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Specifying LT Properties
» An LT property is a set of infinite traces over AP
P Specifying such sets explicitly is often inconvenient

» Mutual exclusion is specified over AP ={c;, ¢ } by
E utex = set of infinite words Ag A; ... with {c;, o} £ A; forall 0 <

» Starvation freedom is specified over AP = { ¢y, wy, ¢, wy } by

E ostare = set of infinite words Ag Ay ... such that:

(3] W1€AJ)=>(HJ C1EAJ')/\(3j. erAj)ﬁ(Hj.CQEAj)

Such properties can be specified much more succinctly using logic
(or using w-regular expressions)
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Linear Temporal Logic LTL Syntax

Definition: LTL syntax

BNF grammar for LTL formulas with proposition a € AP:

@ = true ' a l (pl/\tpz‘ - ' Oy | 01U s

» Propositional logic

> ae AP atomic proposition
» —pand p A negation and conjunction

» Temporal modalities

> O neXt state fulfills ¢
Arthur Norman Prior ?92'{ P;(‘;Sg > pUy © holds Until a v-state is reached
(1914-11969) ( f ) Linear Temporal Logic (LTL) is a logic to describe LT properties
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Derived Operators Intuitive Semantics
Y2 \Y% w = - ( @ A 7/1) a arbitrary arbitrary arbitrary arbitrary
- atomic prop.a O—-+--+(O)——"""Or—-O—-O——--
p =19 = —p VY
P = = A = arbitrary a arbitrary arbitrary arbitrary
pov = (p=29) A=) T - 3 3 o
@1 = (pA-1h) Vv (~p A |
aAN-b aAN-b a N\ —b b arbitrary
true = @ V =g untlaUb O O O O O
false = =true —a —-a —-a a arbitrary
) o . eventually ¢a O () O O O
O = trueUop some time in the future
Op = =Oap “from now on forever” always Oa Ca Ca Ca Ca Ca B

precedence order: the unary operators bind stronger than the binary ones.

- and O bind equally strong. U takes precedence over A, vV, and =
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Example: Traffic Light Properties Example Properties in LTL

» Once red, the light cannot become green immediately:
» Reachability

O(red = -Q green) > negated reachability O =

» conditional reachability pUy

» The green light becomes green eventually: < green » reachability from any state not expressible
» Once red, the light becomes green eventually: O(red = < green) P Safety

P simple safety O-

P conditional safety (pUY) v O o

» Once red, the light always becomes green eventually after being
for some time inbetween:

» Liveness O(p = <) and others
O(red > O (red U ( AO( U green))))
Joost-Pieter Katoen Lecture#7 9/36 Joost-Pieter Katoen Lecture#7 10/36
Overview Semantics Over Words

Definition: LTL semantics over infinite words

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {0’ € (2AP)W | o kE o }, where F is the smallest relation with:
© LTL Semantics

o E true

o E a iff aeAy (e, AgF a)

o E 1Ay iff 0F @ and 0 F ¢y

o B -=p iff ol

o E QOgp iff of[l.]=A1AAs3...Fop

o B o1Upy iff 3j20.0[..]FEp and o[i.]E ¢y, 0<i<j

for 0 = AgA1A, ..., let o[i..] = AjAi41 A2 - . . be the suffix of o from index i on.
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Semantics of O, ¢, 0¢ and &O

o E OCe iff 4j=20.0[..]F¢p
oc E op iff Vj=20.0[..]F¢
o F oOCyp iff Vj20.3izj. 0[i...]F¢

o B oop iff 3j=20Vizj . ofi...]F¢
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LTL Semantics

Semantics over Paths and States

Let TS=(S, Act, -, I, AP, L) be a transition system
and ¢ be an LTL-formula over AP.

» For infinite path fragment 7 of TS:
TEQ iff trace(r) E
» For state s € S:
sk iff V7 € Paths(s). mE ¢
» For transition system TS:

TSE @ iff Traces( TS) € Words(y) iff  Vselskyp

LTL Semantics

Example
(o Ts)——(=21) AP = {a, b}
{a} o {ab}
path m = 5519555 ... trace(w) = {a} & {a, b}*
ml=a, but TEb as L(s) = {a}
m = Q(—aA-b) as L(s)) =@
7 OO (aAb) as L(s;) = {a, b}
m = (=b) U(a A b) as sp,51 = b
m = (-b) U O(aAb) and s, FaAb
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Example
QWO O AP = {a, b}
{a} g {ab}
T E a assplEaand s = a
T ¥ OOa as S0 51 %51 -.- = Q0a

T | oOb v OQ(-aA-b) ass = b, sy [~ a, b
T EOa—-(Q-avVvb) asssEbskEQa
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LT Semantic
On The Semantics of Negation Example

For paths, it holds 7 E ¢ if and only if 7 ¥ = since:
Words(-y) = (2*°)* \ Words(y)

But: TS¥ ¢ and TSE -y are not equivalent in general

It holds: TSk = implies TS . Not always the reverse! s %]
Note that: sfEQa and s fEQa
TSH# o iff Traces(TS) ¢ Words(y)
iff Traces(TS)\ Words(p) # {a} o

iff Traces(TS) n Words(-y) # @

TS neither satisfies ¢ nor = if there are
paths 71 and 7, in TS such that m; F ¢ and w5 F =
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LTL Formulas for LT Properties Overview

Provide LTL formulas over AP = {a, b} for the LT properties:

P set of all words Ag A; ... over (2Ap)w such that:

Vi=0.(a€A = i>0 A beA_)
= Vj=0. (bEAJ \Y% 3¢Aj+1)
= Words(o(b v -0 a)) © LTL Equivalence

» set of all words of the form
{b}" {a}{b}" {a}{b}"{a}...
where n; 2 0. This is captured by
Words(a ((b A =a)U (a A =b)))
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LTL Equivalence

LTL Equivalence

Definition: LTL equivalence

LTL formulas ¢, (both over AP) are equivalent:

o =7 ¢ if and only if  Words(p) = Words(v)).

