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Remember Symbolic Model Checking 

•  Represent sets of states and the transition relation as 
Boolean logic formulas 

•  Fixpoint computation becomes formula manipulation 
–  pre-condition (EX) computation: Existential variable 

elimination 
–  conjunction (intersection), disjunction (union) and 

negation (set difference), and equivalence check 

•  Use an efficient data structure for boolean logic formulas  
–  Binary Decision Diagrams (BDDs) 



An Extremely Simple Example 

Variables: x, y: boolean 
 
Set of states: 
S = {(F,F), (F,T), (T,F), (T,T)} 
S ≡ True 
 
Initial condition: 
I ≡ ¬ x ∧ ¬ y 
 
Transition relation (negates one variable at a time): 
R ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y    (= means ↔) 
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An Extremely Simple Example 

•  Assume that we want to check if this transition system 
satisfies the property AG(¬x ∨ ¬y) 

•  Instead of checking AG(¬x ∨ ¬y) we can check EF(x ∧ y)  
–  Since AG(¬x ∨ ¬y) ≡ ¬ EF(x ∧ y)  

I ⊆ AG(¬x ∨ ¬y) if and only if I ∩ EF(x ∧ y) = ∅ 

•  If we find an initial state which satisfies EF(x ∧ y) (i.e., there 
exists a path from an initial state where eventually x and y 
both become true at the same time) 
–  Then we conclude that the property AG(¬x ∨ ¬y) does 

not hold for this transition system 

•  If there is no such initial state, then property AG(¬x ∨ ¬y) 
holds for this transition system 



An Extremely Simple Example 

Given p ≡  x ∧ y, compute EX(p) 
 
EX(p) ≡  ∃V’ R ∧ p[V’ / V] 
≡  ∃V’ R ∧ x’ ∧ y’ 
≡  ∃V’ (x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y ) ∧ x’ ∧ y’ 
≡  ∃V’ (x’=¬x ∧ y’=y) ∧ x’ ∧ y’ ∨ (x’=x ∧ y’=¬y) ∧ x’ ∧ y’ 
≡  ∃V’ ¬x ∧ y ∧ x’ ∧ y’ ∨ x ∧ ¬y ∧ x’ ∧ y’ 
≡  ¬x ∧ y ∨ x ∧ ¬y 

EX(x ∧ y) ≡ ¬x ∧ y ∨ x ∧ ¬y 
In other words EX({(T,T)}) ≡ {(F,T), (T,F)} 
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An Extremely Simple Example 

 
Let’s compute compute EF(x ∧ y) 
 
 
The fixpoint sequence is 
False,   x∧y ,   x∧y ∨ EX(x∧y) ,   x∧y ∨ EX (x∧y ∨ EX(x∧y)) , ... 
If we do the EX computations, we get: 
False,     x ∧ y ,     x ∧ y ∨ ¬x ∧ y ∨ x ∧ ¬y,       True 
 
 
EF(x ∧ y) ≡ True ≡ {(F,F),(F,T), (T,F),(T,T)} 
This transition system violates the property AG(¬x ∨ ¬y) 
since it has an initial state that satisfies the property EF(x ∧ y)  
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Bounded Model Checking 

•  Represent sets of states and the transition relation as 
Boolean logic formulas 

•  Instead of computing the fixpoints, unroll the transition 
relation up to certain fixed bound and search for violations 
of the property within that bound 

•  Transform this search to a Boolean satisfiability problem 
and solve it using a SAT solver 



Same Extremely Simple Example 

Variables: x, y: boolean 
 
Set of states: 
S = {(F,F), (F,T), (T,F), (T,T)} 
S ≡ True 
 
Initial condition: 
I(x,y) ≡ ¬ x ∧ ¬ y 
 
Transition relation (negates one variable at a time): 
R(x,y,x’,y’) ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y   (= means ↔) 
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Bounded Model Checking 

•  Assume that we like to check that if the initial states satisfy 
the formula EF(x ∧ y) 

•  Instead of computing a backward fixpoint, we will unroll the 
transition relation a fixed number of times starting from the 
initial states 

•   For each unrolling we will create a new set of 
variables: 
–  The initial states of the system will be characterized with 

the variables x0 and y0 
–  The states of the system after executing one transition 

will be characterized with the variables x1 and y1 
–  The states of the system after executing two transitions 

will be characterized with the variables x2 and y2 



Unrolling the Transition Relation 

•  Initial states: I(x0,y0) ≡ ¬ x0 ∧ ¬ y0 
•  Unrolling the transition relation once (bound k=1): 

I(x0,y0) ∧ R(x0,y0,x1,y1)  
≡ ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0) 

•  Unrolling the transition relation twice (bound k=2): 
I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2)  
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0) 

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1) 
•  Unrolling the transition relation thrice (bound k=3): 

I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2) ∧ R(x2,y2,x3,y3)  
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0) 

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1) 
∧ (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2) 



Expressing the Property 

•  How do we represent the property we wish to verify? 

