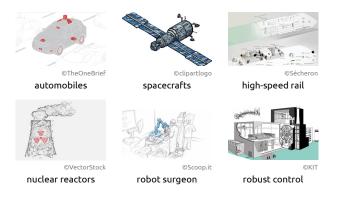
with an Application to Probabilistic Programs

Mingshuai Chen

—Joint work with K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer—

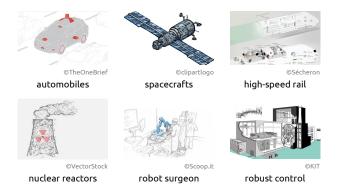
Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of *computing, communication,* and *control,* among which many are safety-critical.



Cyber-Physical Systems (CPS)

An open, interconnected form of embedded systems that integrates capabilities of *computing, communication,* and *control,* among which many are safety-critical.



"How can we provide people with CPS they can bet their lives on?"

— Jeannette Wing

"By a formal method we shall understand a method whose techniques and tools can be explained in mathematics."

[D. Bjørner & K. Havelund, FM '14]

"By a formal method we shall understand a method whose techniques and tools can be explained in mathematics."

[D. Bjørner & K. Havelund, FM '14]

Develop mathematically rigorous techniques for designing safety-critical CPS while *pushing the limits of automation* as far as possible.

"By a formal method we shall understand a method whose techniques and tools can be explained in mathematics."

[D. Bjørner & K. Havelund, FM '14]

Develop mathematically rigorous techniques for designing safety-critical CPS while *pushing the limits of automation* as far as possible.

SAT-based technique for verifying invariant properties of finite transition systems.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

Is *k*-induction applicable to verifying infinite-state probabilistic programs?

- SAT-based technique for verifying invariant properties of finite transition systems.
- Later : verification of infinite-state transition systems via SMT solving.
- Applications : hardware- and software model checking.

"The simplicity of applying k-induction made it the go-to technique for SMTbased infinite-state model checking."

[Krishnan et al., CAV '19]

Is *k*-induction applicable to verifying infinite-state probabilistic programs?

Latticed k-Induction

Yes. It enables fully automatic verification of non-trivial properties.

For a probabilistic loop *C*:

while $(c = 1) \{ c \coloneqq 0 [1/2] x \coloneqq x + 1 \}$,

Mingshuai Chen · i2 - RWTH Aachen Univ.

For a probabilistic loop *C*:

while $(c = 1) \{ c \coloneqq 0 [1/2] x \coloneqq x + 1 \}$,

the property

 \forall initial state σ : wp $[\![C]\!](\mathbf{x})(\sigma) \leq \sigma(\mathbf{x}) + 1$

For a probabilistic loop *C*:

while $(c = 1) \{ c \coloneqq 0 [1/2] x \coloneqq x + 1 \}$,

the property

 $\forall \text{ initial state } \sigma : \quad wp \llbracket C \rrbracket (x) (\sigma) \leq \sigma(x) + 1$

is not inductive but 2-inductive.

Let $k \ge 1$. If the following two formulae are valid

$$\underbrace{I(s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k)}_{\text{all states reachable within } k-1 \text{ steps}} \implies \underbrace{P(s_1) \land \ldots \land P(s_k)}_{\text{are } P \text{ states}} \text{[base case]}$$

k-Induction for Transition Systems

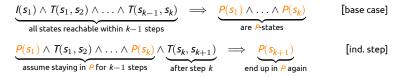
Given : TS = (S, I, T), invariant property $P \subseteq S$. Goal : Prove that P covers all *reachable states* of TS .

