Model Checking Lecture #4: Verifying Regular Properties [Baier & Katoen, Chapter 4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Regular Safety Properties
 Refresher: Finite Automata
 Verifying Regular Safety Properties
 ω-Regular Properties
 Büchi Automata
 Outlook

Joost-Pieter Katoen	Model Checking	1/56
Süchi Automata	Regular Safety Properties	
Uverview		
 Regular Safety Properties 		
2 Refresher: Finite Automata		
3 Verifying Regular Safety Properties		
4 ω -Regular Properties		
6 Büchi Automata		
6 Outlook		

Büchi Automata

Regular Safety Properties

Safety Properties

Definition: Safety Property

LT property E_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus E_{safe}$:

$$E_{safe} \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\} = \emptyset.$$

for some prefix $\hat{\sigma}$ of σ .

- **>** Path fragment $\hat{\sigma}$ is called a bad prefix of E_{safe}
- Let $BadPref(E_{safe})$ denote the set of bad prefixes of E_{safe}
- $\hat{\sigma} \in E_{safe}$ is minimal if no proper prefix of it is in BadPref(E_{safe})
- Let $MinBadPref(E_{safe})$ denote the set of minimal bad prefixes of E_{safe}

Joost-Pieter Katoen	Model Checking 5/56
Büchi Automata	Regular Safety Properties

Regular Safety Properties

Definition: regular safety property

Safety property E_{safe} is regular if $BadPref(E_{safe})$ is a regular language.

Or, equivalently: Safety property E_{safe} is regular if there exists a finite automaton over the alphabet 2^{AP} recognizing $BadPref(E_{safe})$

Examples

Examples		
yellow	red red/yellow Ø green Ø	"every red phase is preceded by a yellow phase" hence: T ⊨ E
E = s	set of all infinite words A over 2^{AP} such that for all $red \in A_i \implies i \ge 1$ and	$_{0} A_{1} A_{2} \dots$ I $i \in \mathbb{N}$: d <i>yellow</i> $\in A_{i-1}$
is a safet	y property over $AP = \{r_i\}$	ed, yellow} with
BadPref	F = set of all finite word over 2^{AP} s.t. for some red ∈ A _i ∧ (i=0 ∨	ds $A_0 A_1 \dots A_n$ me $i \in \{0, \dots, n\}$: / yellow $\notin A_{i-1}$)
		_
Joost-Pieter Katoen	Model Chec	king 6/5
Joost-Pieter Katoen	Model Chec	sking 6/5
Joost-Pieter Katoen Büchi Automata	Model Chec Refresher: F	:king 6/5 :inite Automata
Joost-Pieter Katoen Büchi Automata Overview	Model Chec Refresher: F	inite Automata
Joost-Pieter Katoen Büchi Automata Overview 1 Regular Safety	Model Chec Refresher: F y Properties	sking 6/5
Joost-Pieter Katoen Büchi Automata Overview 1 Regular Safety 2 Refresher: Fin	Model Chec Refresher: F y Properties iite Automata	sking 6/5
Joost-Pieter Katoen Büchi Automata Overview 1 Regular Safety 2 Refresher: Fin 3 Verifying Regu	Model Chec Refresher: F y Properties nite Automata ular Safety Properties	sking 6/5
Joost-Pieter Katoen Büchi Automata Overview 1 Regular Safety 2 Refresher: Fin 3 Verifying Regu 4 ω-Regular Pro	Model Chec Refresher: F y Properties nite Automata ular Safety Properties	sking 6/5

6 Outlook

Refresher: Finite Automata

Finite Automata

A nondeterministic finite automaton (NFA) $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ with:

- Q is a finite set of states
- \blacktriangleright Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- ▶ $Q_0 \subseteq Q$ a set of initial states
- F ⊆ Q is a set of accept (or: final) states

Facts about Finite Automata

- They are as expressive as regular languages (Kleene's theorem)
- **b** They are closed under \cup , \cap , and complementation
 - ▶ NFA $\mathfrak{A} \otimes B$ (= cross product) accepts $\mathfrak{L}(A) \cap \mathfrak{L}(B)$
 - Total DFA $\overline{\mathfrak{A}}$ (= swap all accept and normal states) accepts $\overline{\mathfrak{L}(A)} = \Sigma^* \setminus \mathfrak{L}(\mathfrak{A})$
- They are closed under determinization (= powerset construction)
 although at an exponential cost ...
- $\mathfrak{L}(\mathfrak{A}) = \emptyset$? = check for a reachable accept state in NFA \mathfrak{A}
 - this can be done using a classical depth-first search
 - \blacktriangleright in linear-time complexity in the size of ${\mathfrak A}$
- \blacktriangleright For regular language $\mathfrak L$ there is a unique minimal DFA accepting $\mathfrak L$

