Biichi Automata

Model Checking

Lecture #4: Verifying Regular Properties
[Baier & Katoen, Chapter 4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Model Checking 1/56

Biichi Automata Regular Safety Properties

Overview

@ Regular Safety Properties

Joost-Pieter Katoen Model Checking 3/56

Biichi Automata

Overview

@ Regular Safety Properties

© Refresher: Finite Automata

© Verifying Regular Safety Properties
@ w-Regular Properties

© Biichi Automata

© Outlook

Joost-Pieter Katoen Model Checking 2/56
Biichi Automata Regular Safety Properties

Topic

finite transition regular safety
system 7 property E

AN

safety checking

does T |= E hold ?

S AN

yes no

Joost-Pieter Katoen Model Checking 4/56

Biichi Automata Regular Safety Properties

Safety Properties

Definition: Safety Property

LT property E..r over AP is a safety property if for all o € (2)\ Espe:
Ecafe N {U' € (2Ap)w | 5 is a prefix of a'} = @.

for some prefix G of o.

P Path fragment & is called a bad prefix of E %
» Let BadPref(Es,r) denote the set of bad prefixes of Eg,z
» G € E.,r is minimal if no proper prefix of it is in BadPref(Es,z.)

» Let MinBadPref(Es,s) denote the set of minimal bad prefixes of Eg,

Joost-Pieter Katoen Model Checking 5/56
Biichi Automata Regular Safety Properties

Regular Safety Properties

Definition: regular safety property

Safety property Es.r is regular if BadPref(E,f) is a regular language.

Or, equivalently:
Safety property E.s is regular if there exists

a finite automaton over the alphabet 2*° recognizing BadPref(E.z.)

Joost-Pieter Katoen Model Checking 7/56

Examples

“every red phase is
preceded by a
yellow phase”

hence: 7 = E

E = set of all infinite words Ag A1 A ...
over 24P such that for all i € N:
red € A; = i>1 and yellow € A1

is a safety property over AP = {red, yellow} with

BadPref = set of all finite words AgA; ... A,
over 24P st for some i € {0,..., n}:
red € A; A (i=0 V yellow ¢ Ai_1)

Joost-Pieter Katoen Model Checking 6/56
Biichi Automata Refresher: Finite Automata
Overview

© Refresher: Finite Automata

Joost-Pieter Katoen Model Checking 8/56

Biichi Automata Refresher: Finite Automata

Finite Automata

A nondeterministic finite automaton (NFA) 20 = (Q, X, §, Qp, F) with:

B

> Q is a finite set of states
» Y is an alphabet @ qr

P QXL - 29 is a transition function . A U

P Qo € Q a set of initial states B A
> FcQis a set of accept (or: final)
states
Joost-Pieter Katoen Model Checking 9/56
Biichi Automata Refresher: Finite Automata

Facts about Finite Automata

» They are as expressive as regular languages (Kleene's theorem)

» They are closed under U, N, and complementation
P> NFA 2A® B (= cross product) accepts £(A) n £(B)
» Total DFA 2A (= swap all accept and normal states) accepts

£(A) ==\ £2)

» They are closed under determinization (= powerset construction)
P although at an exponential cost ...

P> £(2A) = @? = check for a reachable accept state in NFA 2A

P this can be done using a classical depth-first search
P in linear-time complexity in the size of 2

» For regular language £ there is a unique minimal DFA accepting £

Joost-Pieter Katoen Model Checking 11/56

Biichi Automata Refresher: Finite Automata

Language of an Finite Automaton
» NFA21=(Q,X,0, Q, F) and finite word w=A;... A, € X

*

» A run for win 2 is a finite sequence gp q; ... g, € Q" such that:
» g9 € Q and q;—’ﬁ'ﬁ—)qiﬂ forall0<i<n

» Run qoqp ... g, is accepting if g, € F

» The accepted language of 2:

£(21) ={we X" | A has an accepting run for w }

> we X" is accepted by 2 if 2 has an accepting run for w

» NFA 2 and 2’ are equivalent if £(2A) = £(2A")

Joost-Pieter Katoen Model Checking 10/56
Biichi Automata Refresher: Finite Automata

Regular Safety Properties Revisited

Definition: regular safety property

Safety property E..f is regular if BadPref(Es,z) is a regular language.