Let $k \ge 1$. If the following two formulae are valid

$$\underbrace{I(s_1) \land T(s_1, s_2) \land \dots \land T(s_{k-1}, s_k)}_{\text{all states reachable within } k-1 \text{ steps}} \implies \underbrace{P(s_1) \land \dots \land P(s_k)}_{\text{are } P\text{-states}} \qquad \text{[base case]}$$

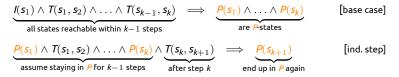
$$\underbrace{P(s_1) \land T(s_1, s_2) \land \dots \land P(s_k)}_{\text{assume staying in } P \text{ for } k-1 \text{ steps}} \land \underbrace{T(s_k, s_{k+1})}_{\text{after step } k} \implies \underbrace{P(s_{k+1})}_{\text{end up in } P \text{ again}} \qquad \text{[ind. step]}$$

Let $k \ge 1$. If the following two formulae are valid



then *P* is a *k*-inductive invariant covering all reachable states of TS.

Let $k \ge 1$. If the following two formulae are valid

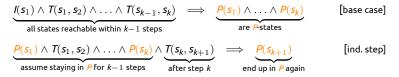


then *P* is a *k*-inductive invariant covering all reachable states of TS.

For verifying probabilistic programs, we have to

leave the Boolean domain and reason about quantities;

Let $k \ge 1$. If the following two formulae are valid



then *P* is a *k*-inductive invariant covering all reachable states of TS.

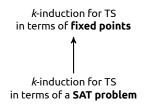
For verifying probabilistic programs, we have to

- leave the Boolean domain and reason about quantities;
- reason about sets of paths rather than individual paths.

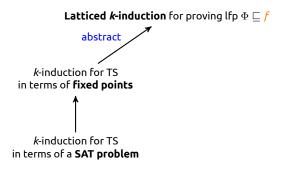
Idea Sketch

k-induction for TS in terms of a **SAT problem**

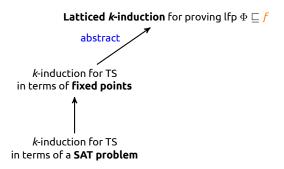
Mingshuai Chen · i2 - RWTH Aachen Univ.



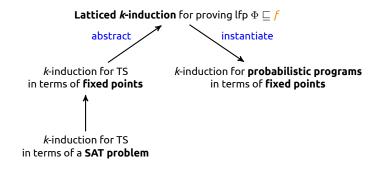
Idea Sketch



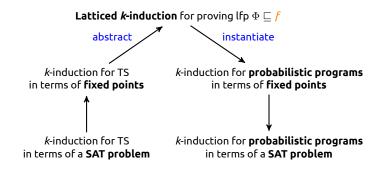
Mingshuai Chen · i2 - RWTH Aachen Univ.



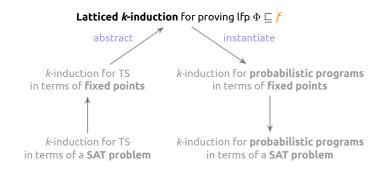
Idea Sketch



Idea Sketch



Latticed k-Induction ●000	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
Idea Sketch			



Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
Latticed <i>k</i> -Inc	luction		

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi \colon E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000	000	0000	00
Latticed k-In	duction		

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction):

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction):

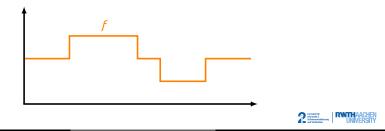
 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction):

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

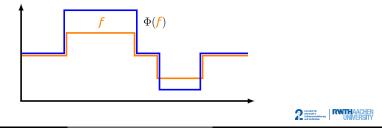


Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction):

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

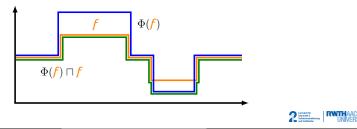


Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction):

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.



Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

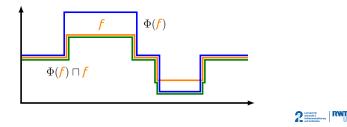
Park induction (aka 1-induction):

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

Even though lfp $\Phi \sqsubseteq f$ we might have $\Phi(f) \not\sqsubseteq f$!

