Model Checking

Lecture #6: Verifying Omega-Regular Properties
[Baier & Katoen, Chapter 4.4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#6 1/39

Overview

@ Omega-Regular Properties

Joost-Pieter Katoen Lecture#6 3/39

Overview

@ Omega-Regular Properties
© Refresher: Biichi Automata
© Verifying Omega-Regular Safety Properties

@ Nested Deth-First Search

© Summary
Joost-Pieter Katoen Lecture#6 2/39
Omega-Regular Properties

Topic

finite transition w-regular

system T property E
model checking
does T |= E hold ?
yes no + error indication

Joost-Pieter Katoen Lecture#6 4/39

w-Regular Properties

Definition: w-regular language

The set £ of infinite works over the alphabet X is w-regular if £ = £,,(G)
for some w-regular expression G over ¥.

Definition: w-regular properties

LT property E over AP is w-regular if E is an w-regular language over 2*°.

This is equivalent to:

|
LT property E over AP is w-regular if E is accepted by a non-deterministic
Biichi automaton (over the alphabet 2*%).

Joost-Pieter Katoen Lecture#6 5/39

Refresher: Biichi Automata

Overview

© Refresher: Biichi Automata

Joost-Pieter Katoen Lecture#6 7/39

Example w-Regular Properties

P Any invariant E is an w-regular property
P &% describes E with invariant condition ®

» Any regular safety property E is an w-regular property
> E = BadPref(E).(2AP)w is w-regular
» and w-regular languages are closed under complement

» Let X ={a, b} Then:
P Infinitely often a:

((+{b})"({a}+{a b})"

» Eventually a:

(2*)" ({a} +{a b}).(2")"

Joost-Pieter Katoen Lecture#6 6/39

Nondeterministic Biichi automata

Definition: Nondeterministic Biichi automaton
A nondeterministic Biichi automaton (NBA) 2 = (Q, X, 0, Qo, F) with:

P Q@ is a finite set of states

» Y is an alphabet

P H:QRXXY > 2@ is a transition function

> @ € Q a set of initial states

» F cQis a set of accept (or: final) states.

This definition is the same as for NFA.
The acceptance condition of NBA is different though.

Joost-Pieter Katoen Lecture#6 8/39

Language of a Biichi Automaton

» NBA 2 =(Q, %, 6, Q, F) and infinite word w=A; Ay... € X

» A run for win 2 is an infinite sequence gy q; ... € Q“ such that:
» g€ Q and q,-—AJ—*-Leq,-H forall 0 <

» Run qp gy ... is accepting if g; € F for infinitely many /
» The accepted language of 2:

£,(A) ={we | A has an accepting run for w }
» NBA 2 and 21" are equivalent if £,(A) = £,(2A")

Joost-Pieter Katoen Lecture#6 9/39

NBA and w-Regular Languages

1. For every NBA %, the language £, () is w-regular.
2. For every w-regular language L, there is an NBA 20 with L = £,(2).

Ll

Previous lecture.

Joost-Pieter Katoen Lecture#6 11/39

Refresher: Biichi Automata

Examples

B accepted language:
@ G set of all infinite words that

. A U contain infinitely many A's
(B*.A)¥

B A
B accepted language:
A “every B is preceded
@ A @ q2 by a positive even
A number of A's"

((A.A)*.B)” + ((A.A)*.B)*.A”

Joost-Pieter Katoen Lecture#6 10/39

Verifying Omega-Regular Safety Properties

Overview

© Verifying Omega-Regular Safety Properties

Joost-Pieter Katoen Lecture#6 12/39

Verifying Omega-Regular Safety Properties

Peterson’s Transition System
T ==" r==2

b1 =0

o

If a thread wants to update the account, does it ever get the opportunity to do so?

