Model Checking Lecture #9: Complexity of LTL Model Checking [Baier & Katoen, Chapter 5.2.1+5.2.2]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

What is the theoretical complexity of LTL model checking?

Overview

- Some Complexity Classes
- 2 Complexity of LTL Model Checking
- Complexity of LTL Satisfiability
- 4 Summary

Joost-Pieter Katoen

Lecture#8

2/27

LTL Decision Problems

The LTL Model-Checking Problem

Given a finite transition system *TS* and LTL-formula φ , is *TS* $\models \varphi$?

The LTL Satisfiability Problem

Given LTL-formula φ , does there exist a transition system *TS* such that $TS \models \varphi$?

The LTL Validity Problem

Given LTL-formula φ , does $TS \models \varphi$ for all transition systems TS?

The validity problem for φ is equivalent to the satisfiability problem for $\neg\varphi$

Joost-Pieter Katoen

Topic

1/27

Some Complexity Classes	Some Complexity Classes		
Overview	Complexity Classes P and NP		
	NP-hard /		
Some Complexity Classes	problems		
2 Complexity of LTL Model Checking	(P) (NPC)		
Construction of LTL Control at the	NP		
Complexity of LTL Satisfiability			
Summary	<i>NPC</i> = class of <i>NP</i> -complete problems ↑		
	(1) <i>L</i> ∈ <i>NP</i>		
	(2) \boldsymbol{L} is \boldsymbol{NP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{NP}$		
Joost-Pieter Katoen 5/27	Joost-Pieter Katoen Lecture#8 6/27		
Complexity Class co-NP	Co-NP Completeness		
NP-hard /			
problems	problems		
coNP	coNP NP		
$coNP = \{\overline{L} : L \in NP\}$	(1) $L \in coNP$		
f complement of /	(2) L is coNP -hard, i.e., $K \leq_{poly} L$ for all $K \in coNP$		
Joost-Pieter Katoen Lecture#8 7/27	Joost-Pieter Katoen Lecture#8 8/27		

Some Complexity Classes

Complexity Classes P, NP, and co-NP

coNPC = class of coNP-complete problems

Lecture#8

Some Complexity Classes

L is <i>coNP</i> -hard	l iff 🛿 is NP -hard
------------------------	----------------------------

The Complexity Class PSPACE

PSPACE is the set of decision problems that can be solved by a deterministic, polynomially-bounded space algorithm.

Known facts:

Joost-Pieter Katoen

- ▶ NP \subseteq PSPACE
- PSPACE = co-PSPACE (this holds for any deterministic complexity class)
- PSPACE = NPSPACE (Savitch theorem)
- Due to Savitch's theorem, to show L is in PSPACE, it suffices to provide a nondeterministic, polynomially-bounded space algorithm for \overline{L} .

Co-NP Hardness

The LTL model-checking problem is co-NP-hard.

Proof.

We show that the Hamiltonian path problem –which is NP-complete– for directed graphs is polynomially reducible to the complement of the LTL model-checking problem. The complement LTL model-checking problem is: given finite transition system *TS* and LTL-formula φ , is *TS* $\notin \varphi$? As the complement LTL model-checking problem is NP-complete, the result follows.

Joost-Pieter Katoen

Lecture#8

Some Complexity Classe

.0/27

PSPACE is the set of decision problems that can be solved by a deterministic, polynomially-bounded space algorithm

Lecture#8

Some Complexity Classes

Complexity of LTL Model Checking

Complexity Landscape

decision problem <i>L</i> is <i>PSPACE</i> -complete iff				
(1) <i>L</i> ∈ <i>PSPACE</i>	$K \leq_{poly} L$			
(2) L is <i>PSPACE</i> -hard \leftarrow	for all <i>K</i> ∈ <i>PSPACE</i>			

- as **PSPACE = coPSPACE = NPSPACE**:
 - *L* is *PSPACE*-hard $\iff \overline{L}$ is *PSPACE*-hard
 - $L \in PSPACE \iff \overline{L} \in NPSPACE$

Overview

- Some Complexity Classes
- 2 Complexity of LTL Model Checking
- 3 Complexity of LTL Satisfiability
- 4 Summary

Joost-Pieter Katoen

Complexity of LTL Model Checking

Lecture#8

Complexity of LTL Model Checking

Existential LTL Model-Checking Problem

Given:

- ▶ finite transition system *TS*
- \blacktriangleright LTL formula φ
- Q: is there some path π in *TS* such that $\pi \models \varphi$?