11/

Language of an Finite Automaton

- ▶ NFA $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ and finite word $w = A_1 \dots A_n \in \Sigma^*$
- A run for w in A is a finite sequence q₀ q₁ ... q_n ∈ Q^{*} such that:
 q₀ ∈ Q₀ and q_i A_{i+1} q_{i+1} for all 0 ≤ i < n
- ▶ Run $q_0 q_1 \ldots q_n$ is accepting if $q_n \in F$
- ► The accepted language of 𝔅:

 $\mathfrak{L}(\mathfrak{A}) = \{ w \in \Sigma^* \mid \mathfrak{A} \text{ has an accepting run for } w \}$

► $w \in \Sigma^*$ is accepted by \mathfrak{A} if \mathfrak{A} has an accepting run for w

▶ NFA \mathfrak{A} and \mathfrak{A}' are equivalent if $\mathfrak{L}(\mathfrak{A}) = \mathfrak{L}(\mathfrak{A}')$

Joost-Pieter Katoer

Büchi Automata

Refresher: Finite Automata

Model Checking

Regular Safety Properties Revisited

Definition: regular safety property

Safety property E_{safe} is regular if $BadPref(E_{safe})$ is a regular language.

Or, equivalently:

if there exists a regular expression D over 2^{AP} with $\mathfrak{L}(D) = BadPref(E_{safe})$

Or, equivalently:

Safety property E_{safe} is regular if there exists an NFA \mathfrak{A} over the alphabet 2^{AP} with $\mathfrak{L}(\mathfrak{A}) = BadPref(E_{safe})$

Or, equivalently:

... if there exists a DFA \mathfrak{A} over 2^{AP} with $\mathfrak{L}(\mathfrak{A}) = BadPref(E_{safe})$

Refresher: Finite Automata

Sets as Formulas

Let NFA $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphaber $\Sigma = 2^{AP}$.

We adopt a shorthand notation for the transitions using propositional logic. If Φ is a propositional logic formula over *AP* then:

 $p \xrightarrow{\Phi} q$ stands for the set of transitions $p \xrightarrow{A} q$ with $A \subseteq AP$ and $A \models \Phi$

Model Checking

Refresher: Finite Automata

where $A \subseteq AP$ such that $A \models \Phi$.

Examples. Let $A = \{a, b, c\}$. Then:

- ▶ $p \xrightarrow{a \land b} q$ stands for $\{p \xrightarrow{\{a\}} q, p \xrightarrow{\{a,c\}} q\}$
- ▶ $p \xrightarrow{\text{false}} q$ stands for $\{p \xrightarrow{\varnothing} q\}$, i.e., $\{p \xrightarrow{\neg(a \lor b \lor c)} q\}$
- ▶ $p \xrightarrow{\text{true}} q$ stands for $\{p \xrightarrow{A} q \mid \forall A \subseteq AP\}$

Joost-Pieter Katoen

Büchi Automata

Details

üchi Automata

- **b** bad prefixes are of the form $\Phi^*(\neg \Phi)$ true^{*}
- where Φ is the invariant condition
- A regular safety property which is not an invariant: "a red light is immediately preceded by a yellow light"

A non-regular safety property:

"the # inserted coins is at least the # of dispensed drinks"

Büchi Automata

Joost-Pieter Katoer

Refresher: Finite Automata

Model Checking

Refresher: Finite Automata

Example

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \ge 0$: red $\in A_i \implies i \ge 1$ and yellow $\in A_{i-1}$

DFA for all (possibly non-minimal) bad prefixes

15/56

13/56

Joost-Pieter Katoer

Model Checking

16/56

14/50

Büchi Automata	Verifying Regular Safety Properties
Overview	
1 Regular Safety Properties	
2 Refresher: Finite Automata	
Verifying Regular Safety Propertie	2S
(4) ω -Regular Properties	
5 Büchi Automata	
6 Outlook	

Joost-Pieter Katoen	Model Checking	17/56
Büchi Automata	Verifying Regular Safety Properties	

Accessing a Bank Account

Thread Left behaves as follows:

<i>nc</i> : $\langle b_1, x = \text{true}, 2; \rangle$	<i>nc</i> : $\langle b_2, x = \text{true}, 1; \rangle$
<i>wt</i> : wait until($x == 1 \neg b_2$) {	wt: wait until(x == 2 $\neg b_1$) {
cs :@account}	<i>cs</i> :@account}
$b_1 = false;$	$b_2 = false;$
}	}

Does only one thread at a time has access to the bank account?

