
Concurrency Theory
Winter Semester 2019/20

Lecture 1: Introduction

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Preliminaries

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

2 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Staff

• Lectures:
– Joost-Pieter Katoen
– Thomas Noll

• Exercise classes:
– Kevin Batz
– Christoph Matheja

• Student assistant: wanted!!!
– Evaluation of exercises
– Organisational support
– 12 hrs/week contract
– Previous experience with theory of concurrency/programming not a prerequisite

(but of course helpful)

3 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Target Audience

• Master program Informatik
– Theoretische Informatik

• Master program Software Systems Engineering
– Theoretical Foundations of SSE

• In general:
– interest in formal models for concurrent (software) systems
– application of mathematical modelling and reasoning methods

• Expected: basic knowledge in
– essential concepts of operating systems and system software
– formal languages and automata theory
– mathematical logic

4 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Target Audience

• Master program Informatik
– Theoretische Informatik

• Master program Software Systems Engineering
– Theoretical Foundations of SSE

• In general:
– interest in formal models for concurrent (software) systems
– application of mathematical modelling and reasoning methods

• Expected: basic knowledge in
– essential concepts of operating systems and system software
– formal languages and automata theory
– mathematical logic

4 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Course Objectives

Objectives

• Understand the foundations of concurrent systems
• Model (and compare) concurrent systems in a rigorous manner
• Understand the main semantical underpinnings of concurrency

Motivation

• Supporting the design phase of systems
– “Programming Concurrent Systems”
– synchronisation, scheduling, semaphores, ...

• Verifying functional correctness properties
– “Model Checking”
– validation of mutual exclusion, fairness, absence of deadlocks, ...

• Comparing expressivity of models of concurrency
– “interleaving” vs. “true concurrency”
– equivalence, refinement, abstraction, ...

5 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Course Objectives

Objectives

• Understand the foundations of concurrent systems
• Model (and compare) concurrent systems in a rigorous manner
• Understand the main semantical underpinnings of concurrency

Motivation

• Supporting the design phase of systems
– “Programming Concurrent Systems”
– synchronisation, scheduling, semaphores, ...

• Verifying functional correctness properties
– “Model Checking”
– validation of mutual exclusion, fairness, absence of deadlocks, ...

• Comparing expressivity of models of concurrency
– “interleaving” vs. “true concurrency”
– equivalence, refinement, abstraction, ...

5 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Course Objectives

Objectives

• Understand the foundations of concurrent systems
• Model (and compare) concurrent systems in a rigorous manner
• Understand the main semantical underpinnings of concurrency

Motivation

• Supporting the design phase of systems
– “Programming Concurrent Systems”
– synchronisation, scheduling, semaphores, ...

• Verifying functional correctness properties
– “Model Checking”
– validation of mutual exclusion, fairness, absence of deadlocks, ...

• Comparing expressivity of models of concurrency
– “interleaving” vs. “true concurrency”
– equivalence, refinement, abstraction, ...

5 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Course Objectives

Objectives

• Understand the foundations of concurrent systems
• Model (and compare) concurrent systems in a rigorous manner
• Understand the main semantical underpinnings of concurrency

Motivation

• Supporting the design phase of systems
– “Programming Concurrent Systems”
– synchronisation, scheduling, semaphores, ...

• Verifying functional correctness properties
– “Model Checking”
– validation of mutual exclusion, fairness, absence of deadlocks, ...

• Comparing expressivity of models of concurrency
– “interleaving” vs. “true concurrency”
– equivalence, refinement, abstraction, ...

5 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Mon 14:30–16:00 AH 1 (starting 07 Oct)
– Lecture Tue 14:30–16:00 AH 1 (starting 08 Oct)
– Exercise class Thu 14:30–16:00 5056 (starting 17 Oct)

• Irregular lecture dates – checkout web page!

