CS 267: Automated Verification

Lecture 13: Bounded Model Checking

Instructor: Tevfik Bultan
Remember Symbolic Model Checking

- Represent sets of states and the transition relation as Boolean logic formulas

- Fixpoint computation becomes formula manipulation
 - pre-condition (EX) computation: Existential variable elimination
 - conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check

- Use an efficient data structure for boolean logic formulas
 - Binary Decision Diagrams (BDDs)
An Extremely Simple Example

Variables: x, y: boolean

Set of states:
$S = \{(F,F), (F,T), (T,F), (T,T)\}$
$S \equiv \text{True}$

Initial condition:
$I \equiv \neg x \land \neg y$

Transition relation (negates one variable at a time):
$R \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$

(= means \leftrightarrow)
An Extremely Simple Example

• Assume that we want to check if this transition system satisfies the property $\text{AG}(\neg x \lor \neg y)$
• Instead of checking $\text{AG}(\neg x \lor \neg y)$ we can check $\text{EF}(x \land y)$
 – Since $\text{AG}(\neg x \lor \neg y) \equiv \neg \text{EF}(x \land y)$
 $I \subseteq \text{AG}(\neg x \lor \neg y)$ if and only if $I \cap \text{EF}(x \land y) = \emptyset$

• If we find an initial state which satisfies $\text{EF}(x \land y)$ (i.e., there exists a path from an initial state where eventually x and y both become true at the same time)
 – Then we conclude that the property $\text{AG}(\neg x \lor \neg y)$ does not hold for this transition system

• If there is no such initial state, then property $\text{AG}(\neg x \lor \neg y)$ holds for this transition system
An Extremely Simple Example

Given $p = x \land y$, compute $\text{EX}(p)$

$$
\text{EX}(p) \equiv \exists V' \ R \land p[V'/V]
\equiv \exists V' \ R \land x' \land y'
\equiv \exists V' \ (x' = \neg x \land y' = y \lor x' = x \land y' = \neg y) \land x' \land y'
\equiv \exists V' \ (x' = \neg x \land y' = y) \land x' \land y' \lor (x' = x \land y' = \neg y) \land x' \land y'
\equiv \exists V' \ \neg x \land y \land x' \land y' \lor x \land \neg y \land x' \land y'
\equiv \neg x \land y \lor x \land \neg y
$$

$\text{EX}(x \land y) \equiv \neg x \land y \lor x \land \neg y$

In other words $\text{EX}((T,T)) \equiv \{(F,T), (T,F)\}$
An Extremely Simple Example

Let’s compute $\text{EF}(x \land y)$

The fixpoint sequence is
False, $x \land y$, $x \land y \lor \text{EX}(x \land y)$, $x \land y \lor \text{EX}(x \land y) \lor \text{EX}(x \land y) , ...$
If we do the EX computations, we get:
False, $x \land y$, $x \land y \lor \neg x \land y \lor x \land \neg y$, True

$\text{EF}(x \land y) \equiv \text{True} \equiv \{(F,F),(F,T), (T,F),(T,T)\}$
This transition system violates the property $AG(\neg x \lor \neg y)$ since it has an initial state that satisfies the property $\text{EF}(x \land y)$
Bounded Model Checking

• Represent sets of states and the transition relation as Boolean logic formulas

• Instead of computing the fixpoints, unroll the transition relation up to certain fixed bound and search for violations of the property within that bound

• Transform this search to a Boolean satisfiability problem and solve it using a SAT solver
Same Extremely Simple Example

Variables: x, y: boolean

Set of states:
$S = \{(F,F), (F,T), (T,F), (T,T)\}$
$S \equiv \text{True}$

Initial condition:
$I(x,y) \equiv \neg x \land \neg y$

Transition relation (negates one variable at a time):
$R(x,y,x',y') \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$ (= means \leftrightarrow)
Bounded Model Checking

• Assume that we like to check that if the initial states satisfy the formula $EF(x \land y)$

• Instead of computing a backward fixpoint, we will unroll the transition relation a fixed number of times starting from the initial states

• For each unrolling we will create a new set of variables:
 – The initial states of the system will be characterized with the variables x_0 and y_0
 – The states of the system after executing one transition will be characterized with the variables x_1 and y_1
 – The states of the system after executing two transitions will be characterized with the variables x_2 and y_2
Unrolling the Transition Relation