“always (req, = eventually @account;) A always (reqz = eventually @accountg)”

Joost-Pieter Katoen Lecture#6 13/39

Basic Idea
TSH E if and only if Traces(TS) ¢ E
if and only if Traces(TS)n (2")" \ E # @
if and only if Traces(TS)NE # @
if and only if Traces(TS)n £,(2A) + @

if and only if TS® 2 ¥ “eventually for ever” =F

persistence property

where 2 is an NBA accepting the complement property E-= (2AP)W \E

Joost-Pieter Katoen Lecture#6 15/39

Verifying Starvation Freedom

P Starvation freedom = when a thread wants access to account, it
eventually gets it

P “Infinite bad prefix” automaton: once a thread wants access to the
account, it never gets it

» Checking starvation freedom:

Traces(TSpet) N £4,(Ejive) = @7
—_—

infinite traces

P Intersection, complementation and emptiness of Biichi automata

accept infinite words

Joost-Pieter Katoen Lecture#6 14/39

Verifying Omega-Regular Safety Properties

Persistence Property

Definition: persistence property

A persistence property over AP is an LT property Epers © (2Ap)w of the form
“eventually for ever ®" for some propositional logic formula ¢ over AP:

Epers = {AOAlAg...e(2AP)w| 320 V2. Aji=¢}

The formula ® is called the persistence (or state) condition of E,eys.

“® is an invariant after a while”

Joost-Pieter Katoen Lecture#6 16/39

Example

Joost-Pieter Katoen Lecture#6 17/39

Verifying Omega-Regular Safety Properties

Verifying Omega-Regular Properties

finite transition w-regular
system T property E
:
NBA A for

the bad behaviors, i.e.,

for (24P)\ E

/

persistence checking

T ® A | “eventually forever =F"

/ N

yes no + error indication

Joost-Pieter Katoen Lecture#6 19/39

Problem Statement

Let
1. E be an w-regular property over AP

2. A be an NBA recognizing the complement of E

3. TS be a finite transition system (over AP) without terminal states

How to establish whether TSE E?

Joost-Pieter Katoen Lecture#6 18/39

Product: ldea

NFA for bad prefixes
A = (Qa 2AP7 67 007 F)

finite transition system

T = (S, Act, —, So, AP, 1)

. B Qo € QO

9o Le)=A |) Ao

sll l—(sl)_Al ______ (s1, a) | qllAl

512 S—C) X ,I‘B) QFAZ

k] cold

Sp o L(S")_A" ______ (S, ‘EnJrl) ql':q"

" [EEEERs P

fragpment T trace piitgr];rjﬁcr? iin £01 frace()

Joost-Pieter Katoen Lecture#6 o

Synchronous Product

Definition: synchronous product of TS and NBA

Let transition system TS = (S, Act, -, I, AP, L) without terminal states and
2A=(Q,X, 0, Qp, F) a non-blocking NBA with ¥ =2*". The product of TS
and 2 is the transition system:

TS®A = (S, Act,>' I', AP, L) where

> S'=5xQ, AP = Qand L'((s.q) = {q)
s%t A gty
(s, q) 5" (t, p)
> I'={(s0.q) | o€/ A 3qo € Q. go=2bq}.

» —'is the smallest relation defined by:

Joost-Pieter Katoen Lecture#6 21/39

Verifying Omega-Regular Safety Properties
Proof

Joost-Pieter Katoen Lecture#6 23/39

Verifying w-Regular Properties

Theorem

Let TS over AP, E an w-regular property and NBA 2[with £(2) = E.
Then:

TS E E iff Traces(TS) n £,() = @ iff TS®2A E eventually forever - F

persistence property

where F stands for \/ cr q.

Joost-Pieter Katoen Lecture#6 22/39

Verifying Omega-Regular Safety Properties
Example (1)
TS T LT property: “infinitely often green”

NBA A for the complement
“from some moment on —green”
. 9 —green reen
90 = qF S {(q1)
true

),

—green true

atomic propositions

AP’ = {qo, 9r, a1}
obvious labeling function

) Qe AR
“eventually forever ~F"

Joost-Pieter Katoen Lecture#6 24/39

Verifying Omega-Regular Safety Properties

Example (2)

TS T NBA A for the bad behaviors

tryA—del
\@ry el o] de @
@)

(lost) (delivered) true —del true

try_to_send

set of atomic propositions AP' = {qo, q1, qr}

Joost-Pieter Katoen Lecture#6 25/39

Nested Deth-First Search

Persistence Checking and Cycle Detection

|
Let

P TS be a finite transition system over AP without terminal states
» & a propositional formula over AP, and

P E the persistence property "eventually forever ®”

TSHE
if and only if
ds € Reach(TS).s# ® A sisonacyclein TS
if and only if
there exists a non-trivial reachable SCC C with Cn {s€S|skE-d}+@

Joost-Pieter Katoen Lecture#6 27/39

Nested Deth-First Search

Overview

@ Nested Deth-First Search

Joost-Pieter Katoen Lecture#6 26/39

Nested Deth-First Search

Persistence Checking

How to check for a reachable cycle containing a —®-state?