Or, equivalently:

if there exists a regular expression D over 2*° with £(D) = BadPref(E.,z)
Or, equivalently:

Safety property Eg,f is regular if there exists
an NFA 2 over the alphabet 2 with £(2) = BadPref(E.z.)

Or, equivalently:

. if there exists a DFA 2 over 27 with £(21) = BadPref(E.)

Joost-Pieter Katoen Model Checking 12/56

Biichi Automata Refresher: Finite Automata

Sets as Formulas
Let NFA A = (Q,X,0, Q. F) over the alphaber ¥ = 2%

We adopt a shorthand notation for the transitions using propositional logic.
If ® is a propositional logic formula over AP then:

p—9—> g stands for the set of transitions p—A—> g with AcAPand AEO®

where A € AP such that AE .
Examples. Let A={a, b, c}. Then:

> p-2b5 g stands for {p {a}, g, pL2ct q}

> p—=5 Afalse, g stands for {p-2>q}, i.e., { p=2L¥, 4}
» p-LUE, 4 stands for { p2>q | YA S AP}
Joost-Pieter Katoen Model Checking 13/56

Biichi Automata Refresher: Finite Automata

Details

Joost-Pieter Katoen Model Checking 15/56

Biichi Automata Refresher: Finite Automata

Joost-Pieter Katoen

B

Examples

» Every invariant (over AP) is a regular safety property

» bad prefixes are of the form ®* (=®) true*
» where @ is the invariant condition

P A regular safety property which is not an invariant:
“a red light is immediately preceded by a yellow light”

» A non-regular safety property:
“the # inserted coins is at least the # of dispensed drinks"

Model Checking 14/56

tchi Automata Refresher: Finite Automata

Example

“Every red phase is preceded by a yellow phase”
set of all infinite words AgA; A; ... s.t. for all i > 0:

red e A, = i>1 and yellow € Ai_;

DFA for all (possibly non-minimal) bad prefixes

Joost-Pieter Katoen Model Checking 16/56

i , i
Overview Peterson’s Algorithm

P; loop forever

(* non-critical actions *)

(by := true; x = 2); (* request *)
wait until (x =1 v =b,)
© Verifying Regular Safety Properties do critical section od
by := false (* release *)
(* non-critical actions *)
end loop

b; is true if and only if process P; is waiting or in critical section
if both threads want to enter their critical section, x decides who gets access

Joost-Pieter Katoen Model Checking 18/56
Biichi Automata Verifying Regular Safety Properties
Accessing a Bank Account Peterson’s Transition System
Thread Left behaves as follows: Thread Right behaves as follows:
while true { while true {
nc: (b1, x = true, 2;) nc: (by, x = true, 1;)
wt : wait until(x == 1| = b,){ wt : wait until(x == 2| = b;){
cs: ...Q@account...} cs: ...Q@account...}
b, = false; b, = false;
} }

Does only one thread at a time has access to the bank account?

