
Model Checking
Lecture #6: Verifying Omega-Regular Properties

[Baier & Katoen, Chapter 4.4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#6 1/39

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 2/39

Omega-Regular Properties

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 3/39

Omega-Regular Properties

Topic

Joost-Pieter Katoen Lecture#6 4/39

Omega-Regular Properties

ω-Regular Properties

Definition: ω-regular language
The set L of infinite works over the alphabet Σ is ω-regular if L = Lω(G)
for some ω-regular expression G over Σ.

Definition: ω-regular properties
LT property E over AP is ω-regular if E is an ω-regular language over 2AP.

This is equivalent to:

LT property E over AP is ω-regular if E is accepted by a non-deterministic
Büchi automaton (over the alphabet 2AP).

Joost-Pieter Katoen Lecture#6 5/39

Omega-Regular Properties

Example ω-Regular Properties
▶ Any invariant E is an ω-regular property

▶ Φω describes E with invariant condition Φ

▶ Any regular safety property E is an ω-regular property
▶ E = BadPref(E). (2AP)ω is ω-regular
▶ and ω-regular languages are closed under complement

▶ Let Σ = { a, b } Then:
▶ Infinitely often a:

((∅ + { b })∗.({ a } + { a, b }))ω

▶ Eventually a:
(2AP)∗ .({ a } + { a, b }). (2AP)ω

Joost-Pieter Katoen Lecture#6 6/39

Refresher: Büchi Automata

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 7/39

Refresher: Büchi Automata

Nondeterministic Büchi automata

Definition: Nondeterministic Büchi automaton
A nondeterministic Büchi automaton (NBA) A = (Q,Σ, δ,Q0,F) with:

▶ Q is a finite set of states
▶ Σ is an alphabet
▶ δ ∶ Q × Σ → 2Q is a transition function
▶ Q0 ⊆ Q a set of initial states
▶ F ⊆ Q is a set of accept (or: final) states.

This definition is the same as for NFA.
The acceptance condition of NBA is different though.

Joost-Pieter Katoen Lecture#6 8/39

Refresher: Büchi Automata

Language of a Büchi Automaton

▶ NBA A = (Q,Σ, δ,Q0,F) and infinite word w = A1 A2 . . . ∈ Σω

▶ A run for w in A is an infinite sequence q0 q1 . . . ∈ Qω such that:
▶ q0 ∈ Q0 and qi

Ai+1−−−−−→ qi+1 for all 0 ≤ i

▶ Run q0 q1 . . . is accepting if qi ∈ F for infinitely many i

▶ The accepted language of A:

Lω(A) = {w ∈ Σω ∣ A has an accepting run for w }

▶ NBA A and A
′ are equivalent if Lω(A) = Lω(A′)

Joost-Pieter Katoen Lecture#6 9/39

Refresher: Büchi Automata

Examples

Joost-Pieter Katoen Lecture#6 10/39

Refresher: Büchi Automata

NBA and ω-Regular Languages

Theorem

1. For every NBA A, the language Lω(A) is ω-regular.
2. For every ω-regular language L, there is an NBA A with L = Lω(A).

Proof.
Previous lecture.

Joost-Pieter Katoen Lecture#6 11/39

Verifying Omega-Regular Safety Properties

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 12/39

Verifying Omega-Regular Safety Properties

Peterson’s Transition System

If a thread wants to update the account, does it ever get the opportunity to do so?

“always (reqL ⇒ eventually @accountL) ∧ always (reqR ⇒ eventually @accountR)”
Joost-Pieter Katoen Lecture#6 13/39

Verifying Omega-Regular Safety Properties

Verifying Starvation Freedom
▶ Starvation freedom = when a thread wants access to account, it

eventually gets it

▶ “Infinite bad prefix” automaton: once a thread wants access to the
account, it never gets it

▶ Checking starvation freedom:

Traces(TSPet)ÍÒÒÒÑÒÒÒÏ
infinite traces

∩ Lω(Elive) = ∅?