2-induction:

$$\Phi\left(\Phi\left(\mathbf{f}\right) \sqcap \mathbf{f}\right) \sqsubseteq \mathbf{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \mathbf{f}.$$



Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Park induction (aka 1-induction) :

 $\Phi(\mathbf{f}) \sqsubseteq \mathbf{f}$ implies $\operatorname{lfp} \Phi \sqsubseteq \mathbf{f}$.

```
Even though lfp \Phi \sqsubseteq f we might have \Phi(f) \not\sqsubseteq f!
```

2-induction:

$$\Phi(\Phi(f) \sqcap f) \sqsubseteq f \text{ implies } \mathsf{lfp} \Phi \sqsubseteq f.$$

3-induction:

 $\Phi\left(\Phi\left(\Phi\left(f\right)\sqcap f\right)\sqcap f\right)\sqsubseteq f \quad \text{implies} \quad \text{lfp} \ \Phi\sqsubseteq f.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

 $\Psi_{\mathbf{f}}(\mathbf{g}) = \Phi(\mathbf{g}) \sqcap \mathbf{f}.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) = \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f k*-inductive invariant.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) = \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f* k-inductive invariant.

k-induction generalizes Park induction $\hat{=}$ 1-induction.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
0000			

Given : Complete lattice (E, \sqsubseteq) , monotonic operator $\Phi : E \to E$, and candidate $f \in E$. Goal : Prove lfp $\Phi \sqsubseteq f$.

Define *k*-induction operator $\Psi_f: E \to E$ by

$$\Psi_{\mathbf{f}}(\mathbf{g}) = \Phi(\mathbf{g}) \sqcap \mathbf{f}.$$

Theorem (Latticed k-induction)

For every $k \geq 1$,

$$\Phi\left(\Psi_{\boldsymbol{f}}^{\boldsymbol{k}-1}\left(\boldsymbol{f}\right)\right) \sqsubseteq \boldsymbol{f} \quad \text{implies} \quad \text{lfp} \ \Phi \sqsubseteq \boldsymbol{f}.$$

We call such *f k*-inductive invariant.

k-induction generalizes Park induction $\hat{=}$ 1-induction.

Can be further generalized to *transfinite* κ *-induction* (not in this talk).

Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

Iterating Ψ_{f} on f yields a descending chain, i.e.,

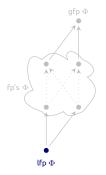
$$f \supseteq \Psi_f^1(f) \supseteq \Psi_f^2(f) \supseteq \Psi_f^3(f) \supseteq \dots$$

Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

$$f \sqsupseteq \Psi_{f}^{1}(f) \sqsupseteq \Psi_{f}^{2}(f) \sqsupseteq \Psi_{f}^{3}(f) \sqsupseteq \dots$$

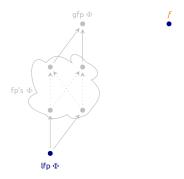


Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

$$f \sqsupseteq \Psi_{f}^{1}(f) \sqsupseteq \Psi_{f}^{2}(f) \sqsupseteq \Psi_{f}^{3}(f) \sqsupseteq \dots$$



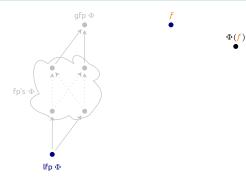
Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

Iterating Ψ_{f} on f yields a descending chain, i.e.,

$$f \supseteq \Psi^1_f(f) \supseteq \Psi^2_f(f) \supseteq \Psi^3_f(f) \supseteq \dots$$



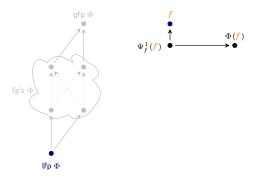
Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

Iterating Ψ_{f} on f yields a descending chain, i.e.,

$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$

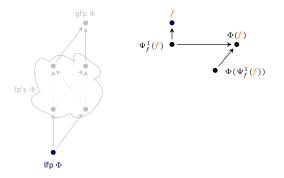


Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

$$f \sqsupseteq \Psi_{f}^{1}(f) \sqsupseteq \Psi_{f}^{2}(f) \sqsupseteq \Psi_{f}^{3}(f) \sqsupseteq \dots$$