•  Remember the property: We were interested in finding out if 
some initial state satisfies EF(x ∧ y) 

–  This is equivalent to checking if x ∧ y holds in some 
reachable state 

–  If we are doing bounded model checking with bound 
k=3, we can express this property as: 

x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3  
 



Converting to Satisfiability 

•  We end up with the following formula for bound k=3: 
F ≡ I(x0,y0) ∧ R(x0,y0,x1,y1) ∧ R(x1,y1,x2,y2) ∧ R(x2,y2,x3,y3) 

∧(x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3) 
≡  ¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0) 

∧ (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1) 
∧ (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2) 
∧  (x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3) 

•  Here is the main observation: if F is a satisfiable formula 
then there exists an initial state which satisfies EF(x ∧ y) 
–  A satisfying assignment to the boolean variables in F 

corresponds to a counter-example for AG(¬x ∨ ¬y) (i.e., 
a witness for EF(x ∧ y)) 



The Result 

F ≡  
¬ x0 ∧ ¬ y0 ∧ (x1=¬x0 ∧ y1=y0 ∨ x1=x0 ∧ y1=¬y0) 
∧  (x2=¬x1 ∧ y2=y1 ∨ x2=x1 ∧ y2=¬y1) 
∧  (x3 =¬x2 ∧ y3=y2 ∨ x3=x2 ∧ y3 =¬y2) 
∧   (x0 ∧ y0 ∨ x1 ∧ y1 ∨ x2 ∧ y2 ∨ x3 ∧ y3) 
 
Here is a satisfying assignment: 
x0=F, y0=F, x1=F, y1=T, x2=T, y2=T, x3=F, y3=T 
which corresponds to the (bounded) path: 
(F,F), (F,T), (T,T), (F,T) 

F,T 

F,F 

T,T 

T,F 



What Can We Guarantee? 

•  We converted checking property AG(p) to Boolean SAT 
solving by looking for bounded paths that satisfy EF(¬p)  

•  Note that we are checking only for bounded paths (paths 
which have at most k+1 distinct states) 
–  So if the property is violated by only paths with more 

than k+1 distinct states, we would not find a counter-
example using bounded model checking 

–  Hence if we do not find a counter-example using 
bounded model checking we are not sure that the 
property holds 

•  However, if we find a counter-example, then we are sure 
that the property is violated since the generated counter-
example is never spurious (i.e., it is always a concrete 
counter-example)  



Bounded Model Checking for LTL 

•  It is possible to extend the basic ideas we discussed for 
verifying properties of the form AG(p) to all LTL (and even 
ACTL*) properties. 

•  The basic observation is that we can define a bounded 
semantics for LTL properties so that if a path satisfies an 
LTL property based on the bounded semantics, then it 
satisfies the property based on the unbounded semantics 
–  This is why a counter-example found on a bounded path 

is guaranteed to be a real counter-example 
–  However, this does not guarantee correctness 



Bounded Model Checking: Proving Correctness 

•  One can also show that given an LTL property f, if E f holds 
for a finite state transition system, then E f also holds for 
that transition system using bounded semantics for some 
bound k   

•  So if we keep increasing the bound, then we are 
guaranteed to find a path that satisfies the formula 
–  And, if we do not find a path that satisfies the formula, 

then we decide that the formula is not satisfied by the 
transition system 

–  Is there a problem here?  



Proving Correctness 

•  We can modify the bounded model checking algorithm as 
follows: 
–  Start from an initial bound.  
–  If no counter-examples are found using the current 

bound, increment the bound and try again. 

•  The problem is: We do not know when to stop 



Proving Correctness 

•  If we can find a way to figure out when we should stop then 
we would be able to provide guarantee of correctness. 

•  There is a way to define a diameter of a transition system 
so that a property holds for the transition system if and only 
if it is not violated on a path bounded by the diameter. 