Goal:

find a criterion for the existence of a path π in *TS* with $\pi \models \varphi$ that can be checked non-deterministically in poly-space

Idea:

Use the GNBA \mathfrak{G}_{φ} for φ

LTL Model Checking is PSPACE Complete

The LTL model-checking problem is PSPACE-complete.

Proof.

Joost-Pieter Katoen

We prove that the existential LTL model-checking problem is (a) in NPSPACE (and thus in PSPACE), and (b) PSPACE-hard.

The complement LTL model-checking problem is: given finite transition system *TS* and LTL-formula φ , is *TS* $\notin \varphi$? That is, is there some path π in *TS* such that $\pi \notin \varphi$, i.e., $\pi \models \neg \varphi$?

This is the existential LTL-model-checking problem for $\psi = \neg \varphi$.

Complexity of LTL Model Checking

Proof Idea

NPSPACE Algorithm for ∃LTL MC Problem

1. Guess nondeterministically a path:

$$\pi = u_0 u_1 \dots u_{n-1} (u_n \dots u_{n+m})^{\omega} \text{ in } TS \otimes \mathfrak{G}_{\varphi}$$

where GNBA \mathfrak{G}_{φ} is obtained as explained in the previous lecture

2. check whether the guessed path is accepted by \mathfrak{G}_{φ}

Criterion For **3LTL** Properties

There exists a path π in *TS* with $\pi \models \varphi$ iff there exist:

- an initial path fragment $\underbrace{s_0 s_1 \dots s_n \dots s_{n+m}}_{\pi}$ in *TS*, and
- ► a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in GNBA \mathfrak{G}_{φ} for *trace*(π) such that:
- 1. $\langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$
- 2. if $\psi_1 \cup \psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$ then $\psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$
- 3. $n \leq |S| \cdot 2^{|cl(\varphi)|}$ and $m \leq |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|$

Joost-Pieter Katoen

Complexity of LTL Model Checking

NPSPACE Algorithm for Existential LTL MC Problem

• Guess two natural number n and $m \le k$ such that m > 0 and

 $k = |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|$

Lecture#8

- Guess initial path fragment $\pi = s_0 s_1 \dots s_n \dots s_{n+m}$ in *TS*
- Guess n+m+2 subsets $B_0, \ldots, B_n, \ldots, B_{n+m+1}$ of $cl(\varphi)$
- Check whether the following three conditions hold:

 (s_n, B_{n+1}) = (s_{n+m}, B_{n+m+1})
 B₀...B_n...B_{n+m+1} is an initial run for trace(π s_n) in 𝔅_φ
 {ψ₂ | ψ₁ ∪ ψ₂ ∈ ⋃_{n<i≤n+m} B_i} ⊆ ⋃_{n<i≤n+m} B_i

If so, return "yes", otherwise return "no".

Complexity of LTL Model Checking

LTL Model Checking is PSPACE Complete

Existential LTL Model Checking is PSPACE-Hard

The LTL model-checking problem is PSPACE-complete.

Proof.

We have seen that the JLTL model-checking problem is in NPSPACE = PSPACE. We will prove that this problem is PSPACE-hard. (This is done on the black board.) Since PSPACE = co-PSPACE, these two results together give that the LTL model-checking problem is PSPACE-complete. We concentrate on PSPACE-hardness of the existential LTL

model-checking problem.

Joost-Pieter Katoen	Lecture#8	21/27
	Complexity of LTL Satisfiability	
Overview		
Some Complexity Classes		
2 Complexity of LTL Model Checkin		
3 Complexity of LTL Satisfiability		
3 Summary		

Joost-Pieter Katoen	Lecture#8	22/2
	Complexity of LTL Satisfiability	

LTL Satisfiability is PSPACE Complete

The LTL satisfiability problem is PSPACE-complete.

Proof.

The satisfiability of LTL-formula φ amounts to checking whether $Words(\varphi) \neq \emptyset$. Automata-based satisfiability checking: construct the NBA \mathfrak{A}_{φ} . Check whether $\mathfrak{L}_{\omega}(\mathfrak{A}) \neq \emptyset$. This can be done using a nested DFS. The complexity is exponential in $|\varphi|$ and PSPACE-complete.

Summary
The LTL model-checking problem is PSPACE-complete
The LTL satisfiability problem is PSPACE-complete
The Hamiltionian path problem is polynomially reducible to the complement of the LTL model-checking problem.
25/27 Joost-Pieter Katoen Lecture#8

26/27

Thursday November 21, 10:30