
CS 267: Automated Verification

Lecture 13: Bounded Model Checking

Instructor: Tevfik Bultan

Remember Symbolic Model Checking

•  Represent sets of states and the transition relation as
Boolean logic formulas

•  Fixpoint computation becomes formula manipulation
–  pre-condition (EX) computation: Existential variable

elimination
–  conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check

•  Use an efficient data structure for boolean logic formulas
–  Binary Decision Diagrams (BDDs)

An Extremely Simple Example

Variables: x, y: boolean

Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S ≡ True

Initial condition:
I ≡ ¬ x ∧ ¬ y

Transition relation (negates one variable at a time):
R ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y (= means ↔)

F,T

F,F

T,T

T,F

An Extremely Simple Example

•  Assume that we want to check if this transition system
satisfies the property AG(¬x ∨ ¬y)

•  Instead of checking AG(¬x ∨ ¬y) we can check EF(x ∧ y)
–  Since AG(¬x ∨ ¬y) ≡ ¬ EF(x ∧ y)

I ⊆ AG(¬x ∨ ¬y) if and only if I ∩ EF(x ∧ y) = ∅

•  If we find an initial state which satisfies EF(x ∧ y) (i.e., there
exists a path from an initial state where eventually x and y
both become true at the same time)
–  Then we conclude that the property AG(¬x ∨ ¬y) does

not hold for this transition system

•  If there is no such initial state, then property AG(¬x ∨ ¬y)
holds for this transition system

An Extremely Simple Example

Given p ≡ x ∧ y, compute EX(p)

EX(p) ≡ ∃V’ R ∧ p[V’ / V]
≡ ∃V’ R ∧ x’ ∧ y’
≡ ∃V’ (x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y) ∧ x’ ∧ y’
≡ ∃V’ (x’=¬x ∧ y’=y) ∧ x’ ∧ y’ ∨ (x’=x ∧ y’=¬y) ∧ x’ ∧ y’
≡  ∃V’ ¬x ∧ y ∧ x’ ∧ y’ ∨ x ∧ ¬y ∧ x’ ∧ y’
≡  ¬x ∧ y ∨ x ∧ ¬y

EX(x ∧ y) ≡ ¬x ∧ y ∨ x ∧ ¬y
In other words EX({(T,T)}) ≡ {(F,T), (T,F)}

F,T

F,F

T,T

T,F

An Extremely Simple Example

Let’s compute compute EF(x ∧ y)

The fixpoint sequence is
False, x∧y , x∧y ∨ EX(x∧y) , x∧y ∨ EX (x∧y ∨ EX(x∧y)) , ...
If we do the EX computations, we get:
False, x ∧ y , x ∧ y ∨ ¬x ∧ y ∨ x ∧ ¬y, True

EF(x ∧ y) ≡ True ≡ {(F,F),(F,T), (T,F),(T,T)}
This transition system violates the property AG(¬x ∨ ¬y)
since it has an initial state that satisfies the property EF(x ∧ y)

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3

Bounded Model Checking

•  Represent sets of states and the transition relation as
Boolean logic formulas

•  Instead of computing the fixpoints, unroll the transition
relation up to certain fixed bound and search for violations
of the property within that bound

•  Transform this search to a Boolean satisfiability problem
and solve it using a SAT solver

Same Extremely Simple Example

Variables: x, y: boolean

Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S ≡ True

Initial condition:
I(x,y) ≡ ¬ x ∧ ¬ y

Transition relation (negates one variable at a time):
R(x,y,x’,y’) ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y (= means ↔)

F,T

F,F

T,T

T,F

Bounded Model Checking

•  Assume that we like to check that if the initial states satisfy
the formula EF(x ∧ y)

•  Instead of computing a backward fixpoint, we will unroll the
transition relation a fixed number of times starting from the
initial states