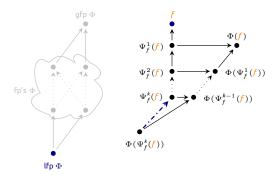


Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$

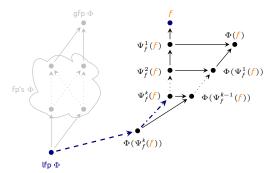


Latticed	k-Induction
0000	

Key Insights of Soundness

Lemma (Descending chain)

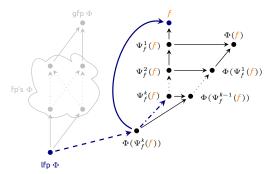
$$\boldsymbol{f} \sqsupseteq \Psi^1_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^2_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \Psi^3_{\boldsymbol{f}}(\boldsymbol{f}) \sqsupseteq \dots$$



Key Insights of Soundness

Lemma (Descending chain)

$$f \supseteq \Psi^1_f(f) \supseteq \Psi^2_f(f) \supseteq \Psi^3_f(f) \supseteq \dots$$



Key Insights of Soundness

Lemma (Descending chain)

Iterating $\Psi_{\mathbf{f}}$ on \mathbf{f} yields a descending chain, i.e.,

$$f \sqsupseteq \Psi_f^1(f) \sqsupseteq \Psi_f^2(f) \sqsupseteq \Psi_f^3(f) \sqsupseteq \dots$$

Theorem (Park induction from *k*-induction)

$$\underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq f}_{f} \quad iff \quad \underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq \Psi_{f}^{k-1}(f)}_{f}$$

f is k-inductive invariant

$$\Psi_{f}^{k-1}(f)$$
 is inductive invariant

Key Insights of Soundness

Lemma (Descending chain)

Iterating Ψ_{f} on f yields a descending chain, i.e.,

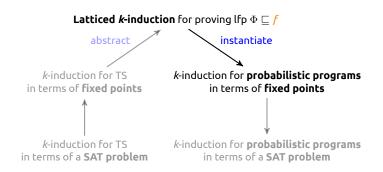
$$f \sqsupseteq \Psi_f^1(f) \sqsupseteq \Psi_f^2(f) \sqsupseteq \Psi_f^3(f) \sqsupseteq \dots$$

Theorem (Park induction from k-induction)

$$\underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq f}_{f \text{ is k-inductive invariant}} \quad iff \quad \underbrace{\Phi\left(\Psi_{f}^{k-1}(f)\right)\sqsubseteq \Psi_{f}^{k-1}(f)}_{\Psi_{f}^{k-1}(f) \text{ is inductive invariant}}$$

f is a k-inductive invariant $\iff \Psi_f^{k-1}(f)$ is an inductive invariant stronger than f.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs ●○○	Implementation & Experiments	Concluding Remarks
Idea Sketch			



Latticed	k-Induction

Instantiation to Probabilistic Programs

Implementation & Experiment 0000 Concluding Remarks

Weakest Preexpectation Transformer

Consider the complete lattice (\mathbb{E},\leq) of expectations :

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\}$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $wp[\![C]\!] \colon \mathbb{E} \to \mathbb{E}$,

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} \,, \qquad \mathsf{wp}\llbracket C \rrbracket \left(g \right) \left(\sigma \right) \, \widehat{=} \, \begin{array}{l} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma \,. \end{array}$

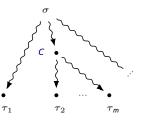
Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \cong \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$



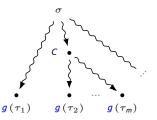
Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}^{\infty}_{>0} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \cong \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$



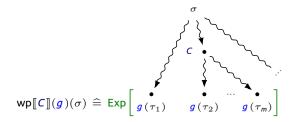
Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \cong \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$



Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

 $\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \qquad \text{with} \qquad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma) \,.$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket {\mathcal C} \rrbracket \colon \mathbb{E} \to \mathbb{E} \,, \qquad \mathsf{wp}\llbracket {\mathcal C} \rrbracket \left({{\mathcal g}} \right) \left(\sigma \right) \, \widehat{=} \, \begin{array}{l} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } \mathcal C \text{ on } \sigma \,. \end{array}$

