

March 6-10, 2023 ‘ | ggatv:rri?iggsﬁ:lgﬂair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={qo, 0, g} o A: ((90, 2o, a),(qo, ZZ)) read first a

— Qo: construction of PD while reading a’s ((q07 Z, a) ,(CIo, ZZ)) read following a's

— qy: deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's
e Comocfros Languages oSS 9 | R\WNTH

March 6-10, 2023 ‘ | ggrjtv:rri?ig?slﬂlgaair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(q07 ZO; aabb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(q07 ZO7 aabb) = (q07 ZZO) abb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(qo, Zo, @aabb) t- (qo, 22, abb) - (qv, ZZZ,, bb)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(q07207 aabb) - (q072207 abb) = (q0722207 bb) - (q172207 b)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2Z0,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(q07207 aabb) - (q072207 abb) = (q0722207 bb) - (q172207 b) - (Q1,Zo,€)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA |

Example C.22 (PDA for L = {a"b" | n > 1})
A=(Q, %, A, q,Z,F) is given by

e Q={q.q, %} o A: ((qo, 2o, a),(qo, ZZy)) read first a

— Qp: construction of PD while reading a's ((q0,Z, a) ,(qo, ZZ)) read following a’s

— @4 deconstruction while reading b’s ((q0, Z, b) ,(g1,¢€)) read first b

~ G- accepting state ((g1,Z,b) ,(gy,¢)) read following b’s
oY ={a b} ((91,2,€),(g2,€)) change to final state
o ={% 2} e Observation: no transitions for

— Zp = bottom ~ (qo, 2y, b): input must start with a

— #Z onPD = jfa — 7fbread so far — (g4, Z, a): no &'s following b’s
o F={q} ~ (g1, 2y, b): more b's than a's

Accepting run of PDA for input w = aabb:
(remember: if ((q, Z, x), (¢, 9)) € A, then (g, Zv, xw) = (', 67, w))

(q07207 aabb) - (q072207 abb) = (q0722207 bb) - (q172207 b) - (Q1,Zo,€) - (q27€78)

RWTH

40 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, qo, 2o, F)
e Q=1{q, 91,5}

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2 = (Q, X, I, A, qo, 2o, F)
e Q=1{q, 91,5}

o> ={a b}
41 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Bl and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, X, I, A, qo, Z, F)
e Q=1{q, 91,5}

o> ={a b}
o ={2,a b}
o F={q}
41 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
‘ Software Modeling
March 6-10, 2023 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) o A: ((qo,Z,¢),(qo,cZ)) forZel,ceX
e Q={q, 9,3} ((q0,¢,¢) ,(g1,€)) forceX
oY ={a,bl ((q0, 2,),(Ch %))
ol = {Z a b} ((g1,c,¢) (g1,e)) forceX
’ ’ 7Z Y Y Y
o F—{q) (g1, %)(02 €))
41 of 48 Ezlrjtng?t(i:c;nnst :Xft_lr'l:c;remf;irc]:gél;c;;n;al Languages and Processes ? o Rm
March 6-10, 2023 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) e A: ((qo, Z.¢) ,(qo,cZ)) forZel,cex (1)
e Q=1{q0,q1,q)} ((qo,c,c) ,(q1,e)) force X (2)
oY ={a,bl ((90, 2.)7(CI1 Zy)) (2)
o =1{Z, ab) ((g1,¢c,¢) ,(q1,e)) force X (3)

. 727)) 4
SR A (a1, 20,).(2:) @
Accepting run of PDA for input w = abba:
(q07 207 abba)
41 of 48 Ezlrjtng?t(i:c:)nnst:xft_lr'l:c;;mf;ir::;ﬁ;c;;n;al Languages and Processes ? _— Rm
March 6-10, 2023 | andVerificationcgair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) e A: ((qo, Z.¢) ,(qo,cZ)) forZeTl,cex (1)
e Q={qo, g1, g} ((qo,c,c) ,(q1,e)) force X (2)
oY ={a,bl ((90, 2.)7(CI1 Zy)) (2)
o =1{Z, ab) ((g1,¢c,¢) ,(q1,e)) force X (3)