• Initial states: \(I(x_0,y_0) \equiv \neg x_0 \land \neg y_0 \)
• Unrolling the transition relation once (bound k=1):
 \[
 I(x_0,y_0) \land R(x_0,y_0,x_1,y_1)
 \equiv \neg x_0 \land \neg y_0 \land (x_1=\neg x_0 \land y_1=y_0 \lor x_1=x_0 \land y_1=\neg y_0)
 \]
• Unrolling the transition relation twice (bound k=2):
 \[
 I(x_0,y_0) \land R(x_0,y_0,x_1,y_1) \land R(x_1,y_1,x_2,y_2)
 \equiv \neg x_0 \land \neg y_0 \land (x_1=\neg x_0 \land y_1=y_0 \lor x_1=x_0 \land y_1=\neg y_0)
 \land (x_2=\neg x_1 \land y_2=y_1 \lor x_2=x_1 \land y_2=\neg y_1)
 \]
• Unrolling the transition relation thrice (bound k=3):
 \[
 I(x_0,y_0) \land R(x_0,y_0,x_1,y_1) \land R(x_1,y_1,x_2,y_2) \land R(x_2,y_2,x_3,y_3)
 \equiv \neg x_0 \land \neg y_0 \land (x_1=\neg x_0 \land y_1=y_0 \lor x_1=x_0 \land y_1=\neg y_0)
 \land (x_2=\neg x_1 \land y_2=y_1 \lor x_2=x_1 \land y_2=\neg y_1)
 \land (x_3=\neg x_2 \land y_3=y_2 \lor x_3=x_2 \land y_3=\neg y_2)
 \]
Expressing the Property

• How do we represent the property we wish to verify?

• Remember the property: We were interested in finding out if some initial state satisfies $\text{EF}(x \land y)$

 – This is equivalent to checking if $x \land y$ holds in some reachable state

 – If we are doing bounded model checking with bound $k=3$, we can express this property as:

 \[
 x_0 \land y_0 \lor x_1 \land y_1 \lor x_2 \land y_2 \lor x_3 \land y_3
 \]
Converting to Satisfiability

• We end up with the following formula for bound k=3:

\[F \equiv I(x_0, y_0) \land R(x_0, y_0, x_1, y_1) \land R(x_1, y_1, x_2, y_2) \land R(x_2, y_2, x_3, y_3) \]

\[\land (x_0 \land y_0 \lor x_1 \land y_1 \lor x_2 \land y_2 \lor x_3 \land y_3) \]

\[\equiv \neg x_0 \land \neg y_0 \land (x_1 = \neg x_0 \land y_1 = y_0 \lor x_1 = x_0 \land y_1 = \neg y_0) \]

\[\land (x_2 = \neg x_1 \land y_2 = y_1 \lor x_2 = x_1 \land y_2 = \neg y_1) \]

\[\land (x_3 = \neg x_2 \land y_3 = y_2 \lor x_3 = x_2 \land y_3 = \neg y_2) \]

\[\land (x_0 \land y_0 \lor x_1 \land y_1 \lor x_2 \land y_2 \lor x_3 \land y_3) \]

• Here is the main observation: if F is a satisfiable formula then there exists an initial state which satisfies EF(x \land y)
 – A satisfying assignment to the boolean variables in F corresponds to a counter-example for AG(\neg x \lor \neg y) (i.e., a witness for EF(x \land y))
The Result

\[F \equiv \]
\[\neg x_0 \land \neg y_0 \land (x_1 = \neg x_0 \land y_1 = y_0 \lor x_1 = x_0 \land y_1 = \neg y_0) \]
\[\land (x_2 = \neg x_1 \land y_2 = y_1 \lor x_2 = x_1 \land y_2 = \neg y_1) \]
\[\land (x_3 = \neg x_2 \land y_3 = y_2 \lor x_3 = x_2 \land y_3 = \neg y_2) \]
\[\land (x_0 \land y_0 \lor x_1 \land y_1 \lor x_2 \land y_2 \lor x_3 \land y_3) \]

Here is a satisfying assignment:

\[x_0 = F, \ y_0 = F, \ x_1 = F, \ y_1 = T, \ x_2 = T, \ y_2 = T, \ x_3 = F, \ y_3 = T \]

which corresponds to the (bounded) path:

\((F,F), (F,T), (T,T), (F,T) \)
What Can We Guarantee?

- We converted checking property $AG(p)$ to Boolean SAT solving by looking for bounded paths that satisfy $EF(\neg p)$
- Note that we are checking only for bounded paths (paths which have at most $k+1$ distinct states)
 - So if the property is violated by only paths with more than $k+1$ distinct states, we would not find a counter-example using bounded model checking
 - Hence if we do not find a counter-example using bounded model checking we are not sure that the property holds
- However, if we find a counter-example, then we are sure that the property is violated since the generated counter-example is never spurious (i.e., it is always a concrete counter-example)
Bounded Model Checking for LTL

• It is possible to extend the basic ideas we discussed for verifying properties of the form $\text{AG}(p)$ to all LTL (and even ACTL*) properties.

• The basic observation is that we can define a bounded semantics for LTL properties so that if a path satisfies an LTL property based on the bounded semantics, then it satisfies the property based on the unbounded semantics
 – This is why a counter-example found on a bounded path is guaranteed to be a real counter-example
 – However, this does not guarantee correctness
Bounded Model Checking: Proving Correctness

• One can also show that given an LTL property \(f \), if \(E f \) holds for a finite state transition system, then \(E f \) also holds for that transition system using bounded semantics for some bound \(k \)

• So if we keep increasing the bound, then we are guaranteed to find a path that satisfies the formula
 – And, if we do not find a path that satisfies the formula, then we decide that the formula is not satisfied by the transition system
 – Is there a problem here?
Proving Correctness

• We can modify the bounded model checking algorithm as follows:
 – Start from an initial bound.
 – If no counter-examples are found using the current bound, increment the bound and try again.