 $\mathsf{wp}[\![\mathbf{x} \coloneqq 5]\!](\mathbf{x}) = 5$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$wp[[x := 5]](x) = 5$$
$$wp[[{ skip } [1/2] { x := x + 2 }]](x) = \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x + 2) = x + 1$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E},\leq) of expectations :

$$\mathbb{E} = \left\{ f \mid f \colon \Sigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \Sigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$\begin{split} & \mathsf{wp}[\![x := 5]\!] (x) = 5 \\ & \mathsf{wp}[\![\{\mathsf{skip}\} [1/2] \{x := x + 2\}]\!] (x) = \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x + 2) = x + 1 \\ & \mathsf{wp}[\![\{\mathsf{skip}\} [1/2] \{x := x + 2\}]\!] ([x = 4]) = \frac{1}{2} \cdot [x = 4] + \frac{1}{2} \cdot [x = 2] \end{split}$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

Consider the complete lattice (\mathbb{E}, \leq) of *expectations* :

$$\mathbb{E} = \left\{ f \mid f \colon \varSigma \to \mathbb{R}_{>0}^{\infty} \right\} \quad \text{with} \quad f \leq g \quad \text{iff} \quad \forall \sigma \in \varSigma \colon f(\sigma) \leq g(\sigma)$$

Weakest preexpectation transformer [Kozen '83, McIver '99, McIver & Morgan '05]:

 $\mathsf{wp}\llbracket C \rrbracket \colon \mathbb{E} \to \mathbb{E} , \qquad \mathsf{wp}\llbracket C \rrbracket (g) (\sigma) \ \widehat{=} \ \begin{array}{c} \mathsf{expected value of } g \text{ evaluated in final states} \\ \mathsf{reached after executing } C \text{ on } \sigma . \end{array}$

$$\begin{split} & \mathsf{wp}[\![x \coloneqq 5]\!](x) = 5 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}[1/2]]\{x \coloneqq x+2\}]\!](x) = \frac{1}{2} \cdot x + \frac{1}{2} \cdot (x+2) = x+1 \\ & \mathsf{wp}[\![\{\mathsf{skip}\}[1/2]]\{x \coloneqq x+2\}]\!]([x=4]) = \frac{1}{2} \cdot [x=4] + \frac{1}{2} \cdot [x=2] \\ & \mathsf{wp}[\![\mathsf{while}(c=1)]\{c \coloneqq 0[1/2]x \coloneqq x+1\}]\!](x) = [c=1] \cdot (x+1) + [c \neq 1] \cdot x \end{split}$$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
	000		

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

Latticed	k-Induction	Ins
		00

nstantiation to Probabilistic Programs

Implementation & Experiments

Concluding Remarks

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

wp $\llbracket C \rrbracket (g) = \mathsf{lfp} \Phi$ with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remark
0000	000	0000	00

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

wp $\llbracket C \rrbracket (g) = \mathsf{lfp} \Phi$ with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Hence, latticed k-induction applies :

Corollary For every $k \ge 1$, $\Phi\left(\Psi_{f}^{k-1}(f)\right) \le f \text{ implies } wp[[C]](g) \le f.$

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remark
0000	000	0000	00

k-Induction for Probabilistic Programs

Given : Loop $C = \text{while}(\varphi) \{ C' \}$, postexpectation $g \in \mathbb{E}$ and candidate $f \in \mathbb{E}$. Goal : Prove wp $\llbracket C \rrbracket(g) \leq f$.

We have

wp $\llbracket C \rrbracket (g) = \mathsf{lfp} \Phi$ with $\Phi \colon \mathbb{E} \to \mathbb{E}$ monotonic.