•  For each unrolling we will create a new set of
variables:
–  The initial states of the system will be characterized with

the variables x0 and y0
–  The states of the system after executing one transition

will be characterized with the variables x1 and y1
–  The states of the system after executing two transitions

will be characterized with the variables x2 and y2

Unrolling the Transition Relation

•  Initial states: I(x0,y0) ≡ ¬ x0 ∧ ¬ y0
•  Unrolling the transition relation once (bound k=1):

I(x0,y0) ∧ R(x0,y0,x1,y1)
≡ ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0)

•  Unrolling the transition relation twice (bound k=2):
I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2)
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0)

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1)
•  Unrolling the transition relation thrice (bound k=3):

I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2) ∧ R(x2,y2,x3,y3)
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0)

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1)
∧ (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2)

Expressing the Property

•  How do we represent the property we wish to verify?

•  Remember the property: We were interested in finding out if
some initial state satisfies EF(x ∧ y)

–  This is equivalent to checking if x ∧ y holds in some
reachable state

–  If we are doing bounded model checking with bound
k=3, we can express this property as:

x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3

Converting to Satisfiability

•  We end up with the following formula for bound k=3:
F ≡ I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2) ∧ R(x2,y2,x3,y3)

∧(x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3)
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0)

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1)
∧ (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2)
∧  (x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3)

•  Here is the main observation: if F is a satisfiable formula
then there exists an initial state which satisfies EF(x ∧ y)
–  A satisfying assignment to the boolean variables in F

corresponds to a counter-example for AG(¬x ∨ ¬y) (i.e.,
a witness for EF(x ∧ y))

The Result

F ≡
¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0)
∧  (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1)
∧  (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2)
∧  (x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3)

Here is a satisfying assignment:
x0=F, y0=F, x1=F, y1=T, x2=T, y2=T, x3=F, y3=T
which corresponds to the (bounded) path:
(F,F), (F,T), (T,T), (F,T)

F,T

F,F

T,T

T,F

What Can We Guarantee?

•  We converted checking property AG(p) to Boolean SAT
solving by looking for bounded paths that satisfy EF(¬p)

•  Note that we are checking only for bounded paths (paths
which have at most k+1 distinct states)
–  So if the property is violated by only paths with more

than k+1 distinct states, we would not find a counter-
example using bounded model checking

–  Hence if we do not find a counter-example using
bounded model checking we are not sure that the
property holds

•  However, if we find a counter-example, then we are sure
that the property is violated since the generated counter-
example is never spurious (i.e., it is always a concrete
counter-example)

Bounded Model Checking for LTL

•  It is possible to extend the basic ideas we discussed for
verifying properties of the form AG(p) to all LTL (and even
ACTL*) properties.

•  The basic observation is that we can define a bounded
semantics for LTL properties so that if a path satisfies an
LTL property based on the bounded semantics, then it
satisfies the property based on the unbounded semantics
–  This is why a counter-example found on a bounded path

is guaranteed to be a real counter-example
–  However, this does not guarantee correctness

Bounded Model Checking: Proving Correctness

•  One can also show that given an LTL property f, if E f holds
for a finite state transition system, then E f also holds for
that transition system using bounded semantics for some
bound k

•  So if we keep increasing the bound, then we are
guaranteed to find a path that satisfies the formula
–  And, if we do not find a path that satisfies the formula,

then we decide that the formula is not satisfied by the
transition system

–  Is there a problem here?

Proving Correctness

•  We can modify the bounded model checking algorithm as
follows:
–  Start from an initial bound.
–  If no counter-examples are found using the current

bound, increment the bound and try again.

•  The problem is: We do not know when to stop

Proving Correctness

•  If we can find a way to figure out when we should stop then
we would be able to provide guarantee of correctness.

•  There is a way to define a diameter of a transition system
so that a property holds for the transition system if and only
if it is not violated on a path bounded by the diameter.

•  So if we do bounded model checking using the diameter of
the system as our bound, then we can guarantee
correctness if no counter-example is found.

