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Büchi Automata Regular Safety Properties

Safety Properties
Definition: Safety Property
LT property Esafe over AP is a safety property if for all σ ∈ (2AP)ω \ Esafe :

Esafe ∩ {σ′ ∈ (2AP)ω ∣ σ̂ is a prefix of σ′} = ∅.

for some prefix σ̂ of σ.

▶ Path fragment σ̂ is called a bad prefix of Esafe

▶ Let BadPref(Esafe) denote the set of bad prefixes of Esafe

▶ σ̂ ∈ Esafe is minimal if no proper prefix of it is in BadPref(Esafe)

▶ Let MinBadPref(Esafe) denote the set of minimal bad prefixes of Esafe
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Regular Safety Properties

Definition: regular safety property
Safety property Esafe is regular if BadPref(Esafe) is a regular language.

Or, equivalently:
Safety property Esafe is regular if there exists

a finite automaton over the alphabet 2AP recognizing BadPref(Esafe)
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Büchi Automata Refresher: Finite Automata

Finite Automata

A nondeterministic finite automaton (NFA) A = (Q,Σ, δ,Q0,F ) with:

▶ Q is a finite set of states
▶ Σ is an alphabet
▶ δ ∶ Q × Σ → 2Q is a transition function
▶ Q0 ⊆ Q a set of initial states
▶ F ⊆ Q is a set of accept (or: final)

states
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Language of an Finite Automaton
▶ NFA A = (Q,Σ, δ,Q0,F ) and finite word w = A1 . . .An ∈ Σ∗

▶ A run for w in A is a finite sequence q0 q1 . . . qn ∈ Q∗ such that:
▶ q0 ∈ Q0 and qi Ai+1−−−−−→ qi+1 for all 0 ≤ i < n

▶ Run q0 q1 . . . qn is accepting if qn ∈ F

▶ The accepted language of A:

L(A) = { w ∈ Σ∗ ∣ A has an accepting run for w }

▶ w ∈ Σ∗ is accepted by A if A has an accepting run for w

▶ NFA A and A
′ are equivalent if L(A) = L(A′)
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Facts about Finite Automata
▶ They are as expressive as regular languages (Kleene’s theorem)

▶ They are closed under ∪, ∩, and complementation
▶ NFA A ⊗ B (= cross product) accepts L(A) ∩ L(B)
▶ Total DFA A (= swap all accept and normal states) accepts

L(A) = Σ∗ \ L(A)

▶ They are closed under determinization (= powerset construction)
▶ although at an exponential cost . . .

▶ L(A) = ∅? = check for a reachable accept state in NFA A
▶ this can be done using a classical depth-first search
▶ in linear-time complexity in the size of A

▶ For regular language L there is a unique minimal DFA accepting L
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Regular Safety Properties Revisited

Definition: regular safety property
Safety property Esafe is regular if BadPref(Esafe) is a regular language.

Or, equivalently:

if there exists a regular expression D over 2AP with L(D) = BadPref(Esafe)

Or, equivalently:

Safety property Esafe is regular if there exists
an NFA A over the alphabet 2AP with L(A) = BadPref(Esafe)

Or, equivalently:

. . . if there exists a DFA A over 2AP with L(A) = BadPref(Esafe)
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Sets as Formulas
Let NFA A = (Q,Σ, δ,Q0,F ) over the alphaber Σ = 2AP.
We adopt a shorthand notation for the transitions using propositional logic.
If Φ is a propositional logic formula over AP then:

p Φ−−→ q stands for the set of transitions p A−−→ q with A ⊆ AP and A ⊧ Φ

where A ⊆ AP such that A ⊧ Φ.
Examples. Let A = { a, b, c }. Then:

▶ p a∧/b−−−−→ q stands for { p { a }−−−−→ q, p { a,c }−−−−−−→ q }

▶ p false−−−−−−→ q stands for { p ∅−−→ q }, i.e., { p ¬(a∨b∨c)−−−−−−−−−→ q }

▶ p true−−−−−→ q stands for { p A−−→ q ∣ ∀A ⊆ AP }
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Examples

▶ Every invariant (over AP) is a regular safety property
▶ bad prefixes are of the form Φ∗ (¬Φ) true∗
▶ where Φ is the invariant condition

▶ A regular safety property which is not an invariant:
“a red light is immediately preceded by a yellow light”

▶ A non-regular safety property:
“the # inserted coins is at least the # of dispensed drinks”
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Details
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Peterson’s Algorithm

P1 loop forever
⋮ (* non-critical actions *)
⟨b1 ∶= true; x ∶= 2⟩; (* request *)
wait until (x = 1 ∨ ¬b2)
do critical section od
b1 ∶= false (* release *)
⋮ (* non-critical actions *)
end loop

bi is true if and only if process Pi is waiting or in critical section
if both threads want to enter their critical section, x decides who gets access
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Accessing a Bank Account

Thread Left behaves as follows:
while true {

. . . . . .

nc ∶ ⟨b1, x = true, 2; ⟩
wt ∶ wait until(x == 1 ∣∣ ¬ b2) {
cs ∶ . . .@account . . .}

b1 = false;
. . . . . .