• The problem is: We do not know when to stop
Proving Correctness

• If we can find a way to figure out when we should stop then we would be able to provide guarantee of correctness.

• There is a way to define a diameter of a transition system so that a property holds for the transition system if and only if it is not violated on a path bounded by the diameter.

• So if we do bounded model checking using the diameter of the system as our bound, then we can guarantee correctness if no counter-example is found.
Bounded Model Checking

- What are the differences between bounded model checking and BDD-based symbolic model checking?
 - In bounded model checking we are using a SAT solver instead of a BDD library
 - In symbolic model checking we do not unroll the transition relation as in bounded model checking
 - In bounded model checking we do not compute the fixpoint as in symbolic model checking
 - In symbolic model checking for finite state systems both verification and falsification results are guaranteed
 - In bounded model checking we can only guarantee the falsification results, in order to guarantee the verification results we need to know the diameter of the system
Bounded Model Checking

- Boolean satisfiability problem (SAT) is an NP-complete problem

- A bounded model checker needs an efficient SAT solver
 - zChaff SAT solver is one of the most commonly used ones
 - However, in the worst case any SAT solver we know will take exponential time

- Most SAT solvers require their input to be in Conjunctive Normal Form (CNF)
 - So the final formula has to be converted to CNF
Bounded Model Checking

- Similar to BDD-based symbolic model checking, bounded model checking was also first used for hardware verification

- Later on, it was applied to software verification
Bounded Model Checking for Software

CBMC is a bounded model checker for ANSI-C programs

- Handles function calls using inlining

- Unwinds the loops a fixed number of times

- Allows user input to be modeled using non-determinism
 - So that a program can be checked for a set of inputs rather than a single input

- Allows specification of assertions which are checked using the bounded model checking
Loops

- Unwind the loop n times by duplicating the loop body n times
 - Each copy is guarded using an if statement that checks the loop condition
- At the end of the n repetitions an unwinding assertion is added which is the negation of the loop condition
 - Hence if the loop iterates more than n times in some execution, the unwinding assertion will be violated and we know that we need to increase the bound in order to guarantee correctness
- A similar strategy is used for recursive function calls
 - The recursion is unwound up to a certain bound and then an assertion is generated stating that the recursion does not go any deeper
A Simple Loop Example

Original code

```c
x=0;
while (x < 2) {
    y=y+x;
    x++;
}
```

Unwinding the loop 3 times

```c
x=0;
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    x++;
}
```

Unwinding assertion: `assert (! (x < 2))`
From Code to SAT

• After eliminating loops and recursion, CBMC converts the input program to the static single assignment (SSA) form
 – In SSA each variable appears at the left hand side of an assignment only once
 – This is a standard program transformation that is performed by creating new variables
• In the resulting program each variable is assigned a value only once and all the branches are forward branches (there is no backward edge in the control flow graph)
• CBMC generates a Boolean logic formula from the program using bit vectors to represent variables
Another Simple Example

<table>
<thead>
<tr>
<th>Original code</th>
<th>Convert to static single assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = x + y;)</td>
<td>(x_1 = x_0 + y_0;)</td>
</tr>
<tr>
<td>if ((x \neq 1))</td>
<td>if ((x_1 \neq 1))</td>
</tr>
<tr>
<td>(x = 2;)</td>
<td>(x_2 = 2;)</td>
</tr>
<tr>
<td>else</td>
<td>else</td>
</tr>
<tr>
<td>(x++;)</td>
<td>(x_3 = x_1 + 1;)</td>
</tr>
<tr>
<td>assert ((x \leq 3));</td>
<td>(x_4 = (x_1 \neq 1) ? x_2 : x_3;)</td>
</tr>
<tr>
<td></td>
<td>assert ((x_4 \leq 3));</td>
</tr>
</tbody>
</table>

Generate constraints

\[
C \equiv x_1 = x_0 + y_0 \land x_2 = 2 \land x_3 = x_1 + 1 \land (x_1 = 1 \land x_4 = x_2 \lor x_1 = 1 \land x_4 = x_3)
\]

\[
P \equiv x_4 \leq 3
\]

Check if \(C \land \neg P\) is satisfiable, if it is then the assertion is violated

\(C \land \neg P\) is converted to boolean logic using a bit vector representation for the integer variables \(y_0, x_0, x_1, x_2, x_3, x_4\)
Bounded Verification Approaches

• What we have discussed above is bounded verification by bounding the number of steps of the execution.
• For this approach to work the variable domains also need to be bounded, otherwise we cannot convert the problems to boolean SAT.
• Bounding the execution steps and bounding the data domain are two orthogonal approaches.
 – When people say bounded verification it may refer to either of these
 – When people say bounded model checking it typically refers to bounding the execution steps.