’ ’ 7Z Y Y Y 4
. F— o} (a1, 20,2)¢2.2) @
Accepting run of PDA for input w = abba:
(9o, Z, abba) = (qo, aZy, bba)
41 of 48 Ezlrjtng?t(i:c:)nnst:xft_lr'l:c;;mf;ir::;ﬁ;c;;n;al Languages and Processes ? _— Rm
March 6-10, 2023 | andVerificationcgair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) e A: ((qo, Z.¢) ,(qo,cZ)) forZeTl,cex (1)
e Q={qo, g1, g} ((qo,c,c) ,(q1,e)) force X (2)
oY ={a,bl ((90, 2.)7(CI1 Zy)) (2)
o =1{Z, ab) ((g1,¢c,¢) ,(q1,e)) force X (3)

’ ’ 7Z Y Y Y 4
. F— {0} (a1, 20,2)¢2.2) g
Accepting run of PDA for input w = abba:
(qo, Zo, abba) - (qo, aZy, bba) = (qo, bazy, ba)
41 of 48 Ezlrjtng?t(i:c:)nnst:xft_lr'l:c;;mf;ir::;ﬁ;c;;n;al Languages and Processes ? _— Rm
March 6-10, 2023 | andVerificationcgair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) o A: ((qo,Z,¢) (qo,cZ)) forZeTl,cex (1)
* Q=1{q0,q1,q} ((qo,c,c) ,(q1,e)) forcel (2)
oY = {a b} ((90: 2o 2).(1.) (2)
o =1{Z, ab) ((g1,¢c,¢) ,(q1,e)) force X (3)
o F = {qZ} ((Q17207)7(Q27)) (4)

Accepting run of PDA for input w = abba:
(90, 2o, abba) + (qo, ao, bba) = (qo, bazy, ba) - (g1, az, a)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) o A: ((qo,Z,¢) (qo,cZ)) forZeTl,cex (1)
* Q=1{q0,q1,q} ((qo,c,¢) ,(q1,e)) forcel (2)
oY = {a b} ((90: 2o 2).(1.) (2)
o =1{Z, ab) ((g1,¢,¢) ,(q1,e)) force X (3)
o F = {qZ} ((Q17207)7(Q27)) (4)

Accepting run of PDA for input w = abba:
(Qo, Zo, abba) t= (qo, aZy, bba) & (qo, bazy, ba) - (g1, aZy, a) - (a1, 2, €)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %X, I, A, qo, Zo, F) e A: ((qo, Z,¢) ,(qo,cZ)) forZeTl,cex
e Q={qo, g1, Q} ((q.c,c) ,(gi.e)) forcek
ey ={ab} (g0, Zo.),(Ch Z))
o = {Z,a b} ((g1,¢c,¢) ,(q1,e)) force X
o F={q) (a1, o,)7(02, €))

Accepting run of PDA for input w = abba:
(Qo, Zo, abba) t= (qo, aZy, bba) &= (qo, bazy, ba) - (g1, aZy, a) = (g1, 2, €) - (qe. €, €)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %X, I, A, qo, Zo, F) e A: ((qo, Z,¢) ,(qo,cZ)) forZeTl,cex
e Q=1{q, 1, q} ((qo ¢, c) ,(a1,¢) force X
ey ={ab} (g0, Zo.),(Ch Z))
o ={Z, ab} ((g1,¢,¢) (qi,¢)) forcex
o F={q) (a1, o,)7(02, €))

Accepting run of PDA for input w = abba:
(Qo, Zo, abba) t= (qo, aZy, bba) &= (qo, bazy, ba) - (g1, aZy, a) = (a1, 2, €) - (qe. €, €)

Observation: 2[is nondeterministic — in a configuration of the form (qo, cv, cw)
(c € X, v,w e XL"), both (1) and (2) are applicable.

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Examples of PDA Il

Example C.23 (PDA for L = {ww" | w € {a, b}*} (palindromes of even length))

ldea: 1. 2 pushes input w
2. switches nondeterministically to the w" recognition phase
3. compares w and w" symbol-wise by matching steps
4. accepts with empty pushdown

Formally: 2l = (Q, %, I, A, qo, Zo, F) e A: ((qo, Z.¢) ,(qo,cZ)) forZel,cex (1)
e Q={qo. o, G} ((Q,c,c) [(q1,¢)) forceX (2)
oY ={ab} ((90, 2.),(Ch Zy)) (2)
o =1{Z, ab) ((g1,c,¢) (q1,¢)) forceX (3)
o F={q) (g1, Zo,),(0/2, €)) (4)