Hence, latticed *k*-induction applies :

For every
$$k \ge 1$$
,
 $\Phi\left(\Psi_{f}^{k-1}(f)\right) \le f \text{ implies } wp[[C]](g) \le f.$

Неге

$$\Psi_{\mathbf{f}}(\mathbf{h}) = \Phi(\mathbf{h}) \sqcap \mathbf{f} \quad \text{where for } \mathbf{h}, \mathbf{h}' \in \mathbb{E}, \quad \mathbf{h} \sqcap \mathbf{h}' = \lambda \sigma_{\bullet} \min\{\mathbf{h}(\sigma), \mathbf{h}'(\sigma)\}$$

Tool Support

kipro2 : k-Induction for PRObabilistic PROgrams

https://github.com/moves-rwth/kipro2

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Rem

Tool Support

kipro2 : k-Induction for PRObabilistic PROgrams

O https://github.com/moves-rwth/kipro2

For linear $C = \text{while}(\varphi) \{C'\}$ and piecewise linear f, g, kipro2 semi-decides by SMT: Is there $k \ge 1$ s.t. wp $[\![C]\!](g) \le f$ is k-inductive?

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments • 0 0 0	Concluding Remar

Tool Support

kipro2 : k-Induction for PRObabilistic PROgrams

• https://github.com/moves-rwth/kipro2

For linear $C = \text{while}(\varphi) \{C'\}$ and piecewise linear f, g, kipro2 semi-decides by SMT: Is there $k \ge 1$ s.t. wp $[\![C]\!](g) \le f$ is k-inductive?

If wp $[\![C]\!](g) \not\leq f$, kipro2 finds via *bounded model checking* some $\sigma \in \Sigma$ with wp $[\![C]\!](g)(\sigma) > f(\sigma)$.

Latticed	k-Induction	Instantiation	to

stantiation to Probabilistic Programs

Implementation & Experiments

Concluding Remarks

Example — Geometric Distribution

For C given by

$$\texttt{while} \left(\ \textbf{\textit{c}} = 1 \ \right) \left\{ \ \textbf{\textit{c}} \coloneqq 0 \ [1/2] \ \textbf{\textit{x}} \coloneqq \textbf{\textit{x}} + 1 \ \right\},$$

the property

 $\forall \text{ initial state } \sigma : \quad wp[[C]](\mathbf{x})(\sigma) \leq \sigma(\mathbf{x}) + 1$

is 2-inductive.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Co
0000	000	0000	00

Example — Geometric Distribution

For C given by

while
$$(c = 1) \{ c \coloneqq 0 [1/2] x \coloneqq x + 1 \}$$
,

the property

 \forall initial state σ : wp[[C]] (x) (σ) $\leq \sigma(x) + 1$

is 2-inductive. Does

 \forall initial state σ : wp[[C]] (x) (σ) $\leq \sigma(x) + 0.99$

also hold?

Latticed	k-Induction	

nstantiation to Probabilistic Programs

Implementation & Experiments

Concluding Remarks

Example — Geometric Distribution

For C given by

while
$$(c = 1) \{ c \coloneqq 0 [1/2] x \coloneqq x + 1 \}$$
,

the property

 \forall initial state σ : wp[[C]] (x) (σ) $\leq \sigma(x) + 1$

is 2-inductive. Does

 \forall initial state σ : wp[[C]] (x) (σ) $\leq \sigma(x) + 0.99$

also hold? No; counterexample by BMC : $\sigma(c) = 1, \sigma(x) = 6$.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
		0000	

Example — Uniform Sampling by Fair-Coin Flips [Lumbroso, 2013]

```
while(running = 0){
    v := 2*v:
    {c := 2*c+1}[0.5]{c := 2*c};
    if(not (v<n)){
        if((not (n=c)) & (not (n<c))){ #terminate
            running := 1
        }{
            v := v-n;
            c := c-n;
        }
    }{
        skip
    }
    #on termination, determine correct index
    if((not (running = 0))){
        c := elow + c;
    }{
        skip
```


Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks
		0000	

Example — Uniform Sampling by Fair-Coin Flips [Lumbroso, 2013]

```
while(running = 0){
    v := 2*v:
    {c := 2*c+1}[0.5]{c := 2*c};
    if(not (v<n)){
        if((not (n=c)) & (not (n<c))){ #terminate
            running := 1
        }{
            v := v-n:
            c := c-n;
        }
    }{
        skip
    }
    #on termination, determine correct index
    if((not (running = 0))){
        c := elow + c;
    }{
        skip
```

For *arbitrary* array of fixed size $n = \{2, 3, 4, 5\}$, we verify

 $Pr("sample fixed element") \leq 1/n$.