Manual inspection reveals that mutual exclusion is guaranteed

Joost-Pieter Katoen Model Checking 19/56 Joost-Pieter Katoen Model Checking 20/56

Biichi Automata Verifying Regular Safety Properties

Verifying Mutual Exclusion

» Mutual exclusion = no simultaneous access to the account
» Bad prefix NFA 2/ :

crity A crit

—crity V —crity

» Checking mutual exclusion:

Tracessin(TSpet) N BadPreflEsare) = @7

finite traces £(21)

P Intersection, complementation and emptiness of finite automata
[——

accept finite words

Joost-Pieter Katoen Model Checking 21/56

Biichi Automata Verifying Regular Safety Properties

Verifying Regular Safety Properties

finite transition regular safety
system T property E

NFA A for
the bad prefixes of E

/

safety checking

via invariant checking

T ® A = "never final state”

S N

yes no + error indication

Joost-Pieter Katoen Model Checking 23/56

Problem Statement

Let
1. Egyfe be a regular safety property over AP

2. 2 be an NFA (or DFA) recognizing the bad prefixes of Eg,f

P> with € ¢ £(2)
> otherwise all finite words over 2”7 are bad prefixes and Eg,f. = @

3. TS be a finite transition system (over AP) without terminal states

How to establish whether TSF Eg,z?

Joost-Pieter Katoen Model Checking 22/56
Biichi Automata Verifying Regular Safety Properties

Product: Idea (1)

NFA for bad prefixes
-A = (Qa 2AP,57 QO’ F)

finite transition system

T = (S, Act, —, So, AP, L)

M qo € Qo
L(s)=A N
511 (s1)=A1 A
$ L(s2)=Aq T
| 1A
| |]
Sp L(.Sn):An lAn
path Gn+1 N
fragment # trace run for trace(T)

Joost-Pieter Katoen Model Checking 24/56

Biichi Automata Verifying Regular Safety Properties

Product: ldea

(2)

finite transition system

T = (S, Act, —, So, AP,)

path
fragment T

NFA for bad prefixes

path fragm.
in product

A = (Qa 2AP1 (57 QOa F)

»»»»»

run for trace(T)

Joost-Pieter Katoen Model Checking 25/56
Biichi Automata Verifying Regular Safety Properties
Example
(“green go }—{red/yellow q,) Product-TS
T®A
4 x 3 = 12 states, but
just 4 reachable states
Joost-Pieter Katoen Model Checking 27/56

Synchronous Product

Definition: synchronous product of TS and NFA

Let transition system TS = (S, Act, -, I, AP, L) without terminal states and
A=(Q, X, Qp F) an NFA with ¥ = 2" and Qyn F = @. The product of
TS and 2 is the transition system:

TS®A = (S, Act,>', I', AP, L) where

> S'=SxQ, AP =Qand L'((s,q)) = {q}
st A qM)p
(s, q) " (¢, p)
> I'={(s0.q) | o€/ A 3qo € Q. go=2bq}.

» —'is the smallest relation defined by:

Joost-Pieter Katoen Model Checking 26/56
Biichi Automata Verifying Regular Safety Properties

A Note on Terminal States

It may be safely assumed that TS ® 2(has no terminal states

» Although TS has no terminal state, TS ® 2(may have one
» This can only occur if 4(q, A) = @ for some A € AP

» Let NFA 2(with some reachable state g with d(q, A) = @

» Obtain an equivalent NFA 2" as follows:
P introduce new state .., ¢ Q
> if 6(q, A) =@ let 5'(q, A) = { Grrap }
P set 6'(Geraps A) = { Gerap } for all AS AP
P keep all other transitions that are present in 2

> It follows £(2A) = £(2A)

Joost-Pieter Katoen Model Checking 28/56

Verifying Regular Safety Properties

Let TS over AP, E,,s a safety property such that £(2A) = BadPref(Esf)
for some NFA 2. Then:

TS B Eo iff Tracess,(TS) n £(2A) = @ iff TS®2 E always = F
%—I
invariant

where F stands for \/ cr q.

Joost-Pieter Katoen Model Checking 29/56

Example

Joost-Pieter Katoen Model Checking 31/56

Biichi Automata Verifying Regular Safety Properties
Proof

Joost-Pieter Katoen Model Checking 30/56

Counterexamples

|
For each initial path fragment (sp, g1)...(Sn, gns1) of TS® A:

gi,....qn ¢ Fand gps1 €F = trace(sg sy ... sn) € L(2A).

bad prefix for Ei.z.