}

Thread Right behaves as follows:

while true {
. . . . . .

nc ∶ ⟨b2, x = true, 1; ⟩
wt ∶ wait until(x == 2 ∣∣ ¬ b1) {
cs ∶ . . .@account . . .}

b2 = false;
. . . . . .

}

Does only one thread at a time has access to the bank account?
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Peterson’s Transition System

Manual inspection reveals that mutual exclusion is guaranteed
Joost-Pieter Katoen Model Checking 20/56
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Verifying Mutual Exclusion
▶ Mutual exclusion = no simultaneous access to the account

▶ Bad prefix NFA A :

▶ Checking mutual exclusion:

Tracesfin(TSPet )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
finite traces

∩ BadPref(Esafe)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
L(A)

= ∅?

▶ Intersection, complementation and emptiness of finite automataÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
accept finite words
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Problem Statement

Let
1. Esafe be a regular safety property over AP

2. A be an NFA (or DFA) recognizing the bad prefixes of Esafe
▶ with ε ∉ L(A)
▶ otherwise all finite words over 2AP are bad prefixes and Esafe = ∅

3. TS be a finite transition system (over AP) without terminal states

How to establish whether TS ⊧ Esafe?
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Verifying Regular Safety Properties
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Product: Idea (1)
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Product: Idea (2)
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Synchronous Product

Definition: synchronous product of TS and NFA
Let transition system TS = (S,Act,→, I,AP, L) without terminal states and
A = (Q,Σ, δ,Q0,F ) an NFA with Σ = 2AP and Q0 ∩ F = ∅. The product of
TS and A is the transition system:

TS ⊗ A = (S ′,Act,→ ′, I ′,AP′, L′) where

▶ S ′ = S × Q, AP′ = Q and L′(⟨s, q⟩) = { q }

▶ →
′ is the smallest relation defined by: s α−−→ t ∧ q L(t)−−−−→ p

⟨s, q⟩ α−−→
′ ⟨t, p⟩

▶ I ′ = { ⟨s0, q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0 L(s0)−−−−−→ q }.
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Example
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A Note on Terminal States

It may be safely assumed that TS ⊗ A has no terminal states

▶ Although TS has no terminal state, TS ⊗ A may have one

▶ This can only occur if δ(q,A) = ∅ for some A ⊆ AP

▶ Let NFA A with some reachable state q with δ(q,A) = ∅

▶ Obtain an equivalent NFA A
′ as follows:

▶ introduce new state qtrap /∈ Q
▶ if δ(q,A) = ∅ let δ′(q,A) = { qtrap }
▶ set δ′(qtrap,A) = { qtrap } for all A ⊆ AP
▶ keep all other transitions that are present in A

▶ It follows L(A) = L(A′)
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Verifying Regular Safety Properties

Theorem
Let TS over AP, Esafe a safety property such that L(A) = BadPref(Esafe)
for some NFA A. Then:

TS ⊧ Esafe iff Tracesfin(TS) ∩ L(A) = ∅ iff TS ⊗ A ⊧ always ¬F
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
invariant

where F stands for ⋁q∈F q.
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Proof
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Example
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Counterexamples

For each initial path fragment ⟨s0, q1⟩ . . . ⟨sn, qn+1⟩ of TS ⊗ A:

q1, . . . , qn /∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
bad prefix for Esafe

∈ L(A).
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Complexity of Verifying Regular Safety Properties

The time and space complexity of checking TS ⊧ Esafe is in O(∣TS∣ ⋅ ∣A∣)
where A is an NFA with L(A) = BadPref(Esafe) and ∣A∣ is the size of A.

The size of NFA A is the number of states and transitions in A:

∣A∣ = ∣Q∣ + ∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣
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Peterson’s Transition System

If a thread wants to update the account, does it ever get the opportunity to do so?

“always (reqL ⇒ eventually @accountL) ∧ always (reqR ⇒ eventually @accountR )”Joost-Pieter Katoen Model Checking 35/56
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Verifying Starvation Freedom
▶ Starvation freedom = when a thread wants access to account, it

eventually gets it

▶ “Infinite bad prefix” automaton: once a thread wants access to the
account, it never gets it

▶ Checking starvation freedom:

Traces(TSPet )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
infinite traces

∩ L(Elive) = ∅?