▶ Intersection, complementation and emptiness of Büchi automataÍÒÒÒÑÒÒÏ
accept infinite words

Joost-Pieter Katoen Lecture#6 14/39

Verifying Omega-Regular Safety Properties

Basic Idea

TS /⊧ E if and only if Traces(TS) /⊆ E

if and only if Traces(TS) ∩ (2AP)ω \ E /= ∅

if and only if Traces(TS) ∩ E /= ∅

if and only if Traces(TS) ∩ Lω(A) /= ∅

if and only if TS ⊗ A /⊧ “eventually for ever” ¬F
ÍÒÒÑÒÒÏ

persistence property

where A is an NBA accepting the complement property E = (2AP)ω \ E

Joost-Pieter Katoen Lecture#6 15/39

Verifying Omega-Regular Safety Properties

Persistence Property

Definition: persistence property
A persistence property over AP is an LT property Epers ⊆ (2AP)ω of the form
“eventually for ever Φ” for some propositional logic formula Φ over AP:

Epers = { A0A1A2 . . . ∈ (2AP)ω ∣ ∃i ≥ 0. ∀j ≥ i . Aj ⊧ Φ }

The formula Φ is called the persistence (or state) condition of Epers .

“Φ is an invariant after a while”

Joost-Pieter Katoen Lecture#6 16/39

Verifying Omega-Regular Safety Properties

Example

Joost-Pieter Katoen Lecture#6 17/39

Verifying Omega-Regular Safety Properties

Problem Statement

Let
1. E be an ω-regular property over AP

2. A be an NBA recognizing the complement of E

3. TS be a finite transition system (over AP) without terminal states

How to establish whether TS ⊧ E?

Joost-Pieter Katoen Lecture#6 18/39

Verifying Omega-Regular Safety Properties

Verifying Omega-Regular Properties

Joost-Pieter Katoen Lecture#6 19/39

Verifying Omega-Regular Safety Properties

Product: Idea

Joost-Pieter Katoen Lecture#6 20/39

Verifying Omega-Regular Safety Properties

Synchronous Product

Definition: synchronous product of TS and NBA
Let transition system TS = (S,Act,→, I,AP, L) without terminal states and
A = (Q,Σ, δ,Q0,F) a non-blocking NBA with Σ = 2AP. The product of TS
and A is the transition system:

TS ⊗ A = (S ′,Act,→ ′, I ′,AP′, L′) where

▶ S ′ = S × Q, AP′ = Q and L′(⟨s, q⟩) = { q }

▶ →
′ is the smallest relation defined by:

s α−−→ t ∧ q L(t)−−−−→ p
⟨s, q⟩ α−−→

′ ⟨t, p⟩
▶ I ′ = { ⟨s0, q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0 L(s0)−−−−−→ q }.

Joost-Pieter Katoen Lecture#6 21/39

Verifying Omega-Regular Safety Properties

Verifying ω-Regular Properties

Theorem
Let TS over AP, E an ω-regular property and NBA A with L(A) = E .
Then:

TS ⊧ E iff Traces(TS) ∩ Lω(A) = ∅ iff TS⊗A ⊧ eventually forever¬F
ÍÒÒÒÑÒÒÏ

persistence property

where F stands for ⋁q∈F q.

Joost-Pieter Katoen Lecture#6 22/39

Verifying Omega-Regular Safety Properties

Proof

Joost-Pieter Katoen Lecture#6 23/39

Verifying Omega-Regular Safety Properties

Example (1)

Joost-Pieter Katoen Lecture#6 24/39

Verifying Omega-Regular Safety Properties

Example (2)

Joost-Pieter Katoen Lecture#6 25/39

Nested Deth-First Search

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 26/39

Nested Deth-First Search

Persistence Checking and Cycle Detection

Let
▶ TS be a finite transition system over AP without terminal states
▶ Φ a propositional formula over AP, and
▶ E the persistence property ”eventually forever Φ”

TS /⊧ E
if and only if

∃s ∈ Reach(TS). s /⊧ Φ ∧ s is on a cycle in TS
if and only if

there exists a non-trivial reachable SCC C with C ∩ { s ∈ S ∣ s ⊧ ¬Φ } ≠ ∅

Joost-Pieter Katoen Lecture#6 27/39

Nested Deth-First Search

Persistence Checking

How to check for a reachable cycle containing a ¬Φ-state?

