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LTL Syntax

Definition: LTL syntax

BNF grammar for LTL formulas with proposition a € AP:

Q@ u= true | a | 01 A Q2 ' - | Ogp | w1 U o

» Propositional logic

> ae AP atomic proposition
» —pand p A negation and conjunction

» Temporal modalities

> Oy neXt state fulfills ¢
> pUy © holds Until a v-state is reached

Linear Temporal Logic (LTL) is a logic to describe LT properties
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Semantics Over Words

Definition: LTL semantics over infinite words

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {0’ € (2AP)W A% }, where F is the smallest relation with:

o E true

o E a iff aeAy (e, AgF a)

o E o1 Ay iff 0Fw; and 0 F ¢y

o B =p iff ol

o E Qg iff o[l.]=A1AA;...Fop

o B o1Upy, iff 3j20.0[..]FEp and o[i.]E ¢y, 0<i<j

for 0 = AgAiA; ..., let ofi..] = AjAi41 A+ - . . be the suffix of o from index i on.
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Derived Operators

O = trueUop “some time in the future”
Op = == “from now on forever”
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Semantics of O, ¢, 0 and &O

o B O¢ iff 3j20.0[..]F¢
o B oOp iff Vj20.0[.]Fp

c F OCp iff Vj20.3iz).0[i..]F¢

infinitely often ¢

o B <ooOp iff 3j=20Vizj . ofi...]Fp

persistence of ¢
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Semantics over Transition Systems

Let TS= (S, Act,—, I, AP, L) be a transition system
and ¢ be an LTL-formula over AP.

» For infinite path fragment 7 of TS:
TE iff trace(m) E
» For state s € S:
sk iff V7 € Paths(s). mE ¢
» For transition system TS:

TSE @ iff Traces( TS) € Words(y) iff  Vselskyp
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LTL Model Checking

Overview

© LTL Model Checking
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Linear Temporal Logic

Example

QWO O AP = {a, b}
{a} g {ab}
T E a asspfFaand s = a

T £ ¢o0Oa as SpS150 51 -.- £ Q0a

T | oOb v OQ(-aA-b) ass = b, sy [~ a,b
T EO@—(Q-avVvhb) assEbskEQa

Joost-Pieter Katoen Lecture#8 10/39

The LTL Model Checking Problem

Given:
1. finite transition system TS, and

2. LTL-formula ¢

decide whether TSE ¢, and if TS# ¢, provide a counterexample.
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LTL Model Checking

NBA for LTL Formulae

true
@ true @ “24qr[ ) Lu(A) = Words(O—a)

'—a qr true
\i b gtrue L,(A) = Words(a V b)

b -
CF) , @. ’ L,(A) = Words(Oa)
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LTL Model Checking

A Naive Attempt

TSE ¢ ifand only if  Traces(TS) € Words(p)

if and only if ~ Traces(TS) € £,,(2,)

if and only if  Traces(TS) n £,,(2A,)

1l
Q

if and only if  Traces(TS) n Sw(Ql_¢)

1l
S

Naive idea: check whether TS has no behaviour accepted by NBA Ql_w

But complementation of NBA yields a blow-up:
2

if 20 has n states, A has ¢ states in worst case

= use the fact that: £,(2A,) = £,(A-,)
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LTL Model Checking

NBA for LTL Formulae

a
(%, B £o(A) = Words(@oa)
=3 »(A) = Words((0a
Y
\ an-b
% (@)
U B . L,(A) = Words(O(a — b))
-aVvb —b
eg., IOBD...=0%
. are accepted by A
({a}{5}) }
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LTL Model Checking
Approach

TSE ¢ ifand only if  Traces(TS) € Words(y)

if and only if ~ Traces(TS) € £,,(2,)

if and only if  Traces(TS) n £,,(2A,)

1l
Q

if and only if ~ Traces(TS) n £,,(2A,)

1l
Q

if and only if  Traces(TS) n £,(A.,) = @

if and only if TS®2_, F &0 =F
where F is the set of accept states of NBA 2I_ .

