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Linear Temporal Logic

LTL Syntax
Definition: LTL syntax
BNF grammar for LTL formulas with proposition a ∈ AP:

ϕ ∶∶= true
»»»»»» a

»»»»»» ϕ1 ∧ ϕ2
»»»»»» ¬ϕ

»»»»»» ◯ϕ
»»»»»» ϕ1 Uϕ2

▶ Propositional logic
▶ a ∈ AP atomic proposition
▶ ¬ϕ and ϕ ∧ ψ negation and conjunction

▶ Temporal modalities
▶ ◯ϕ neXt state fulfills ϕ
▶ ϕUψ ϕ holds Until a ψ-state is reached

Linear Temporal Logic (LTL) is a logic to describe LT properties
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Linear Temporal Logic

Derived Operators

◇ϕ ≡ trueUϕ “some time in the future”

□ϕ ≡ ¬ ◇¬ϕ “from now on forever”

Joost-Pieter Katoen Lecture#8 6/39

Linear Temporal Logic

Semantics Over Words
Definition: LTL semantics over infinite words
The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) = {σ ∈ (2AP)ω ∣ σ ⊧ ϕ },where ⊧ is the smallest relation with:

σ ⊧ true
σ ⊧ a iff a ∈ A0 (i.e., A0 ⊧ a)
σ ⊧ ϕ1 ∧ ϕ2 iff σ ⊧ ϕ1 and σ ⊧ ϕ2

σ ⊧ ¬ϕ iff σ /⊧ ϕ
σ ⊧ ◯ϕ iff σ[1..] = A1A2A3 . . . ⊧ ϕ

σ ⊧ ϕ1 Uϕ2 iff ∃j ≥ 0. σ[j ..] ⊧ ϕ2 and σ[i ..] ⊧ ϕ1, 0 ≤ i < j

for σ = A0A1A2 . . ., let σ[i ..] = Ai Ai+1Ai+2 . . . be the suffix of σ from index i on.
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Linear Temporal Logic

Semantics of □, ◇, □◇ and ◇□

σ ⊧ ◇ϕ iff ∃j ≥ 0. σ[j ..] ⊧ ϕ

σ ⊧ □ϕ iff ∀j ≥ 0. σ[j ..] ⊧ ϕ

σ ⊧ □◇ϕ iff ∀j ≥ 0.∃i ≥ j . σ[i . . .] ⊧ ϕ
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

infinitely often ϕ

σ ⊧ ◇□ϕ iff ∃j ≥ 0.∀i ≥ j . σ[i . . .] ⊧ ϕ
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

persistence of ϕ
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Linear Temporal Logic

Semantics over Transition Systems

Let TS = (S,Act,→, I,AP, L) be a transition system
and ϕ be an LTL-formula over AP.

▶ For infinite path fragment π of TS:

π ⊧ ϕ iff trace(π) ⊧ ϕ

▶ For state s ∈ S:

s ⊧ ϕ iff ∀π ∈ Paths(s). π ⊧ ϕ

▶ For transition system TS:

TS ⊧ ϕ iff Traces(TS) ⊆ Words(ϕ) iff ∀s ∈ I. s ⊧ ϕ
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Linear Temporal Logic

Example
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LTL Model Checking

The LTL Model Checking Problem

Given:

1. finite transition system TS, and

2. LTL-formula ϕ
:
decide whether TS ⊧ ϕ, and if TS /⊧ ϕ, provide a counterexample.
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LTL Model Checking

NBA for LTL Formulae
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LTL Model Checking

NBA for LTL Formulae
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LTL Model Checking

A Naive Attempt

TS ⊧ ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ⊆ Lω(Aϕ)

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅.

Naive idea: check whether TS has no behaviour accepted by NBA Aϕ

But complementation of NBA yields a blow-up:
if A has n states, A has cn2 states in worst case
⇒ use the fact that: Lω(Aϕ) = Lω(A¬ϕ)
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LTL Model Checking

Approach

TS ⊧ ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ⊆ Lω(Aϕ)

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

if and only if Traces(TS) ∩ Lω(A¬ϕ) = ∅

if and only if TS ⊗ A¬ϕ ⊧ ◇□ ¬F

where F is the set of accept states of NBA A¬ϕ.