Peterson's Algorithm

x := 2; ($x = 1 \lor \neg b_2$)	(* non-critical actions *) (* request *)
$x := 2\rangle;$ (x = 1 $\vee \neg b_2$)	(* request *)
$(x = 1 \lor \neg b_2)$	
section od	
	(* release *)
	(* non-critical actions *)

 b_i is true if and only if process P_i is waiting or in critical section if both threads want to enter their critical section, x decides who gets access

Joost-Pieter Katoen	Model Checking	18/56

Verifying Regular Safety Properties

Peterson's Transition System

Manual inspection reveals that mutual exclusion is guaranteed

Thread Right behaves as follows:

19/56

Büchi Automata

Verifying Regular Safety Properties

Verifying Mutual Exclusion

- Mutual exclusion = no simultaneous access to the account
- ► Bad prefix NFA 𝔄 :

Checking mutual exclusion:

$$\frac{Traces_{fin}(TS_{Pet})}{\text{finite traces}} \cap \underbrace{BadPref(E_{safe})}_{\mathfrak{L}(\mathfrak{A})} = \varnothing?$$

Intersection, complementation and emptiness of <u>finite automata</u> accept finite words

Joost-Pieter	Katoen	

Model Checking

Verifying Regular Safety Properties

Büchi Automata

Verifying Regular Safety Properties

Problem Statement

Let

- 1. E_{safe} be a regular safety property over AP
- 2. \mathfrak{A} be an NFA (or DFA) recognizing the bad prefixes of E_{safe}
 - with $\varepsilon \notin \mathfrak{L}(\mathfrak{A})$
 - otherwise all finite words over 2^{AP} are bad prefixes and $E_{safe} = \emptyset$
- 3. TS be a finite transition system (over AP) without terminal states

How to establish whether $TS \models E_{safe}$?

Joost-Pieter Katoen		Model Checking	22/56
Büchi Automata		Verifying Regular Safety Properties	
Product: Idea	(1)		
finite transitio T = (S, Act, -	n system →,	NFA for bad prefixes $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$	
s 0	$L(s_0) = A_0$	$q_0 \in Q_0$	
s 1	$L(s_1) = A_1$	q_1	
s 2	$L(s_2) = A_2$	\mathbf{q}_2	
	:		
s _n	$L(s_n) = A_n$	$\dot{q}_n \downarrow A_n$	
path fragment $\widehat{m{\pi}}$	trace	<i>q_{n+1}</i> run for <i>trace</i> (<i>π</i>)	

24/56

Verifying Regular Safety Properties

Product: Idea (2)

Büchi Automata

Verifying Regular Safety Properties

Example

Synchronous Product

Definition: synchronous product of TS and NFA

Let transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ an NFA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$. The product of TS and \mathfrak{A} is the transition system:

 $TS \otimes \mathfrak{A} = (S', Act, \rightarrow', I', AP', L')$ where

Joost-Pieter Katoen Model Check	ing 26/56
Büchi Automata Verifying Reg	ular Safety Properties

A Note on Terminal States

It may be safely assumed that $TS \otimes \mathfrak{A}$ has no terminal states

- Although *TS* has no terminal state, $TS \otimes \mathfrak{A}$ may have one
- ▶ This can only occur if $\delta(q, A) = \emptyset$ for some $A \subseteq AP$
- Let NFA \mathfrak{A} with some reachable state q with $\delta(q, A) = \emptyset$
- Obtain an equivalent NFA 𝔄' as follows:
 introduce new state q_{trap} ∉ Q
 if δ(q, A) = Ø let δ'(q, A) = { q_{trap} }
 set δ'(q_{trap}, A) = { q_{trap} } for all A ⊆ AP
 keep all other transitions that are present in 𝔅
- ▶ It follows $\mathfrak{L}(\mathfrak{A}) = \mathfrak{L}(\mathfrak{A}')$

Joost-Pieter Katoen

Verifying Regular Safety Properties

Proof

Theorem

Let *TS* over *AP*, E_{safe} a safety property such that $\mathfrak{L}(\mathfrak{A}) = BadPref(E_{safe})$ for some NFA \mathfrak{A} . Then:

 $TS \models E_{safe} \text{ iff } Traces_{fin}(TS) \cap \mathfrak{L}(\mathfrak{A}) = \emptyset \text{ iff } TS \otimes \mathfrak{A} \models \underbrace{\text{always } \neg F}_{\text{invariant}}$

where F stands for $\bigvee_{q \in F} q$.