Accepting run of PDA for input w = abba:
(qo, Z, abba) = (qo, aZo, bba) &= (qo, baZy, ba) - (g1, a2y, a) - (g1, Zo,€) F (G, €, €)
Observation: 2[is nondeterministic — in a configuration of the form (qo, cv, cw)
(c e X, v,w e X"), both (1) and (2) are applicable. This yields rejecting runs, e.g.,
(90, Zo, abba) - (qo, aZy, bba) & (o, baZy, ba) - (qo, bbaZy, a) - (qo, abbaZy,)

RWTH

41 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

Deterministic PDA

Definition C.24

APDAR = (Q,XL,I, A, q, 2, F) is called deterministic (DPDA) if for every

qe Q. Zcl,

1. for every x € ¥, there is at most one (q, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:
1. if ((q7 27 X)7 (qfl751))7 ((q7 27 X)7 (q./27 52)) € A:

(q‘ll) 51/77 W) B (q7 Z’% XW) = (qéa 5277 W)
2. if ((q7 27 a)7 (q‘,I) 51))7 ((q7 Za 8)7 (Qéa 52)) € A:

(q4751’77 W) m (q7 Z% aW) - (qéa 5277 aW)

RWTH

42 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Deterministic PDA

Definition C.24

APDAR = (Q, %, A, qo, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥_, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:

1. if ((q7 Z? X)? (qfl751))7 ((q7 Za X)? (q./27 52)) € A:

(q4751/77 W) - (q7 Z/%XW) - (qéa 52/77 W)
2. if ((Q7 Z7 a)? (q-,|) 51))7 ((q7 27 5)7 (Qéa 52)) € A

(q475177 W) - (q7 Z% aW) - (qév 5277 aW)

Corollary C.25

In a DPDA, every configuration has at most one -successor.

RWTH

42 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not

true for PDA-recognisable languages)

RWTH

43 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages ‘

March 6-10, 2023

Software Modeling
Il and Verification Chair

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not
true for PDA-recognisable languages)

Example C.26

The set of palindromes of even length is PDA-recognisable, but not
DPDA-recognisable (without proof).

43 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages

March 6-10, 2023 ‘

RWTH

Software Modeling
Il and Verification Chair

Summary: Pushdown Automata

Seen:
e Extension of finite automata by pushdown store
e Enables “counting” (e.g., {a"b" | n > 1})
e Determinism restricts expressivity (in contrast to finite automata)

44 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Pushdown Automata

Seen:
e Extension of finite automata by pushdown store
e Enables “counting” (e.g., {a"b" | n > 1})
e Determinism restricts expressivity (in contrast to finite automata)

Next:
e Relation between PDA and contexi-free languages

44 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Outline of Part C

Pushdown Automata and Context-Free Languages

45 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

PDA and Context-Free Languages |

Theorem C.27

A language is context-free iff it is PDA-recognisable.

46 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

PDA and Context-Free Languages |

Theorem C.27
A language is context-free iff it is PDA-recognisable.

Proof.
“<=": omitted

‘=" let G= (N, X, P,S) be a CFG. Construction of PDA 2[5 recognising L(G):
e 2l simulates a derivation of G where always the leftmost nonterminal of a
sentence is replaced (“leftmost derivation”)
e begin with S on pushdown
e if nonterminal on top: apply a corresponding production rule
e if terminal on top: match with next input symbol

(cf. formal construction on following slide)

RWTH

46 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages ‘

March 6-10, 2023

Software Modeling
Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
o[=NUX e foreach ac ¥: ((qo, a, a),(qo,¢)) € A (“matching”)
e/ =S o F:=Q
47 of 48 E:lrjtng?t(i:c;nnst :Xft_lr';:ce);mf;ir::;ﬁ;c;;rzal Languages and Processes o | Rm
March 6-10, 2023 ‘ | gﬂt‘\"/:rrﬁimﬁ'gﬂair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e for each a € X: ((qo, a, @), (qo, €)) € A (“matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F = {QO} o A: ((q07 Sa 5)7(q07 <>)) ((qoa <7 <)7(q07 <C3))
°) — {<,>}, [= {S, <,>} ((q07875)7(q07<8>)) ((q07>7>)7(q07€))
® ZO =S ((q07 87 5)7(q07 SS))
47 of 48 E:lrjtng?t(i:c;nnst:xft_lr;:c;;mﬂi;:;ﬁl;c;;n;al Languages and Processes o o Rm
March 6-10, 2023 | andVerificationcﬂair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(90, S, (()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(G0, S, {())) (a0, S8S,{()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} ((9, S, €),(q0, (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(G0, S, () F (9,88, {()() F (a0 (5)S, {()){))

