Model Checking Lecture #8: LTL Model Checking By Automata [Baier & Katoen, Chapter 5.2]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Joost-Pieter Katoen

Derived Operators
$\diamond \varphi \equiv \text{true U } \varphi$ "some time in the futur
$\Box \varphi \equiv \neg \Diamond \neg \varphi $ "from now on forever"
Linear Terrenel Loris
Linear Temporal Logic
Linear Temporal Logic Semantics of \Box , \diamondsuit , $\Box\diamondsuit$ and $\diamondsuit\Box$
Semantics of □, �, □� and �□
Semantics of \Box , \diamondsuit , \Box \diamondsuit and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$
Semantics of \Box , \diamondsuit , \Box \diamondsuit and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \diamondsuit \varphi$ iff $\forall j \ge 0. \ \exists i \ge j. \ \sigma[i] \models \varphi$
Semantics of \Box , \diamondsuit , \Box \diamondsuit and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$
Semantics of \Box , \diamondsuit , \Box \diamondsuit and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \sigma[j] \models \varphi$ $\sigma \models \Box \diamondsuit \varphi$ iff $\forall j \ge 0. \exists i \ge j. \sigma[i] \models$ infinitely often φ $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \forall i \ge j. \sigma[i] \models$
Semantics of \Box , \diamondsuit , \Box and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \diamondsuit \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \diamondsuit \varphi$ iff $\forall j \ge 0. \ \exists i \ge j. \ \sigma[i] \models$
Semantics of \Box , \diamondsuit , \Box \diamondsuit and \diamondsuit \Box $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \varphi$ iff $\forall j \ge 0. \ \sigma[j] \models \varphi$ $\sigma \models \Box \diamondsuit \varphi$ iff $\forall j \ge 0. \ \exists i \ge j. \ \sigma[i] \models$ infinitely often φ $\sigma \models \diamondsuit \varphi$ iff $\exists j \ge 0. \ \forall i \ge j. \ \sigma[i] \models$

Joost-Pieter Katoen

6/39

Linear Temporal Logic

Semantics over Transition Systems

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and φ be an LTL-formula over AP.

For infinite path fragment π of *TS*:

 $\pi \models \varphi$ iff $trace(\pi) \models \varphi$

For state $s \in S$:

 $s \models \varphi$ iff $\forall \pi \in Paths(s)$. $\pi \models \varphi$

For transition system *TS*:

 $TS \models \varphi \quad \text{iff} \quad Traces(TS) \subseteq Words(\varphi) \quad \text{iff} \quad \forall s \in I. \ s \models \varphi$

Joost-Pieter Katoen	Lecture#8	9/39
Our	LTL Model Checking	
Overview		
1 Linear Temporal Logic		
2 LTL Model Checking		
3 From LTL to GNBA		
Omplexity		
5 Summary		

Example

Lecture#8	10/3
LTL Model Checking	
cking Problem	
	LTL Model Checking

2. LTL-formula φ

decide whether $TS \models \varphi$, and if $TS \not\models \varphi$, provide a counterexample.

LTL Model Checking

NBA for LTL Formulae

Joost-Pieter Katoen		Lecture#8	13/39
		LTL Model Checking	
A Naive Atter	mpt		
$\mathit{TS}\vDash\varphi$	if and only if	$\mathit{Traces}(\mathit{TS}) \subseteq \mathit{Words}(\varphi)$	
	if and only if	$\mathit{Traces}(\mathit{TS}) \subseteq \mathfrak{L}_{\omega}(\mathfrak{A}_{\varphi})$	
	if and only if	$Traces(TS) \cap \overline{\mathfrak{L}_{\omega}(\mathfrak{A}_{\varphi})} = \emptyset$	

if and only if $Traces(TS) \cap \mathfrak{L}_{\omega}(\overline{\mathfrak{A}_{\varphi}}) = \emptyset$.