Two linear-time algorithms:

▶ Alternative 1:
▶ compute the maximal strongly connected components (SCCs) in TS
▶ check whether some SCC is reachable from an initial state
▶ . . . that contains a ¬Φ-state

▶ Alternative 2:
▶ use a nested depth-first search
▶ for each reachable ¬Φ-state, check whether it belongs to a cycle
▶ more adequate for on-the-fly verification algorithm
▶ enables simple counterexample generation

Joost-Pieter Katoen Lecture#6 28/39

Nested Deth-First Search

Example SCC Algorithm

Joost-Pieter Katoen Lecture#6 29/39

Nested Deth-First Search

A Naive Two-Phase Depth First-Search
1. Determine all ¬Φ-states that are reachable from some initial state

this is performed by a standard depth-first search

2. For each reachable ¬Φ-state, check whether it belongs to a cycle
▶ start a depth-first search in ¬Φ-state s
▶ to check whether s is reachable from itself

▶ Time complexity naive algorithm: Θ(N ⋅(N+MÍÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÏ
cycle check

))

▶ where N is the number of states and M the number of transitions
▶ where it is assumed that checking Φ is in O(1)
▶ states reachable via K distinct ¬Φ-states are searched K times

Time complexity nested DFS: Θ(N ⋅M).

Joost-Pieter Katoen Lecture#6 30/39

Nested Deth-First Search

Nested Depth-First Search

▶ Idea: perform the two depth-first searches in an interleaved way
▶ the outer DFS serves to encounter all reachable ¬Φ-states
▶ the inner DFS seeks for backward edges leading to a ¬Φ-state

▶ Nested DFS
▶ on full expansion of ¬Φ-state s in the outer DFS, start inner DFS
▶ in the inner DFS, visit all states reachable from s that have not been

not visited in an inner DFS yet
▶ backward edge found?

a cycle containing ¬Φ-state s found
▶ no backward edge found to s?

continue the outer DFS (look for next ¬Φ-state)

Joost-Pieter Katoen Lecture#6 31/39

Nested Deth-First Search

Nested DFS: Example

Joost-Pieter Katoen Lecture#6 32/39

Nested Deth-First Search

Correctness of Nested DFS

Let:
▶ TS be a finite transition system over AP without terminal states and
▶ E a persistence property.

Then:

The nested DFS algorithm yields ”no” if and only if TS /⊧ E .

Joost-Pieter Katoen Lecture#6 33/39

Nested Deth-First Search

Proof

Joost-Pieter Katoen Lecture#6 34/39

Nested Deth-First Search

Time Complexity

The worst-case time complexity of nested DFS is in

Θ(N+M)

where N is # states in TS, and M is # transitions in TS.

Joost-Pieter Katoen Lecture#6 35/39

Nested Deth-First Search

Counterexamples

A counterexample to TS ⊧ eventually forever Φ is an initial path fragment
of the form

s0ÍÑÏ
∈I

. . . sn−1 snÍÑÏ
⊧¬Φ

sn+1 . . . sn+m−1 snÍÑÏ
⊧¬Φ

for m > 0.

Using nested depth-first search:

▶ Counterexample generation: use the DFS stacks
▶ stack πout for the outer DFS = path fragment sn sn−1 . . . s0
▶ stack πin for the inner DFS = a cycle from state sn sn+m−1 . . . sn
▶ counterexample = reverse (πin.πout)

Joost-Pieter Katoen Lecture#6 36/39

Summary

Overview

1 Omega-Regular Properties

2 Refresher: Büchi Automata

3 Verifying Omega-Regular Safety Properties

4 Nested Deth-First Search

5 Summary

Joost-Pieter Katoen Lecture#6 37/39

Summary

Summary

▶ Checking a regular safety property E = checking invariant on product
▶ with an NFA A for the bad prefixes of E
▶ “never reach an accept state of A”

▶ Checking an ω-regular property E = checking persistence on a
product
▶ with an NBA for the complement of E
▶ “eventually forever no accept state of A”

▶ Persistence checking is solvable in linear time by a nested DFS

▶ Nested DFS = a DFS for reachable ¬Φ-states + a DFS for cycle
detection

Joost-Pieter Katoen Lecture#6 38/39

Summary

Next Lecture

Friday November 8, 14:30

Joost-Pieter Katoen Lecture#6 39/39

	Omega-Regular Properties
	Refresher: Büchi Automata
	Verifying Omega-Regular Safety Properties
	Nested Deth-First Search
	Summary