▶ Intersection, complementation and emptiness of Büchi automataÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
accept infinite words
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ω-Regular Expressions: Syntax
Definition: ω-regular expression
An ω-regular expression G over the alphabet Σ has the form:

G = E1.Fω1 + . . . + En.Fωn for n ∈ N>0

where Ei , Fi are regular expressions over Σ with ε ∉ L(Fi ).

▶ ω-Regular expressions denote languages of infinite words

▶ Examples over the alphabet Σ = { A,B }:
▶ language of all words with infinitely many As: (B∗

.A)ω

▶ language of all words with finitely many As: (A + B)∗.Bω

▶ the empty language ∅ω
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ω-Regular Expressions: Semantics

Definition: semantics of ω-regular expressions
The semantics of ω-regular expression

G = E1.Fω1 + . . . + En.Fωn

is the language L(G) ⊆ Σω defined by:

Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω.

where for L ⊆ Σ∗, we have L
ω

= { w1w2w3 . . . ∣ ∀i ≥ 0.wi ∈ L }.

The ω-regular expression G1 and G2 are equivalent,
denoted G1 ≡ G2, if Lω(G1) = Lω(G2).
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ω-Regular Properties

Definition: ω-regular language
The set L of infinite works over the alphabet Σ is ω-regular if L = Lω(G)
for some ω-regular expression G over Σ.

Definition: ω-regular properties
LT property E over AP is ω-regular if E is an ω-regular language over 2AP.

We will see that this is equivalent to:

LT property E over AP is ω-regular if E is accepted by a non-deterministic
Büchi automaton (over the alphabet 2AP).

But not by a deterministic Büchi automaton.
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Example ω-Regular Properties
▶ Any invariant E is an ω-regular property

▶ Φω describes E with invariant condition Φ

▶ Any regular safety property E is an ω-regular property
▶ E = BadPref(E ). (2AP)ω is ω-regular
▶ and ω-regular languages are closed under complement

▶ Let Σ = { a, b } Then:
▶ Infinitely often a:

((∅ + { b })∗.({ a } + { a, b }))ω

▶ eventually a:
(2AP)ω .({ a } + { a, b }). (2AP)
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Shorthand Notation
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Verifying ω-Regular Properties
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Julius Richard Büchi

Julius Richard Büchi (1924 – †1984)
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Nondeterministic Büchi automata

Definition: Nondeterministic Büchi automaton
A nondeterministic Büchi automaton (NBA) A = (Q,Σ, δ,Q0,F ) with:

▶ Q is a finite set of states
▶ Σ is an alphabet
▶ δ ∶ Q × Σ → 2Q is a transition function
▶ Q0 ⊆ Q a set of initial states
▶ F ⊆ Q is a set of accept (or: final) states.

This definition is the same as for NFA.
The acceptance condition of NBA is different though.
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Language of an Büchi Automaton
▶ NBA A = (Q,Σ, δ,Q0,F ) and infinite word w = A1 A2 . . . ∈ Σω

▶ A run for w in A is an infinite sequence q0 q1 . . . ∈ Qω such that:
▶ q0 ∈ Q0 and qi Ai+1−−−−−→ qi+1 for all 0 ≤ i

▶ Run q0 q1 . . . is accepting if qi ∈ F for infinitely many i

▶ The accepted language of A:

Lω(A) = {w ∈ Σω ∣ A has an accepting run for w }

▶ w ∈ Σ∗ is accepted by A if A has an accepting run for w

▶ NBA A and A
′ are equivalent if Lω(A) = Lω(A′)
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Examples
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NBA for LT Properties
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NBA versus NFA
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Deterministic Büchi Automata

Definition: Deterministic Büchi automaton
Büchi automaton A is deterministic if

∣Q0∣ ≤ 1 and ∣δ(q,A)∣ ≤ 1 for all q ∈ Q and A ∈ Σ.

A DBA is total if both inequalities are equalities.

A total DBA has a unique run for each input word.
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DBA Are Less Expressive Than NBA

There is no DBA that accepts Lω((A + B)∗Bω).

NFA and DFA are equally expressive but NBA and DBA are not!
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LT Properties Need Nondeterminism
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NBA and ω-Regular Languages

Theorem

1. For every NBA A, the language Lω(A) is ω-regular.
2. For every ω-regular language L, there is an NBA A with L = Lω(A).

Proof.
Next lecture.
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Verifying ω-Regular Safety Properties

Theorem
Let TS over AP, E an ω-regular property and NBA A with L(A) = E .
Then:

TS ⊧ E iff Traces(TS) ∩ Lω(A) = ∅ iff TS⊗A ⊧ eventually forever¬F
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

persistence property

where F stands for ⋁q∈F q.

Proof.
Next lecture.
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Next Lecture

Friday October 25, 14:30
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