Model Checking Lecture #6: Verifying Omega-Regular Properties [Baier & Katoen, Chapter 4.4]

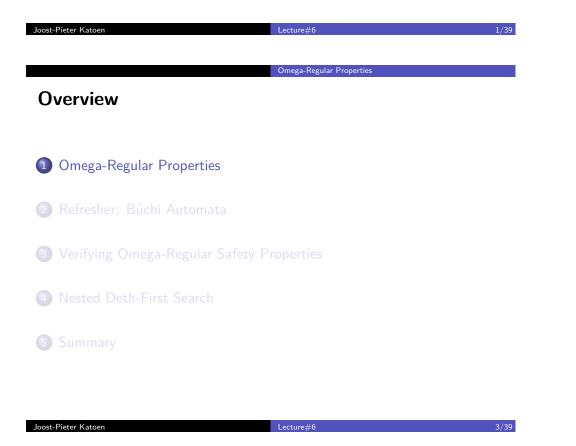
Joost-Pieter Katoen

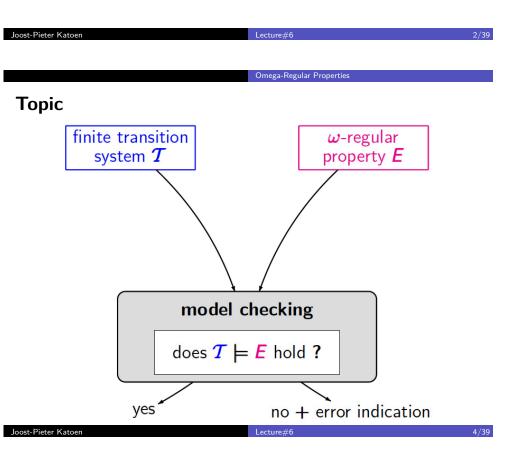
Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Omega-Regular Properties
 Refresher: Büchi Automata
 Verifying Omega-Regular Safety Properties
 Nested Deth-First Search
 Summary





Omega-Regular Properties

ω -Regular Properties

Definition: ω -regular language

The set \mathfrak{L} of infinite works over the alphabet Σ is ω -regular if $\mathfrak{L} = \mathfrak{L}_{\omega}(G)$ for some ω -regular expression G over Σ .

Definition: ω -regular properties

LT property E over AP is ω -regular if E is an ω -regular language over 2^{AP} .

This is equivalent to:

Joc

LT property *E* over *AP* is ω -regular if *E* is accepted by a non-deterministic Büchi automaton (over the alphabet 2^{AP}).

		F /00
:-Pieter Katoen	Lecture#6	5/39
	Refresher: Büchi Automata	
verview		
Omega-Regular Properties		
Onlega-Negular i Toperties		
Refresher: Büchi Automata		
	December	
Verifying Omega-Regular Safety	Properties	
Nested Deth-First Search		
Summary		

Example ω -Regular Properties

- Any invariant E is an ω-regular property
 Φ^ω describes E with invariant condition Φ
- Any regular safety property E is an ω -regular property
 - $\overline{E} = BadPref(E). (2^{AP})^{\omega}$ is ω -regular
 - > and ω -regular languages are closed under complement
- Let $\Sigma = \{a, b\}$ Then:
 - Infinitely often *a*:

$$((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

Eventually *a*:

 $(2^{AP})^* .(\{a\} + \{a, b\}). (2^{AP})^{\omega}$

Lecture#

Joost-Pieter Katoen

Refresher: Büchi Automata

Nondeterministic Büchi automata

Definition: Nondeterministic Büchi automaton

A nondeterministic Büchi automaton (NBA) $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ with:

- Q is a finite set of states
- \blacktriangleright Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- ▶ $Q_0 \subseteq Q$ a set of initial states
- ▶ $F \subseteq Q$ is a set of accept (or: final) states.

This definition is the same as for NFA.

The acceptance condition of NBA is different though.

Lecture#6

Language of a Büchi Automaton

▶ NBA $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ and infinite word $w = A_1 A_2 \ldots \in \Sigma^{\omega}$

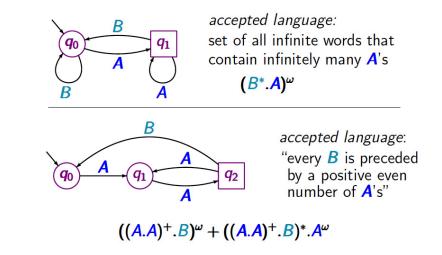
Refresher: Büchi Automata

- ▶ A run for w in \mathfrak{A} is an infinite sequence $q_0 q_1 \ldots \in Q^{\omega}$ such that: ▶ $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i$
- ▶ Run $q_0 q_1 \dots$ is accepting if $q_i \in F$ for infinitely many *i*
- The accepted language of \mathfrak{A} :

