CS 267: Automated Verification

Lecture 13: Bounded Model Checking

Instructor: Tevfik Bultan



Remember Symbolic Model Checking

* Represent sets of states and the transition relation as
Boolean logic formulas

* Fixpoint computation becomes formula manipulation

— pre-condition (EX) computation: Existential variable
elimination

— conjunction (intersection), disjunction (union) and
negation (set difference), and equivalence check

* Use an efficient data structure for boolean logic formulas
— Binary Decision Diagrams (BDDs)



An Extremely Simple Example

Variables: x, y: boolean

Set of states:
S ={(F,F), (F,T), (T,F), (T,T)}
S =True

Initial condition:
= XAY

Transition relation (negates one variable at a time):
R=X==XAY =yvX =XAY =2y (= means <)



An Extremely Simple Example

Assume that we want to check if this transition system
satisfies the property AG(-x v —y)

Instead of checking AG(-x v =y) we can check EF(x A y)
— Since AG(=x v =~y)=- EF(X A Y)
| C AG(-x v ~y)ifandonlyifINEF(xAy)=O

If we find an initial state which satisfies EF(x A y) (i.e., there
exists a path from an initial state where eventually x and y
both become true at the same time)

— Then we conclude that the property AG(-x v -y) does
not hold for this transition system

If there is no such initial state, then property AG(=x v -y)
holds for this transition system



An Extremely Simple Example

Given p = x A 'y, compute EX(p)

EX(p)= 3V’ R A p[V’ /V]
=3V RaAX Ay
=3IV X' ==XAY SY VX EXAY ==y )AX AY

_ HV’ (X,=—IX/\y,=y)/\X’ /\y’ v(X’=XAy’="Y)/\X’ /\y,
= AV =XAYAX AY VXA-YAX AY
= =XAYVXA Y

EX(XAY)==-XAYVXA-Y
In other words EX({(T,T)}) = {(F,T), (T,F)}



An Extremely Simple Example

Let’ s compute compute EF(x A y)

The fixpoint sequenceis T

False, xay, xayv EX(xay), xayv EX(xay v EX(xAY)), ...
If we do the EX computations, we get:

False, XAy, XAYV-aXAYVXA-Y, True
0 1 2 3

EF(x A y)=True = {(F,F),(F,T), (T,F),(T,T)}
This transition system violates the property AG(=x v —y)
since it has an initial state that satisfies the property EF(x A y)



Bounded Model Checking

* Represent sets of states and the transition relation as
Boolean logic formulas

 Instead of computing the fixpoints, unroll the transition
relation up to certain fixed bound and search for violations
of the property within that bound

« Transform this search to a Boolean satisfiability problem
and solve it using a SAT solver



Same Extremely Simple Example

Variables: x, y: boolean

Set of states:
S ={(F,F), (F,T), (T,F), (T,T)}
S =True

Initial condition:
I(X,y)==Xn-Yy

Transition relation (negates one variable at a time):
ROXY, X,y )=X ==XAYy =yvX =XAYy ==y (=means <)



Bounded Model Checking

« Assume that we like to check that if the initial states satisfy
the formula EF(x A y)

 Instead of computing a backward fixpoint, we will unroll the
transition relation a fixed number of times starting from the
initial states

 For each unrolling we will create a new set of
variables:

— The initial states of the system will be characterized with
the variables x, and y,

— The states of the system after executing one transition
will be characterized with the variables x, and y,

— The states of the system after executing two transitions
will be characterized with the variables x, and y,



Unrolling the Transition Relation

* Initial states: [(Xy,Yg) = = Xg A = Y,

« Unrolling the transition relation once (bound k=1):
1(X0,Y0) A R(X0,Y0,X1,Y1)
== Xg A = Yo A (X=X A Y1=Yg V X4=Xg A Y1=Y)

* Unrolling the transition relation twice (bound k=2):
1(Xo,Y0) A R(X0,Y0,X1,¥1) A R(X1,Y1,X2,Y5)
= = Xg A = Yo A (X4==Xg A Y4=Yg V X1=Xg A Y1=7Y)