Naive idea: check whether TS has no behaviour accepted by NBA $\overline{\mathfrak{A}_{\varphi}}$

But complementation of NBA yields a blow-up: if \mathfrak{A} has *n* states, $\overline{\mathfrak{A}}$ has c^{n^2} states in worst case \Rightarrow use the fact that: $\mathfrak{L}_{\omega}(\overline{\mathfrak{A}_{\varphi}}) = \mathfrak{L}_{\omega}(\mathfrak{A}_{\neg\varphi})$

NBA for LTL Formulae

Joost-Pieter Katoen

LTL Model Checking

Lecture#8

Approach

$TS \models \varphi$	if and only if	$\mathit{Traces}(\mathit{TS}) \subseteq \mathit{Words}(\varphi)$
	if and only if	$\mathit{Traces}(\mathit{TS}) \subseteq \mathfrak{L}_{\omega}(\mathfrak{A}_{\varphi})$
	if and only if	$Traces(TS) \cap \overline{\mathfrak{L}_{\omega}(\mathfrak{A}_{\varphi})} = \emptyset$
	if and only if	$Traces(TS) \cap \mathfrak{L}_{\omega}(\overline{\mathfrak{A}_{\varphi}}) = \emptyset$
	if and only if	$Traces(TS) \cap \mathfrak{L}_{\omega}(\mathfrak{A}_{\neg \varphi}) = \emptyset$
	if and only if	$TS \otimes \mathfrak{A}_{\neg \varphi} \models \Diamond \Box \neg F$

where *F* is the set of accept states of NBA $\mathfrak{A}_{\neg\varphi}$.

LTL model checking is thus reduced to persistence checking

Lecture#8

15/3

LTL Model Checking

Automata-Based LTL Model Checking

LTL Model Checking

Recap: Generalized Büchi Automata

Definition: Generalized Büchi automata

A generalized NBA (GNBA) \mathfrak{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathfrak{F})$ where Q, Σ, δ, Q_0 are as before and

$$\mathfrak{F} = \{F_1, \ldots, F_k\}$$
 with $F_i \subseteq Q$

for some natural $k \in \mathbb{N}$.

Run $q_0 q_1 \ldots \in Q^{\omega}$ is accepting if $\forall F_j \in \mathfrak{F}$: $q_i \in F_j$ for infinitely many *i*

The size of \mathfrak{G} , denoted $|\mathfrak{G}|$, is the number of states and transitions in \mathfrak{G}

Lecture#8

LTL Model Checking

GNBA and NBA are Equally Expressive

For every GNBA $\mathfrak G$ there exists an NBA $\mathfrak A$ with

 $\mathfrak{L}_{\omega}(\mathfrak{G}) = \mathfrak{L}_{\omega}(\mathfrak{A})$ with $|\mathfrak{A}| = O(|\mathfrak{G}| \cdot |\mathfrak{F}|)$

where $\mathfrak{F} = \{F_1, \dots, F_k\}$ denotes the set of acceptance sets in \mathfrak{G} .

Proof.

For k=0, 1, this result follows directly. For k > 1, make k copies of \mathfrak{G} :

- ▶ initial states of NBA := the initial states in the first copy
- Final states of NBA := accept set F_1 in the first copy
- on visiting in *i*-th copy a state in F_i , then move to the (*i*+1)-st copy

Joost-Pieter Katoen

From LTL to GNBA

Lecture#8

How to Obtain a GNBA?