Joost-Pieter Katoen Model Checking 32/56

Complexity of Verifying Regular Safety Properties

|
The time and space complexity of checking TSE Eg,z is in O(| TS| - |2])
where 20 is an NFA with £(21) = BadPref(Es,z) and |2| is the size of 2.

The size of NFA 2l is the number of states and transitions in 2:

Al = 1QI+)) (g, Al

geQ Aex
Joost-Pieter Katoen Model Checking 33/56
Biichi Automata w-Regular Properties

Peterson’s Transition System

b1 =0

P

If a thread wants to update the account, does it ever get the opportunity to do so?

Joost-Pieter Katoen ! Model Checking

Overview

@ w-Regular Properties

Joost-Pieter Katoen Model Checking 34/56
Biichi Automata w-Regular Properties

Verifying Starvation Freedom

P Starvation freedom = when a thread wants access to account, it
eventually gets it

P “Infinite bad prefix” automaton: once a thread wants access to the
account, it never gets it

» Checking starvation freedom:

Traces(TSpet) N £(Ejve) = 27
—_

infinite traces

P Intersection, complementation and emptiness of Biichi automata

accept infinite words

Joost-Pieter Katoen Model Checking 36/56

Biichi Automata w-Regular Properties Biichi Automata w-Regular Properties

w-Regular Expressions: Syntax w-Regular Expressions: Semantics

Definition: w-regular expression

An w-regular expression G over the alphabet ¥ has the form:

Definition: semantics of w-regular expressions

The semantics of w-regular expression

_ w w
G = E;.F; +... + E,.F, for n€ Nyg G = EIF?_} 4 E,.,F‘;,)

where E;, F; are regular expressions over ¥ with ¢ ¢ £(F;). R T e T e

P w-Regular expressions denote languages of infinite words £,(G) = £(E1).L(F1)” v ... u £E,).L(F,)".
where for £ € ¥*, we have £7 = {wywowz...|Vi20.w; € £}.
» Examples over the alphabet ¥ = { A, B}:
» language of all words with infinitely many As: (B*.A)*
. The w-regular expression Gy and G, are equivalent,
» language of all words with finitely many As: (A+B)".B
denoted G; = Gy, if £,(G1) = £,(G»).
P the empty language 2"
Joost-Pieter Katoen Model Checking 37/56 Joost-Pieter Katoen Model Checking 38/56
Biichi Automata w-Regular Properties
w-Regular Properties Example w-Regular Properties

Definition: w-regular language » Any invariant E is an w-regular property
P ®“ describes E with invariant condition ®

The set £ of infinite works over the alphabet X is w-regular if £ = £,(G)
for some w-regular expression G over X.

» Any regular safety property E is an w-regular property
> E = BadPref(E).(2AP)w is w-regular
Definition: w-regular properties » and w-regular languages are closed under complement
LT property E over AP is w-regular if E is an w-regular language over 2"
» Let X ={a, b} Then:

. o . P Infinitely often a:
We will see that this is equivalent to:

| (o + (b)) ({a} +{a b))

LT property E over AP is w-regular if E is accepted by a non-deterministic

Biichi automaton (over the alphabet 2*%). > eventually a:

)" ({a}+{a b}).(2*
But not by a deterministic Biichi automaton. () (ta}+{a b)) ()

Joost-Pieter Katoen Model Checking 39/56 Joost-Pieter Katoen Model Checking 40/56

Shorthand Notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b)? = (0+{a}+{a b})
e ‘infinitely often a"
((Caya)® 2 ((@+{6})".({a} +{a b))
e “from some moment on a":
true*.a"”

e “whenever a then b will hold somewhen later”
((—a)*.a.true*.b)*.(—a)* + ((—a)*.a.true*.b)”