•  So if we do bounded model checking using the diameter of 
the system as our bound, then we can guarantee 
correctness if no counter-example is found. 



Bounded Model Checking 

•  What are the differences between bounded model checking 
and BDD-based symbolic model checking? 
–  In bounded model checking we are using a SAT solver 

instead of a BDD library 
–  In symbolic model checking we do not unroll the 

transition relation as in bounded model checking  
–  In bounded model checking we do not compute the 

fixpoint as in symbolic model checking 
–  In symbolic model checking for finite state systems both 

verification and falsification results are guaranteed 
•  In bounded model checking we can only guarantee 

the falsification results, in order to guarantee the 
verification results we need to know the diameter of 
the system 



Bounded Model Checking 

•  Boolean satisfiability problem (SAT) is an NP-complete 
problem 

•  A bounded model checker needs an efficient SAT solver 
–  zChaff SAT solver is one of the most commonly used 

ones 
–   However, in the worst case any SAT solver we know will 

take exponential time 

•  Most SAT solvers require their input to be in Conjunctive 
Normal Form (CNF) 
–  So the final formula has to be converted to CNF 



Bounded Model Checking 

•  Similar to BDD-based symbolic model checking, bounded 
model checking was also first used for hardware verification 

•  Later on, it was applied to software verification 



Bounded Model Checking for Software 

CBMC is a bounded model checker for ANSI-C programs 

•  Handles function calls using inlining 

•  Unwinds the loops a fixed number of times 

•  Allows user input to be modeled using non-determinism 
–  So that a program can be checked for a set of inputs 

rather than a single input 

•  Allows specification of assertions which are checked using 
the bounded model checking 



Loops 

•  Unwind the loop n times by duplicating the loop body n 
times 
–  Each copy is guarded using an if statement that checks 

the loop condition 
•  At the end of the n repetitions an unwinding assertion is 

added which is the negation of the loop condition 
–  Hence if the loop iterates more than n times in some 

execution, the unwinding assertion will be violated and 
we know that we need to increase the bound in order to 
guarantee correctness 

•  A similar strategy is used for recursive function calls 
–  The recursion is unwound up to a certain bound and 

then an assertion is generated stating that the recursion 
does not go any deeper 



A Simple Loop Example 

x=0; 
while (x < 2) { 
  y=y+x; 
  x++; 
} 

x=0; 
if (x < 2) { 
  y=y+x; 
  x++; 
} 
if (x < 2) { 
  y=y+x; 
  x++; 
} 
if (x < 2) { 
  y=y+x; 
  x++; 
} 
 
assert (! (x < 2)) 

Original code Unwinding the loop 3 times 

Unwinding 
assertion: 



From Code to SAT 

•  After eliminating loops and recursion, CBMC converts the 
input program to the static single assignment (SSA) form 
–  In SSA each variable appears at the left hand side of an 

assignment only once 
–  This is a standard program transformation that is 

performed by creating new variables 
•  In the resulting program each variable is assigned a value 

only once and all the branches are forward branches (there 
is no backward edge in the control flow graph) 

•  CBMC generates a Boolean logic formula from the program 
using bit vectors to represent variables 



Another Simple Example 

x=x+y; 
if (x!=1) 
  x=2; 
else  
  x++; 
assert(x<=3);  

x1=x0+y0; 
if (x1!=1) 
  x2=2; 
else  
  x3=x1+1; 
x4=(x1!=1)?x2:x3; 
assert(x4<=3);  

C ≡ x1=x0+y0 ∧ x2=2 ∧ x3=x1+1 ∧(x1!=1 ∧ x4=x2 ∨ x1=1 ∧ x4=x3) 
P ≡ x4 <= 3  

Check if  C ∧ ¬ P is satisfiable, if it is then the assertion is 
violated 
 
C ∧ ¬ P is converted to boolean logic using a bit vector  
representation for the integer variables  y0,x0,x1,x2,x3,x4 

Original code Convert to static single assignment 

Generate constraints 



Bounded Verification Approaches 

•  What we have discussed above is bounded verification by 
bounding the number of steps of the execution.  

•  For this approach to work the variable domains also need to 
be bounded, otherwise we cannot convert the problems to 
boolean SAT 

•  Bounding the execution steps and bounding the data 
domain are two orthogonal approaches.  
–  When people say bounded verification it may refer to 

either of these 
–  When people say bounded model checking it typically 

refers to bounding the execution steps  


