Overview

1. Linear Temporal Logic
2. LTL Model Checking
3. From LTL to GNBA
4. Complexity
5. Summary
LTL Syntax

Definition: LTL syntax

BNF grammar for LTL formulas with proposition $a \in AP$:

$$
\varphi ::= \text{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Diamond \varphi \mid \varphi_1 U \varphi_2
$$

- **Propositional logic**
 - $a \in AP$
 - \(\neg \varphi\) and \(\varphi \land \psi\)

- **Temporal modalities**
 - $\Diamond \varphi$ neXt state fulfills φ
 - $\varphi U \psi$ φ holds Until a ψ-state is reached

Linear Temporal Logic (LTL) is a logic to describe LT properties

Semantics Over Words

Definition: LTL semantics over infinite words

The LT-property induced by LTL formula φ over AP is:

$$\text{Words}(\varphi) = \{ \sigma \in 2^{AP}^\omega \mid \sigma \models \varphi \}$$

where \models is the smallest relation with:

- $\sigma \models \text{true}$
- $\sigma \models a$ iff $a \in A_0$ (i.e., $A_0 \models a$)
- $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
- $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
- $\sigma \models \Diamond \varphi$ iff $\sigma[1..] = A_1 A_2 A_3 \ldots \models \varphi$
- $\sigma \models \varphi_1 U \varphi_2$ iff $\exists j \geq 0. \sigma[j..] \models \varphi_2$ and $\sigma[i..] \models \varphi_1$, $0 \leq i < j$

for $\sigma = A_0 A_1 A_2 \ldots$, let $\sigma[i..] = A_i A_{i+1} A_{i+2} \ldots$ be the suffix of σ from index i on.

Derived Operators

- $\Diamond \varphi \equiv \text{true} U \varphi$ “some time in the future”
- $\Box \varphi \equiv \neg \Diamond \neg \varphi$ “from now on forever”

Semantics of \Box, \Diamond, $\Box \Diamond$ and $\Diamond \Box$

- $\sigma \models \Diamond \varphi$ iff $\exists j \geq 0. \sigma[j..] \models \varphi$
- $\sigma \models \Box \varphi$ iff $\forall j \geq 0. \sigma[j..] \models \varphi$
- $\sigma \models \Box \Diamond \varphi$ iff $\forall j \geq 0. \exists i \geq j. \sigma[i..] \models \varphi$ infinitely often φ
- $\sigma \models \Diamond \Box \varphi$ iff $\exists j \geq 0. \forall i \geq j. \sigma[i..] \models \varphi$ persistence of φ
Semantics over Transition Systems

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system
and φ be an LTL-formula over AP.

- For infinite path fragment π of TS:
 $$\pi \models \varphi \iff \text{trace}(\pi) \models \varphi$$

- For state $s \in S$:
 $$s \models \varphi \iff \forall \pi \in \text{Paths}(s). \pi \models \varphi$$

- For transition system TS:
 $$TS \models \varphi \iff \text{Traces}(TS) \subseteq \text{Words}(\varphi) \iff \forall s \in I. s \models \varphi$$

Example

$$\begin{align*}
T &\models a &\text{as } s_0 \models a \text{ and } s_2 \models a \\
T &\not\models \Box \Diamond a &\text{as } s_0 s_1 s_0 s_1 \ldots \not\models \Box \Diamond a \\
T &\models \Diamond \Box b \lor
\Box \Diamond (\neg a \land \neg b) &\text{as } s_2 \models b, s_1 \not\models a, b \\
T &\models \Box (a \rightarrow (\Box \neg a \lor b)) &\text{as } s_2 \models b, s_0 \models \Box \neg a
\end{align*}$$

Overview

1. Linear Temporal Logic
2. LTL Model Checking
3. From LTL to GNBA
4. Complexity
5. Summary

The LTL Model Checking Problem

Given:

1. finite transition system TS, and
2. LTL-formula φ

decide whether $TS \models \varphi$, and if $TS \not\models \varphi$, provide a counterexample.
NBA for LTL Formulae

\[\mathcal{L}_\omega(A) = \text{Words}(\varphi) \]

A Naive Attempt

\(TS \models \varphi \) if and only if \(\text{Traces}(TS) \subseteq \text{Words}(\varphi) \)

if and only if \(\text{Traces}(TS) \subseteq \mathcal{L}_\omega(A_\varphi) \)

if and only if \(\text{Traces}(TS) \cap \mathcal{L}_\omega(A_\neg \varphi) = \emptyset \)

if and only if \(\text{Traces}(TS) \cap \mathcal{L}_\omega(A_\neg \varphi) = \emptyset \).