Joost-Pieter Katoen Model Checking 41/56

Biichi Automata Biichi Automata

Verifying w-Regular Properties

finite transition w-regular
system T property E
:
NBA A for

the bad behaviors, i.e.,

for (24P)\ E

/

persistence checking

T ® A | “eventually forever =F"

~ N

yes no + error indication

Joost-Pieter Katoen Model Checking 43/56

Overview

© Biichi Automata

Joost-Pieter Katoen Model Checking 42/56

Biichi Automata Biichi Automata

Julius Richard Buchi

Julius Richard Biichi (1924 — {1984)

Joost-Pieter Katoen Model Checking 44/56

Nondeterministic Biichi automata

Definition: Nondeterministic Biichi automaton
A nondeterministic Biichi automaton (NBA) 2 = (Q, X, 0, Qo, F) with:

» Q is a finite set of states

» Y is an alphabet

P H:QRXY > 2Q is a transition function

P @ € Q a set of initial states

» F c Qis a set of accept (or: final) states.

This definition is the same as for NFA.

The acceptance condition of NBA is different though.

Joost-Pieter Katoen Model Checking 45/56
Biichi Automata Biichi Automata
Examples
B accepted language:
@ Q1 set of all infinite words that
. A U contain infinitely many A's
B A (B*.A)“
B .
accepted language:
A A “every B is preceded
@ @ q2 by a positive even
A number of A's"

((A.A)*.B)” + ((A.A)*.B)*.A”

Joost-Pieter Katoen Model Checking 47/56

Biichi Automata Biichi Automata

Language of an Biichi Automaton
» NBA 2 =(Q, %, 6, Q, F) and infinite word w=A; Ay... € ¥

» A run for win 2 is an infinite sequence gy gy ... € Q“ such that:
» g9 € Q and q;—’ﬁ'ﬁ—)qiﬂ forall 0<i

» Run g qp ... is accepting if g; € F for infinitely many /

» The accepted language of 2:

£,(2) = {we X" |2 has an accepting run for w }

> we X" is accepted by 2 if 2 has an accepting run for w

» NBA 2 and 2’ are equivalent if £,(A) = £,(A)

Joost-Pieter Katoen Model Checking 46/56
Biichi Automata Biichi Automata

NBA for LT Properties

Joost-Pieter Katoen Model Checking 48/56

NBA versus NFA Deterministic Biichi Automata

Definition: Deterministic Biichi automaton

Biichi automaton 2 is deterministic if
|Q| <1 and |6(gq,A) <1 forallge @and AeX.

A DBA is total if both inequalities are equalities.

A total DBA has a unique run for each input word.

DBA Are Less Expressive Than NBA LT Properties Need Nondeterminism

|
There is no DBA that accepts £,((A + B)*B").

NFA and DFA are equally expressive but NBA and DBA are not!

Joost-Pieter Katoen Model Checking 51/56 Joost-Pieter Katoen Model Checking 52/56

Biichi Automata Outlook

Biichi Automata Outlook

Overview NBA and w-Regular Languages

1. For every NBA %, the language £, () is w-regular.
2. For every w-regular language L, there is an NBA 20 with L = £,(2).

Next lecture.]

© Outlook

Joost-Pieter Katoen Model Checking 53/56 Joost-Pieter Katoen

Model Checking 54/56

Biichi Automata Outlook

Biichi Automata Outlook

Verifying w-Regular Safety Properties Next Lecture

Theorem

Let TS over AP, E an w-regular property and NBA 2[with £(2) = E.
Then:

TS E E iff Traces(TS) n £,() = @ iff TS® A E eventually forever - F

ey e ol Friday October 25, 14:30

where F stands for \/ .- q.

Next lecture.

Joost-Pieter Katoen Model Checking 55/56 Joost-Pieter Katoen Model Checking 56/56

	Regular Safety Properties
	Refresher: Finite Automata
	Verifying Regular Safety Properties
	-Regular Properties
	Büchi Automata
	Outlook