GNBA \mathfrak{G}_{φ} over 2^{AP} for LTL-formula φ with $\mathfrak{L}_{\omega}(\mathfrak{G}_{\varphi}) = Words(\varphi)$:

- Assume φ only contains the operators ∧, ¬, and U
 ∨, →, ◊, □, W, and so on, are derived from these base operators
- States are elementary sets of sub-formulas in φ
 - ▶ for $\sigma = A_0 A_1 \ldots \in Words(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - ... to obtain the infinite word $\bar{\sigma} = B_0 B_1 \dots$ with B_i a set of sub-formulas of φ such that

if and only if $\sigma^i = A_i A_{i+1} \dots \models \psi$ $\psi \in B_i$

- $\blacktriangleright~\bar{\sigma}$ is intended to be a run of GNBA \mathfrak{G}_{φ} for σ
- ▶ Transitions are derived from semantics and expansion law for U
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

23

Overview

Linear Temporal Logic
 LTL Model Checking
 From LTL to GNBA
 Complexity
 Summary

From LTL to GNBA

Lecture#8

States by Example

Joost-Pieter Katoen

Lecture#8

From LTL to GNBA

From LTL to GNBA

Elementary Sets

Definition: Closure

The closure of LTL-formula φ is the set $cl(\varphi)$ consisting of all sub-formulas ψ of φ and their negation $\neg\psi$ where ψ and $\neg\neg\psi$ are identified.

Example

Closure

For $\varphi = a \cup (\neg a \land b)$ we have

$$cl(\varphi) = \{a, b, \neg a, \neg b, \neg a \land b, \neg(\neg a \land b), \varphi, \neg \varphi\}.$$

We cannot take B_i as arbitrary subset of $cl(\varphi)$. They must be elementary.

Definition: Elementary sets

 $B \subseteq cl(\varphi)$ is elementary if all following conditions hold:

1. *B* is maximally consistent, i.e., for all $\varphi_1 \land \varphi_2, \psi \in cl(\varphi)$:

- $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$ $\psi \notin B \iff \neg \psi \in B$
- ▶ true $\in cl(\varphi) \Rightarrow$ true $\in B$
- 2. *B* is locally consistent, i.e., for all $\varphi_1 \cup \varphi_2 \in cl(\varphi)$:
 - $\blacktriangleright \varphi_2 \in B \implies \varphi_1 \cup \varphi_2 \in B$
 - $\blacktriangleright \varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$

Joost-Pieter Katoen Lecture#8	25/39 Joost-Pieter Katoen Lecture#8 26/39
From LTL to GNBA	From LTL to GNBA
Elementary or not? LTLMC3.2-49	Definition: The GNBA for and LTL Formula For LTL-formula φ , let $\mathfrak{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathfrak{F})$ where
Let $\varphi = a U(\neg a \land b)$. $B_1 = \{a, b, \neg a \land b, \varphi\}$ not elementary propositional inconsistent	• Q is the set of all elementary sets of formulas $B \subseteq cl(\varphi)$ with $Q_0 = \{ B \in Q \mid \varphi \in B \}$
$B_2 = \{\neg a, b, \varphi\} $ not elementary, not maximal as $\neg a \land b \notin B_2$ $\neg (\neg a \land b) \notin B_2$	 If A ≠ B ∩ AP, then δ(B, A) = Ø. δ(B, B ∩ AP) is the set B' ⊆ Q satisfying: (i) For every ○ψ ∈ cl(φ): ○ψ ∈ B ⇔ ψ ∈ B', and (ii) For every φ₁ ∪ φ₂ ∈ cl(φ):
$B_{3} = \{\neg a, b, \neg a \land b, \neg \varphi\}$ not elementary not locally consistent for U	$\varphi_1 \cup \varphi_2 \in B \iff (\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in B'))$
$B_4 = \{\neg a, \neg b, \neg (\neg a \land b), \neg \varphi\}$ elementary	$\mathfrak{F} = \{ \mathfrak{F}_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in cl(\varphi) \} \text{ where} \\ \mathfrak{F}_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \}$
Joost-Pieter Katoen Lecture#8	27/39 Joost-Pieter Katoen Lecture#8 28/39

From LTL to GNBA

Example (1)

initial states: formula-sets **B** with $\bigcirc a \in B$

transition relation:

if $\bigcirc a \in B$ then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$ if $\bigcirc a \notin B$ then $\delta(B, B \cap \{a\}) = \{B' : a \notin B'\}$