Joost-Pieter Katoen	Model Checking	29/56
Büchi Automata	Verifying Regular Safety Properties	
Example		

Joost-Pieter Katoen	Model Checking	30/56
Büchi Automata	Verifying Regular Safety Properties	
Counterexamples		

For each initial path fragment $\langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle$ of $TS \otimes \mathfrak{A}$:

$$q_1, \ldots, q_n \notin F$$
 and $q_{n+1} \in F \implies \underbrace{trace(s_0 s_1 \ldots s_n)}_{\text{bad prefix for } E_{safe}} \in \mathfrak{L}(\mathfrak{A}).$

Joost-Pieter Katoen

Verifying Regular Safety Properties

Complexity of Verifying Regular Safety Properties

The time and space complexity of checking $TS \models E_{safe}$ is in $O(|TS| \cdot |\mathfrak{A}|)$ where \mathfrak{A} is an NFA with $\mathfrak{L}(\mathfrak{A}) = BadPref(E_{safe})$ and $|\mathfrak{A}|$ is the size of \mathfrak{A} .

The size of NFA ${\mathfrak A}$ is the number of states and transitions in ${\mathfrak A}:$

$$|\mathfrak{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

If a thread wants to update the account, does it ever get the opportunity to do so?

Model Checking

6	Outlook	
5	Büchi Automata	
4	ω -Regular Properties	
3	Verifying Regular Safety Properties	
2	Refresher: Finite Automata	
1	Regular Safety Properties	

Büchi Automata

üchi Automata

Overview

 ω -Regular Properties

 ω -Regular Properties

Verifying Starvation Freedom

- Starvation freedom = when a thread wants access to account, it eventually gets it
- "Infinite bad prefix" automaton: once a thread wants access to the account, it never gets it

Checking starvation freedom:

$$\underbrace{Traces(TS_{Pet})}_{\text{infinite traces}} \cap \mathfrak{L}(\overline{E_{live}}) = \emptyset?$$

Intersection, complementation and emptiness of <u>Büchi automata</u> accept infinite words

$\omega ext{-Regular Properties}$

ω -Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

 $\mathsf{G} = \mathsf{E}_1.\mathsf{F}_1^{\omega} + \ldots + \mathsf{E}_n.\mathsf{F}_n^{\omega} \text{ for } n \in \mathbb{N}_{>0}$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

\blacktriangleright ω -Regular expressions denote languages of infinite words

Examples over the alphabet Σ = { A, B }:	
language of all words with infinitely many As:	

language of all words with finitely many As:	$(A+B)^*.B^{\circ}$
	$(A + D) \cdot D$

the empty language

oost-Pieter Katoen

Büchi Automata

 ω -Regular Properties

Model Checking

ω -Regular Properties

Definition: ω -regular language

The set \mathfrak{L} of infinite works over the alphabet Σ is ω -regular if $\mathfrak{L} = \mathfrak{L}_{\omega}(G)$ for some ω -regular expression G over Σ .

Definition: ω -regular properties

LT property *E* over *AP* is ω -regular if *E* is an ω -regular language over 2^{AP} .

We will see that this is equivalent to:

LT property *E* over *AP* is ω -regular if *E* is accepted by a non-deterministic Büchi automaton (over the alphabet 2^{AP}).

But not by a deterministic Büchi automaton.

ω -Regular Expressions: Semantics

Definition: semantics of ω -regular expressions

The semantics of ω -regular expression

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$

is the language $\mathfrak{L}(G) \subseteq \Sigma^{\omega}$ defined by:

$$\mathfrak{L}_{\omega}(\mathsf{G}) = \mathfrak{L}(\mathsf{E}_1).\mathfrak{L}(\mathsf{F}_1)^{\omega} \cup \ldots \cup \mathfrak{L}(\mathsf{E}_n).\mathfrak{L}(\mathsf{F}_n)^{\omega}.$$

where for $\mathfrak{L} \subseteq \Sigma^*$, we have $\mathfrak{L}^{\omega} = \{ w_1 w_2 w_3 \dots | \forall i \ge 0. w_i \in \mathfrak{L} \}.$

The ω -regular expression G_1 and G_2 are equivalent,
denoted $G_1 \equiv G_2$, if $\mathfrak{L}_{\omega}(G_1) = \mathfrak{L}_{\omega}(G_2)$.