Two linear-time algorithms:

» Alternative 1:

P compute the maximal strongly connected components (SCCs) in TS
P check whether some SCC is reachable from an initial state
P ... that contains a ~®-state

P> Alternative 2:

use a nested depth-first search

for each reachable —®-state, check whether it belongs to a cycle
more adequate for on-the-fly verification algorithm

enables simple counterexample generation

\ A A A 4

Joost-Pieter Katoen Lecture#6 28/39

Nested Deth-First Search

Example SCC Algorithm

persistence property: “eventually forever -gg"

3 reachable SCCs: G, G, G3

C> non-trivial, and contains two states s with s = ~qf

TR .A £ “eventually forever =g

Joost-Pieter Katoen

Lecture#6 29/39
Nested Depth-First Search
P ldea: perform the two depth-first searches in an interleaved way
P the outer DFS serves to encounter all reachable —®-states
P the inner DFS seeks for backward edges leading to a —®-state
» Nested DFS
» on full expansion of —=®-state s in the outer DFS, start inner DFS
P in the inner DFS, visit all states reachable from s that have not been
not visited in an inner DFS yet
» backward edge found?
a cycle containing ~®-state s found
» no backward edge found to s?
continue the outer DFS (look for next —®-state)
Joost-Pieter Katoen Lecture#6 31/39

Nested Deth-First Search

A Naive Two-Phase Depth First-Search

1. Determine all =®-states that are reachable from some initial state
this is performed by a standard depth-first search

2. For each reachable —~®-state, check whether it belongs to a cycle
P start a depth-first search in —=®-state s
» to check whether s is reachable from itself

» Time complexity naive algorithm: ©(N-(N+M))

cycle check

» where N is the number of states and M the number of transitions
» where it is assumed that checking ® is in O(1)

P states reachable via K distinct —=®-states are searched K times

Time complexity nested DFS: ©(N-M).

Joost-Pieter Katoen Lecture#6 30/39

Nested Deth-First Search

Nested DFS: Example

S0
5 DFS(so)
DFS(s)
DFS(s3)
DFS(s,)
CYCLE_CHECK(sy)

s1,9 F a ~ cycle ;35
%0,53 Fa

T

returns correct

T £ “eventually forever a" o
answer “no

Joost-Pieter Katoen Lecture#6 32/39

Nested Deth-First Search

Correctness of Nested DFS

]
Let:

P TS be a finite transition system over AP without terminal states and
P E a persistence property.
Then:

The nested DFS algorithm yields "no” if and only if TS ¥ E.

Joost-Pieter Katoen Lecture#6 33/39

Nested Deth-First Search

Time Complexity

|
The worst-case time complexity of nested DFS is in

O(N+M)

where N is # states in TS, and M is # transitions in TS.

Joost-Pieter Katoen Lecture#6 35/39

Nested Deth-First Search

Proof

Joost-Pieter Katoen Lecture#6 34/39

Nested Deth-First Search

Counterexamples

A counterexample to TS F eventually forever ® is an initial path fragment
of the form

S0 ---Sn-1 Sn Sn+l---Snim—-1 Sn for m> 0.
-~ -~ ~
el E-d E-d

Using nested depth-first search:

» Counterexample generation: use the DFS stacks

P stack m,,; for the outer DFS = path fragment s, s,_1 ... 5o
P stack m;, for the inner DFS = a cycle from state s, Spem-1- .- Sp
P counterexample = reverse (mj,. Tout)

Joost-Pieter Katoen Lecture#6 36/39

Overview Summary

» Checking a regular safety property E = checking invariant on product

» with an NFA 2 for the bad prefixes of E
P “never reach an accept state of A"

» Checking an w-regular property E = checking persistence on a
product

» with an NBA for the complement of E
P “eventually forever no accept state of 2"

P Persistence checking is solvable in linear time by a nested DFS

© Summary
» Nested DFS = a DFS for reachable —®-states + a DFS for cycle
detection
Joost-Pieter Katoen Lecture#6 37/39 Joost-Pieter Katoen Lecture#6 38/39

Next Lecture

Friday November 8, 14:30

Joost-Pieter Katoen Lecture#6 39/39

	Omega-Regular Properties
	Refresher: Büchi Automata
	Verifying Omega-Regular Safety Properties
	Nested Deth-First Search
	Summary