A (X==Xq A Yo=Yy V Xp=Xq A Yo=Yy)

« Unrolling the transition relation thrice (bound k=3):
1(X0,Y0) A R(Xg,Y0:X1,Y1) A R(X4,Y1,X2,¥2) A R(X3,Y2,X3,Y3)
= = Xg A = Yo A (X=X A Y1=Yg V X4=Xg A Y4=Y)

A (Xg==Xq A Yo=YV Xp=Xy A Y= Yy)
A (X3 ==X A Y3=Y5 V X3=X5 A Y3 =7Y5)



Expressing the Property

 How do we represent the property we wish to verify?

 Remember the property: We were interested in finding out if
some initial state satisfies EF(x A y)

— This is equivalent to checking if x A y holds in some
reachable state

— If we are doing bounded model checking with bound
k=3, we can express this property as:

Xo A YoV X AY1VXgAYoV X3 AYs



Converting to Satisfiability

* We end up with the following formula for bound k=3:
F =1(X0,Y0) A R(X0:Y0,X1,¥1) A R(X4,Y1,X2,Y2) A R(X2,Y2,X3,Y3)
AXg A Yo V Xy AYqV Xy AYoV X3 AYs)
= = Xg A~ Yo A X=Xy A Y=Y V X=Xy A Y1=Y)
A (Xp==X1 A Yo=Yy V Xo=Xy A Yp==Yy)
A (X3 ==Xy A Y3=Yp V X3=Xp A Y3 =7Y5)
A (XA YoV XiAYV XA YoV X3 A Y3)

« Here is the main observation: if F is a satisfiable formula
then there exists an initial state which satisfies EF(x A y)

— A satisfying assignment to the boolean variables in F
corresponds to a counter-example for AG(-x v —y) (i.e.,
a witness for EF(x A y))



The Result

F =

= Xo A = Yo A (X4==Xg A Y4ZYo V X4=Xg A Y4==Y)
A (X==Xq A Yo=Yy V X=Xy A Yo=Yy)

A (X3 ==Xy A Y3=Y5 V X3=X5 A Y3 =7Y5)

A (XoAYoV Xy AYyV Xy AYyV Xz AYs)

Here is a satisfying assignment:

Xo=F, Yo=F, X4=F, y1=T, X,=T, y,=T, X3=F, y5=T
which corresponds to the (bounded) path:
(F,F), (F,T), (T,T), (F,T)



What Can We Guarantee?

« We converted checking property AG(p) to Boolean SAT
solving by looking for bounded paths that satisfy EF(-p)

* Note that we are checking only for bounded paths (paths
which have at most k+1 distinct states)

— So if the property is violated by only paths with more
than k+1 distinct states, we would not find a counter-
example using bounded model checking

— Hence if we do not find a counter-example using
bounded model checking we are not sure that the
property holds

 However, if we find a counter-example, then we are sure
that the property is violated since the generated counter-
example is never spurious (i.e., it is always a concrete
counter-example)



Bounded Model Checking for LTL

 ltis possible to extend the basic ideas we discussed for
verifying properties of the form AG(p) to all LTL (and even

ACTLY) properties.

« The basic observation is that we can define a bounded
semantics for LTL properties so that if a path satisfies an
LTL property based on the bounded semantics, then it
satisfies the property based on the unbounded semantics

— This is why a counter-example found on a bounded path
IS guaranteed to be a real counter-example

— However, this does not guarantee correctness



Bounded Model Checking: Proving Correctness

* One can also show that given an LTL property f, if E f holds
for a finite state transition system, then E f also holds for
that transition system using bounded semantics for some
bound k

« So if we keep increasing the bound, then we are
guaranteed to find a path that satisfies the formula

— And, if we do not find a path that satisfies the formula,
then we decide that the formula is not satisfied by the
transition system

— Is there a problem here?



Proving Correctness

* We can modify the bounded model checking algorithm as
follows:

— Start from an initial bound.

— If no counter-examples are found using the current
bound, increment the bound and try again.