LTL model checking is thus reduced to persistence checking
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LTL Model Checking

Automata-Based LTL Model Checking

finite transition
system 7

NBA A for -
“bad behaviors”

LTL model checking

LTL formula ¢

via persistence checking
T ® A | "00 no final state” ?

S N

yes no + error indication
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LTL Model Checking

Overview

LTL formula ¢

generalized NBA
k acceptance sets

GNBA G s.t.
L,(G) = Words(p)

k copies of G

nondeterministic
Buchi automaton
1 acceptance set

NBA As.t.
Lo(A) = L.(9)
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LTL Model Checking

Overview

LTL formula ¢

finite transition

system T
\ | INBA A for ~

LTL model checking
persistence checking

T®AEOO-F ?

S N

yes no + counterexample
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LTL Model Checking

Recap: Generalized Biichi Automata

Definition: Generalized Buichi automata

A generalized NBA (GNBA) & is a tuple (Q, X, 5, Qp, §) where Q, X, 4, Qo
are as before and

S={F1,...,Fk} with F;EQ

for some natural k € N.

Run goqi ... € QY is accepting if VF; €3: q; € Fj for infinitely many i

The size of &, denoted ||, is the number of states and transitions in &
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GNBA and NBA are Equally Expressive Overview

|
For every GNBA & there exists an NBA 2l with

L.(6) = £,(A) with [A] = O(|6]-[3])

where § = { F, ..., Fi } denotes the set of acceptance sets in &.

For k=0, 1, this result follows directly. For k > 1, make k copies of &:
P initial states of NBA := the initial states in the first copy
P final states of NBA := accept set F; in the first copy

P on visiting in i-th copy a state in F;, then move to the (i+1)-st copy
L]

© From LTL to GNBA
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From LTL to GNBA From LTL to GNBA

How to Obtain a GNBA? States by Example
GNBA &, over 2*" for LTL-formula ¢ with £,(8,) = Words(y):

P Assume ¢ only contains the operators A, =, O and U
v, =, &, 0, W, and so on, are derived from these base operators Example: n = au(ﬁa A b) =-aAb

{a} {a} {ab} {8} & & ... Fyp
! ! 1 . 4 !

P States are elementary sets of sub-formulas in ¢
P for o = Ay Ay ... € Words(p), expand A; € AP with sub-formulas of ¢

P ... to obtain the infinite word & = By B; ... with B; a set of a a a -3 ) )
sub-formulas of ¢ such that -b -b b h -b -b
beB  ifandonlyif o = A A ... E | (| | W V||| [
» G is intended to be a run of GNBA &, for o . . P £ ¥ = 120
P Transitions are derived from semantics O and expansion law for U
P Accept sets guarantee that: & is an accepting run for o iff o F
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Closure

Definition: Closure

The closure of LTL-formula ¢ is the set c/(¢) consisting of all sub-formulas
1 of ¢ and their negation =) where 1 and = are identified.

For ¢ = aU(—a A b) we have

cllp) = {a, b,=a,=b,~aAb,=(~aAb),p -p}

We cannot take B; as arbitrary subset of c/(i).
They must be elementary.
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Examples

Elementary or not? LTLMC3 249
Let ¢ = aU(—aA b).