 $\mathfrak{L}_{\omega}(\mathfrak{A}) = \left\{ w \in \Sigma^{\omega} \mid \mathfrak{A} \text{ has an accepting run for } w \right\}$

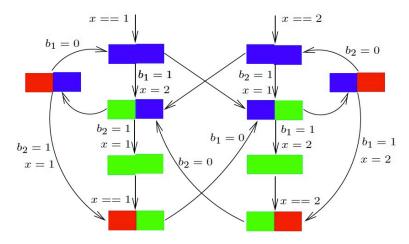
▶ NBA \mathfrak{A} and \mathfrak{A}' are equivalent if $\mathfrak{L}_{\omega}(\mathfrak{A}) = \mathfrak{L}_{\omega}(\mathfrak{A}')$

Joost-Pieter Katoen	Lecture#6	9/39	Joost-Pieter Katoen	Lecture#6
NBA and ω -Regular Lang	Refresher: Büchi Automata		Overview	Verifying Omega-Regular Safety Properties
Theorem			 Omega-Regular Properties 	
1. For every NBA \mathfrak{A} , the language		0. (01)	2 Refresher: Büchi Automata	
2. For every ω -regular language L	, there is an NBA \mathfrak{A} with L =	$= \Sigma_{\omega}(\mathfrak{A}).$	3 Verifying Omega-Regular Saf	ety Properties
Proof. Previous lecture.			4 Nested Deth-First Search	
			5 Summary	



Refresher: Büchi Automata

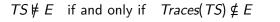
Peterson's Transition System



If a thread wants to update the account, does it ever get the opportunity to do so? "always ($req_L \Rightarrow$ eventually @account_L) \land always ($req_R \Rightarrow$ eventually @account_R)" Moost-Pieter Katoen Lecture#6 1

Verifying Omega-Regular Safety Properties

Basic Idea



if and only if $Traces(TS) \cap (2^{AP})^{\omega} \setminus E \neq \emptyset$

- if and only if $Traces(TS) \cap \overline{E} \neq \emptyset$
- if and only if $Traces(TS) \cap \mathfrak{L}_{\omega}(\mathfrak{A}) \neq \emptyset$
- if and only if $TS \otimes \mathfrak{A} \notin \underbrace{\text{"eventually for ever" } \neg F}_{\text{persistence property}}$

where \mathfrak{A} is an NBA accepting the complement property $\overline{E} = (2^{AP})^{\omega} \setminus E$

Verifying Starvation Freedom

- Starvation freedom = when a thread wants access to account, it eventually gets it
- "Infinite bad prefix" automaton: once a thread wants access to the account, it never gets it

Checking starvation freedom:

 $\underbrace{Traces(TS_{Pet})}_{\text{infinite traces}} \cap \mathfrak{L}_{\omega}(\overline{E_{live}}) = \emptyset?$

Lecture#6

Intersection, complementation and emptiness of <u>Büchi automata</u> accept infinite words

Verifying Omega-Regular Safety Properties

Persistence Property

Joost-Pieter Katoer

Definition: persistence property

A persistence property over AP is an LT property $E_{pers} \subseteq (2^{AP})^{\omega}$ of the form "eventually for ever Φ " for some propositional logic formula Φ over AP:

$$E_{pers} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{A^p}\right)^{\omega} \mid \exists i \ge 0. \ \forall j \ge i. \ A_j \models \Phi \right\}$$

The formula Φ is called the persistence (or state) condition of E_{pers} .

" Φ is an invariant after a while"

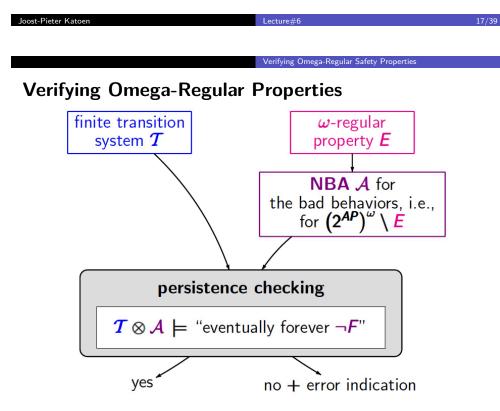
14/39

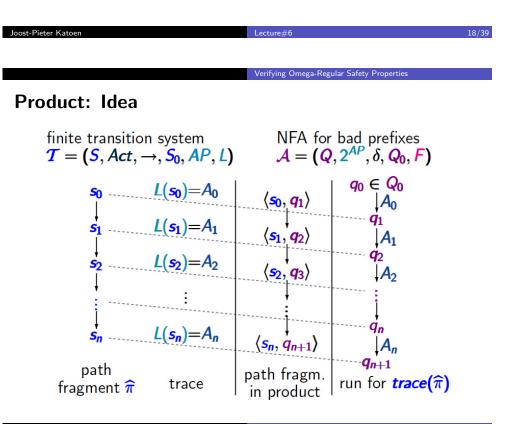
Problem Statement

Let

- 1. *E* be an ω -regular property over *AP*
- 2. \mathfrak{A} be an NBA recognizing the complement of E
- 3. TS be a finite transition system (over AP) without terminal states