If it is clear from the context that we deal with LTL-formulas, we simply

write ¢ = ).

Equivalently:
@ =7 Y iff ( for all transition systems TS: TSE ¢ iff TSE )
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LTL Equivalence

Absorption and Distributive

Absorption: S OOy

o< Op

Distributive: O (p U1))
Olp v )
O(p A 1)

S A1)
o(e v )
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oo p
SOy

(Op)U(OY)
Sp v O
Op A OY

(Cp) U (O9)

Cp A S
Op VvV OY
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Duality and Ildempotence

Duality: —Op = Oy
—|<>SO = |:|—1g0
—|OQD = O—|QD
Idempotence: OO0¢ = O¢
OO = Oy
pU(pUy) = ¢Uy
(pUy)Uy = oUy

LTL Equivalence

Expansion Law

1
Y v (oA OlpUy))
VOO

eAQODOp

Expansion: Uy
S
Oy

[]

On the black board. Expansion laws can have multiple solutions.

Joost-Pieter Katoen Lecture#7 24/36



LTL Equivalence

Expansion for Until

|
Words(ip U 7)) is the smallest LT-property P such that:

1. Words(y)) ¢ P, and
2. {A0A1A2 coo © WOI‘dS((p) | AlAs ... € P} cP

where smallest is w.r.t. the S-ordering on sets (of infinite words).

Equivalently, Words(¢ U 1)) is the smallest LT property P such that:

WOI’C/S(”Q/)) U {AOA1A2 ... E WOFdS((p) | AiA ... € P} c P.
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Weak Until

Definition: the weak-until-operator

The weak-until (or: unless) operator is defined by

oW = (pUy) v op.

In contrast to until, weak until does not require to establish i) eventually

Until U and weak until W are dual:

=(pU) (o A =)W (=@ A =0))
=(p W) (A )U (= A )
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LTL Equivalence

Proof
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LTL Equivalence

Example
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Expansion for Weak Until

Recall: Words(p U 1)) is the smallest LT property P such that
Words(1)) U {AgA1A; ... € Words(p) | AiAy...€ P} c P.
|
Words(¢o W 1)) is the largest LT-property P such that:
Words(1)) U {AgA1A; ... € Words(p) | AjAr...€ P} 2 P

where largest is w.r.t. the € ordering on sets (of infinite words).
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The Release Operator

Definition: release operator

The release operator is defined by

eRY = =(-pU-1).

Semantics:
ocEpRy iff okOY v i (oli.]E@AVk<iolk.]EY)

1 always holds, a requirements that is released once ¢ becomes valid
It follows:

Op = falseRp
oW = (~p v )R(e Vv )
pRy = ¢ Aa(e v O(pRY))
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Positive Normal Form

Overview

@ Positive Normal Form
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The Semantics of Release

cEpRY

iff (* definition of R *)
o E=(=pU-)

iff (* definition of U *)
-3j20. (oj..]F = A Vi< j. ofi..]E =)

iff (* semantics of negation *)
=3j20. (o[j.JE Y A Vi<j. o[i.]# )

iff (* duality of 3 and V *)
V)2 0. ﬁ(o—y..] Ko A Vi< ofin]¥# cp)

iff (* de Morgan’s law *)
Wj 2 0. (<ol T¥ ¢) v Vi< oli i)

iff (* semantics of negation *)

Vj = 0. (o—[j..] Ed v 3i<j. ofi]E 99)
iff
¥j20.0[j.]Ey or (3i20. (o[i.]Ep) A Yk<i.o[k.JEV)
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Positive Normal Form Overview

Definition: positive normal form

The LTL-formula ¢ is in positive normal form (PNF) if it is of the form:

@ u= true | false ‘ a | -a | ©1 A P ‘ V1V Qo | Oy ' w1 Uy | 1 Rps.
As Op = false R, Op is in PNF; & ¢ =trueU ¢ is in PNF too.
|

For each LTL-formula ¢, there exists an equivalent LTL-formula % in PNF
such that || € O(|¢]).

O Summary

Transformation rules to push negations into the LTL-formula ¢, in

particular =Q ¢ = O = and =(p U ) = =p R ). O
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Summary Next Lecture

» Linear temporal logic (LTL) is a logic to succinctly describe LT
properties

P LTL-formulas are equivalent iff they describe the same LT properties

» The until-operator is the smallest solution of an expansion law Th u rsd ay Novem ber 14 10 . 30
y .

» The weak until-operator is the largest solution of that expansion law

» An LTL-formula is in positive normal form if negations only occur
adjacent to propositions

» Each LTL-formula can be transformed into an equivalent LTL-formula
in PNF
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