• 1st assignment sheet: Thu 10 Oct on web page
– submission by 17 Oct before exercise class
– presentation on 17 Oct

• Work on assignments in groups of three
• Examination (6 ECTS credits):

– oral or written (depending on number of participants)

• Admission requires at least 50% of the points in the exercises
• There are no specific admission requirements
• Solutions to exercises and exam in English or German

6 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Mon 14:30–16:00 AH 1 (starting 07 Oct)
– Lecture Tue 14:30–16:00 AH 1 (starting 08 Oct)
– Exercise class Thu 14:30–16:00 5056 (starting 17 Oct)

• Irregular lecture dates – checkout web page!
• 1st assignment sheet: Thu 10 Oct on web page

– submission by 17 Oct before exercise class
– presentation on 17 Oct

• Work on assignments in groups of three

• Examination (6 ECTS credits):
– oral or written (depending on number of participants)

• Admission requires at least 50% of the points in the exercises
• There are no specific admission requirements
• Solutions to exercises and exam in English or German

6 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Mon 14:30–16:00 AH 1 (starting 07 Oct)
– Lecture Tue 14:30–16:00 AH 1 (starting 08 Oct)
– Exercise class Thu 14:30–16:00 5056 (starting 17 Oct)

• Irregular lecture dates – checkout web page!
• 1st assignment sheet: Thu 10 Oct on web page

– submission by 17 Oct before exercise class
– presentation on 17 Oct

• Work on assignments in groups of three
• Examination (6 ECTS credits):

– oral or written (depending on number of participants)

• Admission requires at least 50% of the points in the exercises
• There are no specific admission requirements
• Solutions to exercises and exam in English or German

6 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

7 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

value of x :

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

value of x :

• At first glance: x is assigned 3

• But: both parallel components could read x before it is written
• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

value of x :

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written

• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2) value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written

• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1
value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written

• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1 2
value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written

• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1 2
value of x : 1

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written

• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

2
value of x : 2

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2) value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1
value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1 2
value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1 2
value of x : 2

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

1
value of x : 1

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2) value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

2
value of x : 0

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

2
value of x : 2

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

3
value of x : 2

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1,

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

3
value of x : 3

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1, or 3

• If exclusive access to shared memory and atomic execution of assignments guaranteed
=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

value of x :

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2, 1, or 3
• If exclusive access to shared memory and atomic execution of assignments guaranteed

=⇒ only possible outcome: 3

8 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction

The problem arises due to the combination of
• concurrency and
• interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of
both concurrency and interaction is crucially important.

9 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency and Interaction

The problem arises due to the combination of
• concurrency and
• interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of
both concurrency and interaction is crucially important.

9 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Concurrency and Interaction

Concurrency Everywhere

Herb Sutter: The Free Lunch Is over , Dr. Dobb’s Journal, 30(3), 2005

“The biggest sea change in software development since the OO revolution is
knocking at the door, and its name is Concurrency.”

• Operating systems
• Embedded/reactive systems:

– parallelism (at least) between hardware, software,
and environment

• High-end parallel hardware infrastructure:
– high-performance computing

• Low-end parallel hardware infrastructure:
– increasing performance only achievable by

parallelism
– multi-core computers, GPGPUs, FPGAs

10 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

http://www.gotw.ca/publications/concurrency-ddj.htm

Concurrency and Interaction

Problems Everywhere

• Operating systems:
– mutual exclusion
– fairness (no starvation)
– no deadlocks, ...

• Shared-memory systems:
– memory models
– inconsistencies

(“sequential consistency” vs.
relaxed notions)

• Embedded systems:
– safety
– liveness, ...