B, ={a,b,ma A b, p} not elementary

propositional inconsistent

B, = {—a, b, ¢} not elementary, not maximal

as —aAb ¢gB
-(-aAb) ¢ B,

B3 = {—a, b,ma A b,~¢p} not elementary
not locally consistent for U

By = {—a,—b,~(—a A b),~¢p} elementary
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Elementary Sets

Definition: Elementary sets

B < cl(p) is elementary if all following conditions hold:

1. B is maximally consistent, i.e., for all ¢1 A 2,1 € cl(p):

> opyApy€EB & ¢ €Band p, €B
| 2 1/}¢B = —ﬂ/}EB
P true € cllp) = truee B

2. B is locally consistent, i.e., for all o1 Uy, € clp):
> ¢2€B = QD]_UQDQEB
> opyUp,eBand p, ¢ B = p, €B
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Automaton Construction

Definition: The GNBA for and LTL Formula

For LTL-formula ¢, let &, = (@,2", 4, Qo, §) where

P Q is the set of all elementary sets of formulas B € c/(¢) with
Q = {BEQ|§0€B}

» If A+ BN AP, then (B, A) = @.

» §(B,Bn AP) is the set B' ¢ Q satisfying:
(i) Forevery O € cllp): Oy €eB < eB, and
(i) For every ¢; U, € cl(y):

p1Upr€B & (p2€B V (p1 €BAp; Uy, €B)

> F = {ScplUgoz|801USD2€C/(Q0)}Where
SpiUp, = {B€Q|¢1U¢2¢Borg@268}
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From LTL to GNBA

Example (1)

initial states: formula-sets B with Qa € B
transition relation:
if Oa € B then §(B,BNn{a}) ={B':a€ B’}
if Oa ¢ B then 6(B,BNn{a}) ={B':a¢ B’}
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From LTL to GNBA

Example (3)

ot D
for all words 0 = Ag A1 Ay As... € L,(G): A1 ={a}
proof: Let By By B, ... be an accepting run for o.
= (a € By and therefore a € By
= the outgoing edges of B; have label {a}
= {a} = BINAP = A
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From LTL to GNBA

Example (2)

set of acceptance sets: F = &

Z {a a, o o ... QOa
i {l} {l} i =

-a a a -a accepting

Oa||Oa||-Qal||-Oa| " run

Joost-Pieter Katoen
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From LTL to GNBA

Main Theorem

[Vardi, Wolper & Sistla 1986]
For any LTL-formula ¢ (over AP) there exists a GNBA &, over 2*" with:
(a) Words(p) = £,(&,)

(b) &, can be constructed in time and space O(2|“0|)

(c) #accepting sets of &, is bounded above by O(|¢]).

Corollary
For every LTL-formula ¢, Words(y) is w-regular.
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NBA More Expressive Than LTL

|
There is no LTL formula ¢ with Words(y) = E for the LT-property:

E = {AoAlAQ...G(z{a})w | a€ Ay, fOI’iZO}
But there exists an NBA 2( with £,(2() = E.

Omitted. O
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Lower Bound

|
There exists a family of LTL formulas ¢, with |@,| = O(poly(n)) such that
every NBA 2l for ¢, has at least 2" states.

On the black board. ]

Joost-Pieter Katoen Lecture#8 35/39

Complexity

Overview

Q@ Complexity

Complexity

Complexity

|
The time and space complexity of automata-based LTL model checking is

o(|Ts| -2

Proof.
1. the closure of LTL formula ¢ has size in O(|¢|)
. the number of elementary sets is in O(2|‘p|)

2
3. the number of states in the GNBA &,, is in O(2|‘p|)

4. the number of acceptance sets in GNBA &, is in O(|¢|)
5

6

7

. the size of the NBA 2, is in O(|¢| - ZM)

. the size of TS® 2, is in O(| TS - ol#l )
. determining TS® A, E GO =F isin O(| TS® 2|).
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Overview Summary
» LTL model checking exploits a GNBA 2l_, for the negation of ¢

P States of the GNBA are subsets of certain sub-formulas of ¢

» Taking these subsets give rises to an exponential blow-up. This
cannot be avoided

» For each until-sub-formula of ¢, the GNBA has one acceptance set
» Each LTL-formula describes an w-regular LT property
© Summary P LTL is strictly less expressive than w-regular expressions

» LTL model checking by automata is linear in the size of the transition
system and exponential in the size of ¢
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Next Lecture

Friday November 15, 14:30
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