How to establish whether $TS \models E$?





Lecture#6

Example

Lecture#6

Verifying Omega-Regular Safety Properties

Synchronous Product

Definition: synchronous product of TS and NBA

Let transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$. The product of TS and \mathfrak{A} is the transition system:

$$TS \otimes \mathfrak{A} = (S', Act, \rightarrow', I', AP', L')$$
 where

Joost-Pieter Katoen	Lecture#6
	Verifying Omega-Regular Safety Properties
	· · · · · · · · · · · · · · · · · · ·
Proof	

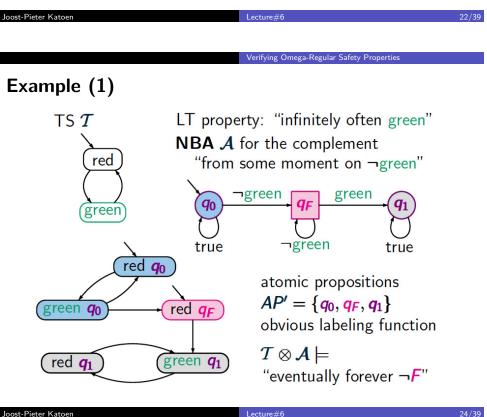
Verifying ω -Regular Properties

Theorem

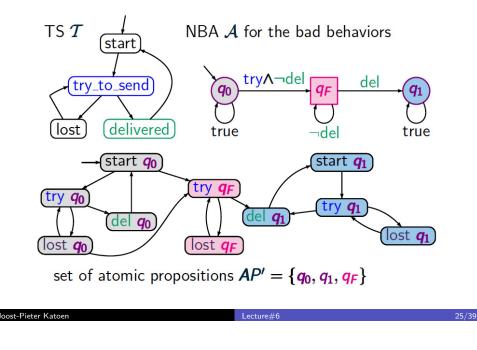
Let *TS* over *AP*, *E* an ω -regular property and NBA \mathfrak{A} with $\mathfrak{L}(\mathfrak{A}) = \overline{E}$. Then:

 $TS \models E$ iff $Traces(TS) \cap \mathfrak{L}_{\omega}(\mathfrak{A}) = \emptyset$ iff $TS \otimes \mathfrak{A} \models$ eventually forever $\neg F$ persistence property

```
where F stands for \bigvee_{a \in F} q.
```



Example (2)



Nested Deth-First Search

Persistence Checking and Cycle Detection

Let

- **T**S be a finite transition system over AP without terminal states
- \blacktriangleright Φ a propositional formula over *AP*, and
- *E* the persistence property "eventually forever Φ "

TS ⊭ E

if and only if

 $\exists s \in Reach(TS). s \notin \Phi \land s \text{ is on a cycle in } TS$

if and only if

there exists a non-trivial reachable SCC *C* with $C \cap \{s \in S \mid s \models \neg \Phi\} \neq \emptyset$

Overview

- 1 Omega-Regular Properties
- 2 Refresher: Büchi Automata
- 3 Verifying Omega-Regular Safety Properties
- 4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen

Nested Deth-First Search

Lecture#6

Nested Deth-First Search

Persistence Checking

How to check for a reachable cycle containing a $\neg \Phi$ -state?

Two linear-time algorithms:

► Alternative 1:

- compute the maximal strongly connected components (SCCs) in TS
- check whether some SCC is reachable from an initial state
- ... that contains a ¬Φ-state

Alternative 2:

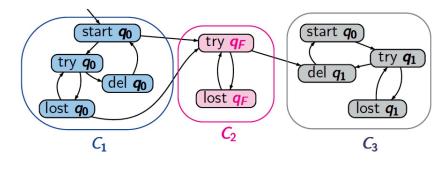
- use a nested depth-first search
- for each reachable $\neg \Phi$ -state, check whether it belongs to a cycle

Lecture#6

- more adequate for on-the-fly verification algorithm
- enables simple counterexample generation