La	itticed k-Induction	Instantiation to Probabilistic Pr

Implementation & Experiments

Empirical Results (Partial)

	postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
-		1	ind	2	18	0.01	0.00	0.08
geo	x	2	ref	11	103	0.04	0.01	0.09
0,		3	ref	46	1223	0.39	0.04	0.48
		1	ind	2	267	0.27	0.02	0.56
sam		2	ind	3	1402	1.45	0.10	1.81
ų l	[c = i]	3	ind	3	1402	1.48	0.11	1.86
un i f_		4	ind	5	40568	47.31	15.70	63.28
2		5	TO	-	-	-	-	-

:

Implementat	ion & Experir	nent
0000		

Empirical Results (Partial)

	postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
_		1	ind	2	18	0.01	0.00	0.08
geo	х	2	ref	11	103	0.04	0.01	0.09
•		3	ref	46	1223	0.39	0.04	0.48
_		1	ind	2	267	0.27	0.02	0.56
sam		2	ind	3	1402	1.45	0.10	1.81
ب_ا	[c = i]	3	ind	3	1402	1.48	0.11	1.86
un i f_		4	ind	5	40568	47.31	15.70	63.28
2		5	то	-	-	-	-	-

:

Implementation & Experiments

Empirical Results (Partial)

	postexpectation	variant	result	k	#formulae	formulae_t	sat_t	total_t
_		1	ind	2	18	0.01	0.00	0.08
geo	х	2	ref	11	103	0.04	0.01	0.09
0,		3	ref	46	1223	0.39	0.04	0.48
_		1	ind	2	267	0.27	0.02	0.56
sam		2	ind	3	1402	1.45	0.10	1.81
Ψ.	[c = i]	3	ind	3	1402	1.48	0.11	1.86
un i f_		4	ind	5	40568	47.31	15.70	63.28
-		5	TO	-	-	-	-	-

÷

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

k-Induction for transition systems in terms of fixed points;

K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;

K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

incremental SMT encoding (theory : QF_UFLIRA);

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer: Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
Summary			

- k-Induction for transition systems in terms of fixed points;
- **a** latticed *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- **transfinite** κ -induction;

⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed <i>k</i> -Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
~			

Summary

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- transfinite κ-induction;
- (in)completeness of latticed k-induction;
- ⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV '21.

Latticed k-Induction	Instantiation to Probabilistic Programs	Implementation & Experiments	Concluding Remarks ●○
-			

Summary

- k-Induction for transition systems in terms of fixed points;
- **atticed** *k*-induction for *verifying* lfp $\Phi \sqsubseteq f$;
- fully automatic verification of infinite-state probabilistic programs.

More in the paper :

- incremental SMT encoding (theory : QF_UFLIRA);
- k-induction for expected run-times;
- transfinite κ-induction;
- (in)completeness of latticed k-induction;
- latticed bounded model checking for *refuting* lfp $\Phi \sqsubseteq f$.
- ⇒ K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, P. Schröer : Latticed k-Induction with an Application to Probabilistic Programs. CAV'21.

...

Future Directions

- verification of nonlinear probabilistic programs?
- efficient synthesis of k-inductive invariants?
- latticed k-induction for lower bounds?

In Combination with Latticed BMC

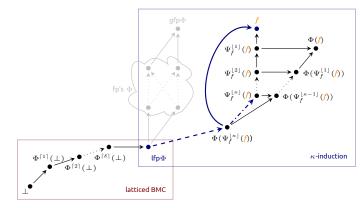


Figure – κ -induction and latticed BMC in case that lfp $\Phi \sqsubseteq f$.