Naive idea: check whether \(TS \) has no behaviour accepted by NBA \(A_\varphi \)

But complementation of NBA yields a blow-up:

if \(A \) has \(n \) states, \(\overline{A} \) has \(c^n \) states in worst case

\[\Rightarrow \text{use the fact that: } \mathcal{L}_\omega(A_\varphi) = \mathcal{L}_\omega(A_\neg \varphi) \]

Approach

\(TS \models \varphi \) if and only if \(\text{Traces}(TS) \subseteq \text{Words}(\varphi) \)

if and only if \(\text{Traces}(TS) \subseteq \mathcal{L}_\omega(A_\varphi) \)

if and only if \(\text{Traces}(TS) \cap \mathcal{L}_\omega(A_\neg \varphi) = \emptyset \)

if and only if \(\text{Traces}(TS) \cap \mathcal{L}_\omega(A_\neg \varphi) = \emptyset \)

if and only if \(TS \otimes A_{\neg \varphi} \not\models \square \neg F \)

where \(F \) is the set of accept states of NBA \(A_{\neg \varphi} \).

LTL model checking is thus reduced to persistence checking.
Automata-Based LTL Model Checking

Overview

Recap: Generalized Büchi Automata

Definition: Generalized Büchi automata

A generalized NBA (GNBA) \(\mathcal{G} \) is a tuple \((Q, \Sigma, \delta, Q_0, \mathcal{F})\) where \(Q, \Sigma, \delta, Q_0\) are as before and

\[
\mathcal{F} = \{ F_1, \ldots, F_k \}
\]

with \(F_i \subseteq Q\)

for some natural \(k \in \mathbb{N}\).

Run \(q_0 q_1 \ldots \in Q^\omega\) is accepting if \(\forall F_j \in \mathcal{F}: q_i \in F_j\) for infinitely many \(i\).

The size of \(\mathcal{G}\), denoted \(|\mathcal{G}|\), is the number of states and transitions in \(\mathcal{G}\).
GNBA and NBA are Equally Expressive

For every GNBA \(G \) there exists an NBA \(A \) with

\[
\mathcal{L}_\omega(G) = \mathcal{L}_\omega(A) \quad \text{with} \quad |A| = O(|G| \cdot |F|)
\]

where \(F = \{ F_1, \ldots, F_k \} \) denotes the set of acceptance sets in \(G \).

Proof.

For \(k=0,1 \), this result follows directly. For \(k > 1 \), make \(k \) copies of \(G \):
- initial states of NBA := the initial states in the first copy
- final states of NBA := accept set \(F_1 \) in the first copy
- on visiting in \(i \)-th copy a state in \(F_i \), then move to the \((i+1)\)-st copy

How to Obtain a GNBA?

GNBA \(G_\varphi \) over \(2^{AP} \) for LTL-formula \(\varphi \) with \(\mathcal{L}_\omega(G_\varphi) = \text{Words}(\varphi) \):

- Assume \(\varphi \) only contains the operators \(\land, \neg, \Box, \Diamond, W \), and so on, are derived from these base operators

- States are elementary sets of sub-formulas in \(\varphi \)
 - for \(\sigma = A_0 A_1 \ldots \in \text{Words}(\varphi) \), expand \(A_i \in AP \) with sub-formulas of \(\varphi \)
 - \(\ldots \) to obtain the infinite word \(\bar{\sigma} = B_0 B_1 \ldots \) with \(B_i \) a set of sub-formulas of \(\varphi \) such that
 \[
 \psi \in B_i \quad \text{if and only if} \quad \sigma' = A_0 A_1 \ldots \models \psi
 \]
 - \(\bar{\sigma} \) is intended to be a run of GNBA \(G_\varphi \) for \(\sigma \)

- Transitions are derived from semantics \(\Diamond \) and expansion law for \(U \)
- Accept sets guarantee that: \(\bar{\sigma} \) is an accepting run for \(\sigma \) iff \(\sigma \models \varphi \)
Closure

Definition: Closure

The closure of LTL-formula φ is the set $cl(\varphi)$ consisting of all sub-formulas ψ of φ and their negation $\neg\psi$ where ψ and $\neg\neg\psi$ are identified.

Example

For $\varphi = a U (\neg a \land b)$ we have

$$cl(\varphi) = \{a, b, \neg a, \neg b, a \land b, \neg(a \land b), \varphi, \neg \varphi\}.$$

We cannot take B_i as arbitrary subset of $cl(\varphi)$.
They must be elementary.