11 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

12 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

1

 Initially: x = y = 0

 thread1: thread2:
 1: x = 1 3: y = 1

 2: r1 = y 4: r2 = x

 An illustrative example

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

x=1

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

r1=y

y=1

r2=x

y = 0

T1 T2
Memory

x=1

x = 1

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

y=1

r2=x

y = 0

T1 T2
Memory

x = 1

r1=y

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

y=1

r2=x

y = 0

T1 T2
Memory

x = 1

r1=y [r1=0]

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

r2=x

y = 0

T1 T2
Memory

x = 1

[r1=0]

y=1

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

r2=x

T1 T2
Memory

x = 1

[r1=0]

y=1

y = 1

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x [r2=1]

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x [r2=1]

not (r1==0 and r2==0)

 Sequential Consistency (SC)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2
Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2

x=1

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

y=1

r2=x

x = 0
FIFO buffer T1 T1 T2x=1 y = 0

r1=y

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

y=1

r2=x

x = 0
FIFO buffer T1 T1 T2x=1 y = 0

r1=y [r1=0]

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

x = 0
y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

r2=x

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

r2=x

x = 1

[r2=0]

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

y=1
 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Memory Models

Memory Models

3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

y=1

[r3=1]

 Total Store Ordering (TSO)

Tuesday, April 5, 201113 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Reactive Systems

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

14 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Reactive Systems

Reactive Systems I

• Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate
• Missing: aspect of interaction

• Rather: reactive systems which interact with environment and among themselves
• Main interest: not terminating computations but infinite behaviour

(system maintains ongoing interaction with environment)
• Examples:

– operating systems
– embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
– power plants, production lines, ...

15 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Reactive Systems

Reactive Systems I

• Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate
• Missing: aspect of interaction
• Rather: reactive systems which interact with environment and among themselves

• Main interest: not terminating computations but infinite behaviour
(system maintains ongoing interaction with environment)
• Examples:

– operating systems
– embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
– power plants, production lines, ...

15 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Reactive Systems

Reactive Systems I

• Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate
• Missing: aspect of interaction
• Rather: reactive systems which interact with environment and among themselves
• Main interest: not terminating computations but infinite behaviour

(system maintains ongoing interaction with environment)
• Examples:

– operating systems
– embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
– power plants, production lines, ...

15 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

A Closer Look at Reactive Systems

Reactive Systems II

Observation: reactive systems often safety critical
=⇒ correct behaviour has to be ensured
• Safety properties: “Nothing bad is ever going to happen.”

E.g., “at most one process in the critical section”
• Liveness properties: “Eventually something good will happen.”

E.g., “every request will finally be answered by the server”
• Fairness properties: “No component will starve to death.”

E.g., “any process requiring entry to the critical section will eventually be admitted”

16 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Overview of the Course

Outline of Lecture 1

Preliminaries

Concurrency and Interaction

A Closer Look at Memory Models

A Closer Look at Reactive Systems

Overview of the Course

17 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Overview of the Course

Overview of the Course

1. Introduction and Motivation
2. The “Interleaving” Approach

– Syntax and semantics of CCS
– Hennessy-Milner Logic
– Case study: mutual exclusion
– Extensions and alternative approaches (value passing, mobility, CSP, ACP, ...)

3. Equivalence, Refinement and Compositionality
– Behavioural equivalences ((bi-)simulation)
– Case study: mutual exclusion
– (Pre-)congruences and compositional abstraction
– HML and bisimilarity

4. The “True Concurrency” Approach
– Petri nets: basic concepts
– Case study: mutual exclusion
– Branching processes and net unfoldings
– Analyzing Petri nets
– Alternative models (trace languages, event structures, ...)

5. Extensions (timed models, ...)

18 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

Overview of the Course

Literature

(also see the collection “Handapparat Softwaremodellierung und Verifikation” at CS Library)
• Fundamental:

– Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen and Jiřı́ Srba: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, 2007.

– Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies.
Springer Verlag, 2012.

• Supplementary:
– Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. Elsevier, 2008.
– Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of Process Algebra. Elsevier, 2001.

19 of 19 Concurrency Theory

Winter Semester 2019/20

Lecture 1: Introduction

	Preliminaries
	Concurrency and Interaction
	A Closer Look at Memory Models
	A Closer Look at Reactive Systems
	Overview of the Course