Nested Deth-First Search

Example SCC Algorithm



- persistence property: "eventually forever $\neg q_F$ "
- 3 reachable SCCs: C_1, C_2, C_3
- C_2 non-trivial, and contains two states **s** with $s \not\models \neg q_F$
 - $\mathcal{T} \otimes \mathcal{A} \not\models$ "eventually forever $\neg q_F$ "

Joost-Pieter Katoen	Lecture#6	29/39
	Nested Deth-First Search	

Nested Depth-First Search

- ▶ Idea: perform the two depth-first searches in an *interleaved* way
 - the outer DFS serves to encounter all reachable $\neg \Phi$ -states
 - \blacktriangleright the inner DFS seeks for backward edges leading to a $\neg\Phi\text{-state}$

Nested DFS

- **b** on full expansion of $\neg \Phi$ -state *s* in the outer DFS, start inner DFS
- in the inner DFS, visit all states reachable from s that have not been not visited in an inner DFS yet
- backward edge found?
 - a cycle containing $\neg \Phi$ -state *s* found
- no backward edge found to s? continue the outer DFS (look for next ¬Φ-state)

A Naive Two-Phase Depth First-Search

- Determine all ¬Φ-states that are reachable from some initial state this is performed by a standard depth-first search
- 2. For each reachable $\neg \Phi$ -state, check whether it belongs to a cycle
 - start a depth-first search in $\neg \Phi$ -state s
 - to check whether s is reachable from itself
- Time complexity naive algorithm: $\Theta(N \cdot (N + M))$

- where N is the number of states and M the number of transitions
- where it is assumed that checking Φ is in O(1)
- states reachable via K distinct $\neg \Phi$ -states are searched K times

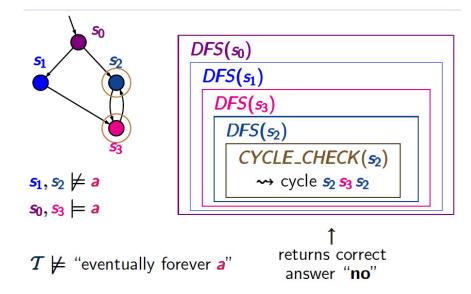
Time complexity nested DFS: $\Theta(N \cdot M)$.

Lecture#6

Joost-Pieter Katoen

Nested Deth-First Search

Nested DFS: Example



Lecture#6

31/39

Correctness of Nested DFS

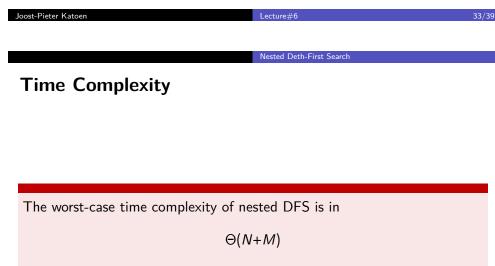
Proof

Let:

- **TS** be a finite transition system over AP without terminal states and
- **E** a persistence property.

Then:

The nested DFS algorithm yields "no" if and only if $TS \notin E$.



where N is # states in TS, and M is # transitions in TS.

Joost-Pieter Katoen	Lecture#6	34/39
	Nested Deth-First Search	
Counterexamples		

A counterexample to $TS \models$ eventually forever \blacklozenge is an initial path fragment of the form

$$\underbrace{s_0}_{\in I} \dots s_{n-1} \underbrace{s_n}_{\models \neg \Phi} \underbrace{s_{n+1} \dots s_{n+m-1}}_{\models \neg \Phi} \underbrace{s_n}_{\models \neg \Phi} \quad \text{for } m > 0.$$

Using **nested** depth-first search:

- Counterexample generation: use the DFS stacks

 - stack π_{out} for the outer DFS = path fragment s_n s_{n-1}...s₀
 stack π_{in} for the inner DFS = a cycle from state s_n s_{n+m-1}...s_n
 - \blacktriangleright counterexample = reverse (π_{in} . π_{out})

Summary	Summary
	Checking a regular safety property E = checking invariant on product
Omega-Regular Properties	 with an NFA A for the bad prefixes of E "never reach an accept state of A"
2 Refresher: Büchi Automata	• Checking an ω -regular property E = checking persistence on a product
3 Verifying Omega-Regular Safety Properties	 with an NBA for the complement of E "eventually forever no accept state of A"
Nested Deth-First Search	Persistence checking is solvable in linear time by a nested DFS
5 Summary	Nested DFS = a DFS for reachable ¬Φ-states + a DFS for cycle detection
oost-Pieter Katoen Lecture#6	37/39 Joost-Pieter Katoen Lecture#6 38/3
Summary	

Next Lecture

Friday November 8, 14:30