* The problem is: We do not know when to stop



Proving Correctness

 If we can find a way to figure out when we should stop then
we would be able to provide guarantee of correctness.

* There is a way to define a diameter of a transition system
so that a property holds for the transition system if and only
iIf it is not violated on a path bounded by the diameter.

« So if we do bounded model checking using the diameter of
the system as our bound, then we can guarantee
correctness if no counter-example is found.



Bounded Model Checking

« What are the differences between bounded model checking
and BDD-based symbolic model checking?
— In bounded model checking we are using a SAT solver
instead of a BDD library

— In symbolic model checking we do not unroll the
transition relation as in bounded model checking

— In bounded model checking we do not compute the
fixpoint as in symbolic model checking

— In symbolic model checking for finite state systems both
verification and falsification results are guaranteed

* In bounded model checking we can only guarantee
the falsification results, in order to guarantee the
verification results we need to know the diameter of

the system



Bounded Model Checking

« Boolean satisfiability problem (SAT) is an NP-complete
problem

A bounded model checker needs an efficient SAT solver

— zChaff SAT solver is one of the most commonly used
ones

— However, in the worst case any SAT solver we know will
take exponential time

* Most SAT solvers require their input to be in Conjunctive
Normal Form (CNF)

— So the final formula has to be converted to CNF



Bounded Model Checking

« Similar to BDD-based symbolic model checking, bounded
model checking was also first used for hardware verification

« Later on, it was applied to software verification



Bounded Model Checking for Software

CBMC is a bounded model checker for ANSI-C programs

Handles function calls using inlining

Unwinds the loops a fixed number of times

Allows user input to be modeled using non-determinism

— So that a program can be checked for a set of inputs
rather than a single input

Allows specification of assertions which are checked using
the bounded model checking



Loops

* Unwind the loop n times by duplicating the loop body n
times

— Each copy is guarded using an if statement that checks
the loop condition

« At the end of the n repetitions an unwinding assertion is
added which is the negation of the loop condition

— Hence if the loop iterates more than n times in some
execution, the unwinding assertion will be violated and
we know that we need to increase the bound in order to
guarantee correctness

« A similar strategy is used for recursive function calls

— The recursion is unwound up to a certain bound and
then an assertion is generated stating that the recursion
does not go any deeper



A Simple Loop Example

Original code Unwinding the loop 3 times
x=0; x=0;
while (x < 2) { if (x < 2) |

y=y+x; y=y+tx;

X++; X++;

} }

1f (x < 2) |
V=Yt+X;
X++;

}

1f (x < 2) |
y=y+x;
X++;

}

Unwinding

. - —— assert (! (x < 2))
assertion:



From Code to SAT

« After eliminating loops and recursion, CBMC converts the
input program to the static single assignment (SSA) form

— In SSA each variable appears at the left hand side of an
assignment only once

— This is a standard program transformation that is
performed by creating new variables

* In the resulting program each variable is assigned a value
only once and all the branches are forward branches (there
IS no backward edge in the control flow graph)

« CBMC generates a Boolean logic formula from the program
using bit vectors to represent variables



Another Simple Example

Original code Convert to static single assignment
X=X+Y; X1=XptYos
if (x!=1) it (x,1=1)
X=2; X,=27
else else
x++; x,=x;+1;
assert (x<=3) ; X,=(x,1=1) ?x,:x5;

assert (x,<=3) ;

Generate constraints

= X;=X,TY, A X,=2 A X3=xX+1 A (X !=1 A x,=%x, V X,=1 A X,=X3)
= x, <= 3

Check if C A = P is satisfiable, if it is then the assertion is
violated

C A = P is converted to boolean logic using a bit vector
representation for the integer variables v, x,, x,, x,, x5, x,



Bounded Verification Approaches

« What we have discussed above is bounded verification by
bounding the number of steps of the execution.

* For this approach to work the variable domains also need to

be bounded, otherwise we cannot convert the problems to
boolean SAT

« Bounding the execution steps and bounding the data
domain are two orthogonal approaches.

— When people say bounded verification it may refer to
either of these

— When people say bounded model checking it typically
refers to bounding the execution steps