Lecture#

From LTL to GNBA

Joost-Pieter Katoen

Example (3)

for all words $\sigma = A_0 A_1 A_2 A_3 \dots \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 \dots$ be an accepting run for σ . $\implies \bigcirc a \in B_0$ and therefore $a \in B_1$

 \implies the outgoing edges of B_1 have label $\{a\}$

$$\implies$$
 $\{a\} = B_1 \cap AP = A_1$

From LTL to GNBA

From LTL to GNBA

Main Theorem

For any LTL-formula φ (over *AP*) there exists a GNBA \mathfrak{G}_{φ} over 2^{*AP*} with:

- (a) Words(φ) = $\mathfrak{L}_{\omega}(\mathfrak{G}_{\varphi})$
- (b) \mathfrak{G}_{φ} can be constructed in time and space $O(2^{|\varphi|})$
- (c) #accepting sets of \mathfrak{G}_{φ} is bounded above by $O(|\varphi|)$.

Corollary

For every LTL-formula φ , *Words*(φ) is ω -regular.

31/39

30/39

From LTL to GNBA

NBA More Expressive Than LTL

There is **no** LTL formula φ with *Words*(φ) = *E* for the LT-property:

$$\mathsf{E} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{\{a\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \ge 0 \right\}$$

But there exists an NBA \mathfrak{A} with $\mathfrak{L}_{\omega}(\mathfrak{A}) = \mathbf{E}$.

Proof.		
Omitted.		
Joost-Pieter Katoen	Lecture#8	33/39
	Complexity	
Lower Bound		

There exists a family of LTL formulas φ_n with $|\varphi_n| = O(poly(n))$ such that every NBA \mathfrak{A}_{φ_n} for φ_n has at least 2^n states.

Proof.

On the black board.

Joost-Pieter Katoen Lecture#8 34/3		34/39
	Complexity	
Complexity	Complexity	
The time and space complexit	y of automata-based LTL m	odel checking is

 $O(|TS| \cdot 2^{|\varphi|})$

Lecture#8

Proof.

- 1. the closure of LTL formula φ has size in $O(|\varphi|)$
- 2. the number of elementary sets is in $O(2^{|\varphi|})$
- 3. the number of states in the GNBA \mathfrak{G}_{arphi} is in $\mathit{O}(2^{|arphi|})$
- 4. the number of acceptance sets in GNBA \mathfrak{G}_{φ} is in $O(|\varphi|)$
- 5. the size of the NBA \mathfrak{A}_{φ} is in $O(|\varphi| \cdot 2^{|\varphi|})$
- 6. the size of $TS \otimes \mathfrak{A}_{\varphi}$ is in $O(|TS| \cdot 2^{|\varphi|})$
- 7. determining $TS \otimes \mathfrak{A}_{\varphi} \models \Diamond \Box \neg F$ is in $O(|TS \otimes \mathfrak{A}_{\varphi}|)$.

Summary	Summary
Overview	Summary
	\blacktriangleright LTL model checking exploits a GNBA $\mathfrak{A}_{\neg \varphi}$ for the negation of φ
1 Linear Temporal Logic	\blacktriangleright States of the GNBA are subsets of certain sub-formulas of φ
2 LTL Model Checking	Taking these subsets give rises to an exponential blow-up. This cannot be avoided
3 From LTL to GNBA	For each until-sub-formula of φ , the GNBA has one acceptance set
4 Complexity	Each LTL-formula describes an ω -regular LT property
5 Summary	LTL is strictly less expressive than ω -regular expressions
	\blacktriangleright LTL model checking by automata is linear in the size of the transition system and exponential in the size of φ
oost-Pieter Katoen Lecture#8	37/39 Joost-Pieter Katoen Lecture#8 38/3
Summary	

Next Lecture

Friday November 15, 14:30