LTL model checking is thus reduced to persistence checking
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LTL Model Checking

Automata-Based LTL Model Checking
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LTL Model Checking

Overview
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LTL Model Checking

Overview
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LTL Model Checking

Recap: Generalized Büchi Automata

Definition: Generalized Büchi automata
A generalized NBA (GNBA) G is a tuple (Q, Σ, δ,Q0,F) where Q, Σ, δ,Q0
are as before and

F = { F1, . . . ,Fk } with Fi ⊆ Q

for some natural k ∈ N.

Run q0 q1 . . . ∈ Qω is accepting if ∀Fj ∈ F: qi ∈ Fj for infinitely many i

The size of G, denoted ∣G∣, is the number of states and transitions in G
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LTL Model Checking

GNBA and NBA are Equally Expressive

For every GNBA G there exists an NBA A with

Lω(G) = Lω(A) with ∣A∣ = O(∣G∣ ⋅ ∣F∣)

where F = { F1, . . . ,Fk } denotes the set of acceptance sets in G.

Proof.
For k=0, 1, this result follows directly. For k > 1, make k copies of G:
▶ initial states of NBA := the initial states in the first copy
▶ final states of NBA := accept set F1 in the first copy
▶ on visiting in i-th copy a state in Fi , then move to the (i+1)-st copy
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From LTL to GNBA

How to Obtain a GNBA?
GNBA Gϕ over 2AP for LTL-formula ϕ with Lω(Gϕ) = Words(ϕ):

▶ Assume ϕ only contains the operators ∧, ¬, ◯ and U
∨, →, ◇, □, W , and so on, are derived from these base operators

▶ States are elementary sets of sub-formulas in ϕ
▶ for σ = A0 A1 . . . ∈ Words(ϕ), expand Ai ⊆ AP with sub-formulas of ϕ
▶ . . . to obtain the infinite word σ̄ = B0 B1 . . . with Bi a set of

sub-formulas of ϕ such that

ψ ∈ Bi if and only if σ
i
= Ai Ai+1 . . . ⊧ ψ

▶ σ̄ is intended to be a run of GNBA Gϕ for σ

▶ Transitions are derived from semantics ◯ and expansion law for U
▶ Accept sets guarantee that: σ̄ is an accepting run for σ iff σ ⊧ ϕ
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From LTL to GNBA

States by Example
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From LTL to GNBA

Closure

Definition: Closure
The closure of LTL-formula ϕ is the set cl(ϕ) consisting of all sub-formulas
ψ of ϕ and their negation ¬ψ where ψ and ¬¬ψ are identified.

Example
For ϕ = aU (¬a ∧ b) we have

cl(ϕ) = { a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b),ϕ,¬ϕ }.

We cannot take Bi as arbitrary subset of cl(ϕ).
They must be elementary.
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From LTL to GNBA

Elementary Sets

Definition: Elementary sets
B ⊆ cl(ϕ) is elementary if all following conditions hold:

1. B is maximally consistent, i.e., for all ϕ1 ∧ ϕ2,ψ ∈ cl(ϕ):
▶ ϕ1 ∧ ϕ2 ∈ B ⇔ ϕ1 ∈ B and ϕ2 ∈ B
▶ ψ /∈ B ⇔ ¬ψ ∈ B
▶ true ∈ cl(ϕ) ⇒ true ∈ B

2. B is locally consistent, i.e., for all ϕ1 Uϕ2 ∈ cl(ϕ):
▶ ϕ2 ∈ B ⇒ ϕ1 Uϕ2 ∈ B
▶ ϕ1 Uϕ2 ∈ B and ϕ2 /∈ B ⇒ ϕ1 ∈ B
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From LTL to GNBA