Bounded Model Checking

•  What are the differences between bounded model checking
and BDD-based symbolic model checking?
–  In bounded model checking we are using a SAT solver

instead of a BDD library
–  In symbolic model checking we do not unroll the

transition relation as in bounded model checking
–  In bounded model checking we do not compute the

fixpoint as in symbolic model checking
–  In symbolic model checking for finite state systems both

verification and falsification results are guaranteed
•  In bounded model checking we can only guarantee

the falsification results, in order to guarantee the
verification results we need to know the diameter of
the system

Bounded Model Checking

•  Boolean satisfiability problem (SAT) is an NP-complete
problem

•  A bounded model checker needs an efficient SAT solver
–  zChaff SAT solver is one of the most commonly used

ones
–  However, in the worst case any SAT solver we know will

take exponential time

•  Most SAT solvers require their input to be in Conjunctive
Normal Form (CNF)
–  So the final formula has to be converted to CNF

Bounded Model Checking

•  Similar to BDD-based symbolic model checking, bounded
model checking was also first used for hardware verification

•  Later on, it was applied to software verification

Bounded Model Checking for Software

CBMC is a bounded model checker for ANSI-C programs

•  Handles function calls using inlining

•  Unwinds the loops a fixed number of times

•  Allows user input to be modeled using non-determinism
–  So that a program can be checked for a set of inputs

rather than a single input

•  Allows specification of assertions which are checked using
the bounded model checking

Loops

•  Unwind the loop n times by duplicating the loop body n
times
–  Each copy is guarded using an if statement that checks

the loop condition
•  At the end of the n repetitions an unwinding assertion is

added which is the negation of the loop condition
–  Hence if the loop iterates more than n times in some

execution, the unwinding assertion will be violated and
we know that we need to increase the bound in order to
guarantee correctness

•  A similar strategy is used for recursive function calls
–  The recursion is unwound up to a certain bound and

then an assertion is generated stating that the recursion
does not go any deeper

A Simple Loop Example

x=0;
while (x < 2) {
 y=y+x;
 x++;
}

x=0;
if (x < 2) {
 y=y+x;
 x++;
}
if (x < 2) {
 y=y+x;
 x++;
}
if (x < 2) {
 y=y+x;
 x++;
}

assert (! (x < 2))

Original code Unwinding the loop 3 times

Unwinding
assertion:

From Code to SAT

•  After eliminating loops and recursion, CBMC converts the
input program to the static single assignment (SSA) form
–  In SSA each variable appears at the left hand side of an

assignment only once
–  This is a standard program transformation that is

performed by creating new variables
•  In the resulting program each variable is assigned a value

only once and all the branches are forward branches (there
is no backward edge in the control flow graph)

•  CBMC generates a Boolean logic formula from the program
using bit vectors to represent variables

Another Simple Example

x=x+y;
if (x!=1)
 x=2;
else
 x++;
assert(x<=3);

x1=x0+y0;
if (x1!=1)
 x2=2;
else
 x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4<=3);

C ≡ x1=x0+y0 ∧ x2=2 ∧ x3=x1+1 ∧(x1!=1 ∧ x4=x2 ∨ x1=1 ∧ x4=x3)
P ≡ x4 <= 3

Check if C ∧ ¬ P is satisfiable, if it is then the assertion is
violated

C ∧ ¬ P is converted to boolean logic using a bit vector
representation for the integer variables y0,x0,x1,x2,x3,x4

Original code Convert to static single assignment

Generate constraints

Bounded Verification Approaches

•  What we have discussed above is bounded verification by
bounding the number of steps of the execution.

•  For this approach to work the variable domains also need to
be bounded, otherwise we cannot convert the problems to
boolean SAT

•  Bounding the execution steps and bounding the data
domain are two orthogonal approaches.
–  When people say bounded verification it may refer to

either of these
–  When people say bounded model checking it typically

refers to bounding the execution steps