Elementary Sets

Definition: Elementary sets

$B \subseteq cl(\varphi)$ is elementary if all following conditions hold:

1. B is maximally consistent, i.e., for all $\varphi_1 \land \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B$ and $\varphi_2 \in B$
 - $\psi \notin B \iff \neg \psi \in B$
 - true in $cl(\varphi) \Rightarrow$ true in B

2. B is locally consistent, i.e., for all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_2 \in B \Rightarrow \varphi_1 U \varphi_2 \in B$
 - $\varphi_1 U \varphi_2 \in B$ and $\varphi_2 \notin B \Rightarrow \varphi_1 \in B$

Automaton Construction

Definition: The GNBA for and LTL Formula

For LTL-formula φ, let $\varphi = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- Q is the set of all elementary sets of formulas $B \subseteq cl(\varphi)$ with $Q_0 = \{B \in Q \mid \varphi \in B\}$

- If $A \neq B \cap AP$, then $\delta(B, A) = \emptyset$.

- $\delta(B, B \cap AP)$ is the set $B' \subseteq Q$ satisfying:
 (i) For every $\psi \in cl(\varphi)$: $\bigcirc \psi \in B \iff \psi' \in B'$, and
 (ii) For every $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 $$\varphi_1 U \varphi_2 \in B \iff (\varphi_2 \in B \vee (\varphi_1 \in B \land \varphi_1 U \varphi_2 \in B'))$$

- $\mathcal{F} = \{\nexists \varphi_1 U \varphi_2 \mid \varphi_1 U \varphi_2 \in cl(\varphi)\}$ where
 $$\mathcal{F'} = \{B \in Q \mid \varphi_1 U \varphi_2 \notin B \text{ or } \varphi_2 \in B\}$$
Main Theorem

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a GNBA \mathcal{G}_φ over $2^{\mathcal{AP}}$ with:

(a) $\text{Words}(\varphi) = \omega_l(G)$
(b) \mathcal{G}_φ can be constructed in time and space $O(2^{\mid \varphi \mid})$
(c) $\#$ accepting sets of \mathcal{G}_φ is bounded above by $O(\mid \varphi \mid)$.

Corollary

For every LTL-formula φ, $\text{Words}(\varphi)$ is ω-regular.
NBA More Expressive Than LTL

There is no LTL formula φ with $\text{Words}(\varphi) = E$ for the LT-property:

$$E = \{ A_0 A_1 A_2 \ldots \in \{2, a}\}^\omega \mid a \in A_{2i} \text{ for } i \geq 0 \}$$

But there exists an NBA \mathfrak{A} with $\Sigma_\omega(\mathfrak{A}) = E$.

Proof.

Omitted.

Lower Bound

There exists a family of LTL formulas φ_n with $|\varphi_n| = O(\text{poly}(n))$ such that every NBA \mathfrak{A}_{φ_n} for φ_n has at least 2^n states.

Proof.

On the black board.

Complexity

The time and space complexity of automata-based LTL model checking is

$$O(|TS| \cdot 2^{|\varphi|})$$

Proof.

1. the closure of LTL formula φ has size in $O(|\varphi|)$
2. the number of elementary sets is in $O(2^{|\varphi|})$
3. the number of states in the GNBA \mathcal{G}_φ is in $O(2^{|\varphi|})$
4. the number of acceptance sets in GNBA \mathcal{G}_φ is in $O(|\varphi|)$
5. the size of the NBA \mathfrak{A}_φ is in $O(|\varphi| \cdot 2^{|\varphi|})$
6. the size of $TS \otimes \mathfrak{A}_\varphi$ is in $O(|TS| \cdot 2^{|\varphi|})$
7. determining $TS \otimes \mathfrak{A}_\varphi \models \Diamond \square \neg F$ is in $O(|TS \otimes \mathfrak{A}_\varphi|)$.
LTL model checking exploits a GNBA $\exists_{\omega\varphi}$ for the negation of φ.

States of the GNBA are subsets of certain sub-formulas of φ.

Taking these subsets gives rise to an exponential blow-up. This cannot be avoided.

For each until-sub-formula of φ, the GNBA has one acceptance set.

Each LTL-formula describes an ω-regular LT property.

LTL is strictly less expressive than ω-regular expressions.

LTL model checking by automata is linear in the size of the transition system and exponential in the size of φ.

Friday November 15, 14:30