47 of 48 Foundations of Informatics/Formal Languages and Processes Rm
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; (),(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(G0, S, () F (9,88, {()() F (a0, (5)S,{())() F (%, 5)S, ()0

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ((qo; (; (),(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(G0, S, {()()) (9,85, {())() F (q0,(5)S,{()() F (%, 5)S, ()0
= (9, ()S: ()

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

RWTH

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; (),(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

(0)0:
%, SS, {())()) F (0, (S)S, (1)) F (a0, S)S, ())())
@,))5,))0)

Accepting run for input w

(G0, S, {){)) F(
= (%, (1S, 0)0) = (

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} ((9, S, €),(q0. (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

(0)0:
%, SS, {())()) F (0, (S)S, (1)) F (a0 S)S, ())())
@))S)0) F ()S.)

Accepting run for input w

(G0, S, {){)) F(
= (%, (1S, 0)0) = (

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} ((9, S, €),(q0. (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

(0)0:
%, SS, (()){))
@,))5,))0)

Accepting run for input w

(G0, S, {){)) F(
= (%, (1S, 0)0) = (

T T
5

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ((qo; (; (),(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(G0, S, (1)) F (9,85, (()){))
= (9, (1S, 0)0) F (9,))8,))0)
= (g0, (),)

T T
5

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A— a € P: ((qo, A,), (qo, @) € A (“expansion”)
o[=NUL e foreach ac ¥: ((qo, a, a),(qo,¢)) € A (“matching”)
e/ =S e F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; (),(q0, €))
oY ={()\},[={S ()} (90, S, €),(q0 (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

S
7
~——
~——
S
~——

Accepting run for input w

(60, S, {00) F (60,88, (()() F (<)S, () F (60, 9)S, (1))
F (g0 0)S.)0) F (,) - S,) -
(QO7<>7<>) - (QO7>7>)

RWTH

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

PDA and Context-Free Languages Il

Proof of Theorem C.27 (continued).

“=": Formally, 2s := (Q, X, [, A, qv, Zo, F) is given by

e Q:={q} e foreach A — a € P: ((qo, A, €), (qo, @) € A (“expansion”)
el =NUYX e foreach a € X: ((qo, @, @), (9o, €)) € A (*matching”)
ey =S o F:=Q

Example C.28 (“Bracket language” givenby G: S — () | (S) | SS)
2[G — <07 Z7 I_7 A7 Qo, 207 F> with

e Q=F ={qo} o Az ((q0,S,¢),(q0,())) ({90, (; ():(q0, €))
oY ={()\},[={S ()} ((9, S, €),(q0. (S))) ((q0.),))-(q0,¢€))
«Z, =S ((q0, S, €),(q0, SS))

Accepting run for input w = (())():

(90, S, (())()) F (9,SS,(())())
= (90, ()S, (0)() F (90,))8,))()) F (qo,)
= (90, (), () = (9o,), >) -

47 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 Il and Verification Chair

RWTH

Summary: Pushdown Automata and Context-Free Languages

Seen:
e Construction of PDA for given CFG (= parser generation!)
e Reverse direction also possible
e Thus: PDA and CFG equivalent

48 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

RWTH

Summary: Pushdown Automata and Context-Free Languages

Seen:
e Construction of PDA for given CFG (= parser generation!)
e Reverse direction also possible
e Thus: PDA and CFG equivalent

Outlook:

e Equivalence problem for CFG and PDA (“L(X;) = L(X2)?"):
generally undecidable, but decidable for DPDA

e Pumping Lemma for CFL (e.g., to prove that {a"b"c” | n > 1} not context-free)
e Greibach Normal Form for CFG
e Systematic construction of deterministic and efficient parsers for compilers
(LL/LR grammars)
e Non-context-free grammars and languages
(e.g., context-sensitive languages such as {a"b"c” | n > 1})

RWTH

48 of 48 Foundations of Informatics/Formal Languages and Processes
Part C: Context-Free Languages
Software Modeling

March 6-10, 2023 ‘ Il and Verification Chair

	Context-Free Languages
	Context-Free Grammars and Languages
	Context-Free vs. Regular Languages
	Chomsky Normal Form
	The Word Problem for Context-Free Languages
	The Emptiness Problem for Context-Free Languages
	Closure Properties of Context-Free Languages
	Pushdown Automata
	Pushdown Automata and Context-Free Languages