Examples
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From LTL to GNBA

Automaton Construction
Definition: The GNBA for and LTL Formula
For LTL-formula ϕ, let Gϕ = (Q, 2AP, δ,Q0,F) where

▶ Q is the set of all elementary sets of formulas B ⊆ cl(ϕ) with
Q0 = { B ∈ Q ∣ ϕ ∈ B }

▶ If A /= B ∩ AP, then δ(B,A) = ∅.
▶ δ(B,B ∩ AP) is the set B ′

⊆ Q satisfying:
(i) For every ◯ψ ∈ cl(ϕ): ◯ψ ∈ B ⇔ ψ ∈ B ′, and
(ii) For every ϕ1 Uϕ2 ∈ cl(ϕ):

ϕ1 Uϕ2 ∈ B ⇔ (ϕ2 ∈ B ∨ (ϕ1 ∈ B ∧ ϕ1 Uϕ2 ∈ B ′))

▶ F = {Fϕ1 Uϕ2 ∣ ϕ1 Uϕ2 ∈ cl(ϕ) } where
Fϕ1 Uϕ2 = { B ∈ Q ∣ ϕ1 Uϕ2 /∈ B or ϕ2 ∈ B }
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From LTL to GNBA

Example (1)

Joost-Pieter Katoen Lecture#8 29/39

From LTL to GNBA

Example (2)
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From LTL to GNBA

Example (3)
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From LTL to GNBA

Main Theorem

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ϕ (over AP) there exists a GNBA Gϕ over 2AP with:
(a) Words(ϕ) = Lω(Gϕ)
(b) Gϕ can be constructed in time and space O (2∣ϕ∣)
(c) #accepting sets of Gϕ is bounded above by O(∣ϕ∣).

Corollary
For every LTL-formula ϕ, Words(ϕ) is ω-regular.
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From LTL to GNBA

NBA More Expressive Than LTL

There is no LTL formula ϕ with Words(ϕ) = E for the LT-property:

E = { A0A1A2 . . . ∈ (2{ a })
ω

∣ a ∈ A2i for i ≥ 0 }

But there exists an NBA A with Lω(A) = E .

Proof.
Omitted.
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Complexity

Overview

1 Linear Temporal Logic

2 LTL Model Checking

3 From LTL to GNBA

4 Complexity

5 Summary

Joost-Pieter Katoen Lecture#8 34/39

Complexity

Lower Bound

There exists a family of LTL formulas ϕn with ∣ϕn∣ = O(poly (n)) such that
every NBA Aϕn for ϕn has at least 2n states.

Proof.
On the black board.
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Complexity

Complexity

The time and space complexity of automata-based LTL model checking is

O( ∣TS∣ ⋅ 2∣ϕ∣ )

Proof.

1. the closure of LTL formula ϕ has size in O(∣ϕ∣)
2. the number of elementary sets is in O(2∣ϕ∣ )
3. the number of states in the GNBA Gϕ is in O(2∣ϕ∣ )
4. the number of acceptance sets in GNBA Gϕ is in O(∣ϕ∣)
5. the size of the NBA Aϕ is in O(∣ϕ∣ ⋅ 2∣ϕ∣)
6. the size of TS ⊗ Aϕ is in O( ∣TS∣ ⋅ 2∣ϕ∣ )
7. determining TS ⊗ Aϕ ⊧ ◇ □ ¬F is in O(∣TS ⊗ Aϕ∣).
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Summary

Summary
▶ LTL model checking exploits a GNBA A¬ϕ for the negation of ϕ

▶ States of the GNBA are subsets of certain sub-formulas of ϕ

▶ Taking these subsets give rises to an exponential blow-up. This
cannot be avoided

▶ For each until-sub-formula of ϕ, the GNBA has one acceptance set

▶ Each LTL-formula describes an ω-regular LT property

▶ LTL is strictly less expressive than ω-regular expressions

▶ LTL model checking by automata is linear in the size of the transition
system and exponential in the size of ϕ
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Summary

Next Lecture
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