Joost-Pieter	Kato

Model Checking

8/56

Büchi Automata

 ω -Regular Properties

Example ω -Regular Properties

- Any invariant E is an ω -regular property
 - Φ^{ω} describes *E* with invariant condition Φ
- Any regular safety property E is an ω -regular property
 - $\overline{E} = BadPref(E) \cdot (2^{AP})^{\omega}$ is ω -regular
 - **b** and ω -regular languages are closed under complement
- Let $\Sigma = \{a, b\}$ Then:
 - Infinitely often *a*:

$$((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

 $(2^{AP})^{\omega}$. $(\{a\} + \{a, b\})$. (2^{AP})

eventually a:

oost-Pieter Katoen

 $(B^*.A)^{\omega}$

 $\boldsymbol{\varphi}^{\omega}$

Joost-Pieter Katoen

ω -Regular Properties

Shorthand Notation

- *Examples* for $AP = \{a, b\}$
- invariant with invariant condition $a \lor \neg b$

$$(\mathbf{a} \vee \neg \mathbf{b})^{\omega} \stackrel{c}{=} (\emptyset + \{\mathbf{a}\} + \{\mathbf{a}, \mathbf{b}\})^{\omega}$$

• "infinitely often **a**"

$$((\neg a)^*.a)^{\omega} \stackrel{\cong}{=} ((\emptyset + \{b\})^*.(\{a\} + \{a, b\}))^{\omega}$$

• "from some moment on **a**":

true*.a^w

• "whenever **a** then **b** will hold somewhen later"

$$((\neg a)^*.a.true^*.b)^*.(\neg a)^\omega + ((\neg a)^*.a.true^*.b)^\omega$$

Joost-Pieter Katoen	Model Checking 41/56	
Büchi Automata	Büchi Automata	
Verifying ω -Regular Prope	rties	
finite transition system ${\cal T}$	$\begin{array}{c} \boldsymbol{\omega}\text{-regular}\\ \text{property } \boldsymbol{E} \end{array}$ $\begin{array}{c} \textbf{NBA } \boldsymbol{\mathcal{A}} \text{ for}\\ \text{the bad behaviors, i.e.,}\\ \text{for } (2^{\boldsymbol{AP}})^{\boldsymbol{\omega}} \setminus \boldsymbol{E} \end{array}$	
persistence checking		
$\mathcal{T} \otimes \mathcal{A} \models \text{``eventually forever } \neg F$		
yes	no + error indication	

Overview	
Regular Safety Properties	
2 Refresher: Finite Automata	
3 Verifying Regular Safety Properties	

Büchi Automata

5 Büchi Automata

4 ω -Regular Properties

6 Outlook

Büchi Automata

Joost-Pieter Katoen	Model Checking	42/56
Rüchi Automata	Rüchi Automata	

Julius Richard Büchi

Julius Richard Büchi (1924 - †1984)

Model Checking

Büchi Automata

Nondeterministic Büchi automata

Definition: Nondeterministic Büchi automaton

- A nondeterministic Büchi automaton (NBA) $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ with:
 - Q is a finite set of states
 - \blacktriangleright Σ is an alphabet
 - $\delta: Q \times \Sigma \to 2^Q$ is a transition function
 - ▶ $Q_0 \subseteq Q$ a set of initial states
 - F \subseteq Q is a set of accept (or: final) states.

This definition is the same as for NFA.

The acceptance condition of NBA is different though.

Joost-Pieter Katoen	Model Checking	45/56
Büchi Automata	Büchi Automata	

Examples

accepted language: set of all infinite words that contain infinitely many **A**'s (**B***.**A**)^{\omega}

accepted language: "every **B** is preceded by a positive even number of **A**'s"

Language of an Büchi Automaton

- ▶ NBA $\mathfrak{A} = (Q, \Sigma, \delta, Q_0, F)$ and infinite word $w = A_1 A_2 \ldots \in \Sigma^{\omega}$
- A run for w in A is an infinite sequence q₀ q₁ ... ∈ Q^ω such that:
 q₀ ∈ Q₀ and q_i A_{i+1} q_{i+1} for all 0 ≤ i
- ▶ Run $q_0 q_1 \dots$ is accepting if $q_i \in F$ for infinitely many *i*
- The accepted language of \mathfrak{A} :

 $\mathfrak{L}_{\omega}(\mathfrak{A}) = \{ w \in \Sigma^{\omega} \mid \mathfrak{A} \text{ has an accepting run for } w \}$

- ▶ $w \in \Sigma^*$ is accepted by \mathfrak{A} if \mathfrak{A} has an accepting run for w
- ▶ NBA \mathfrak{A} and \mathfrak{A}' are equivalent if $\mathfrak{L}_{\omega}(\mathfrak{A}) = \mathfrak{L}_{\omega}(\mathfrak{A}')$

Joost-Pieter Katoen

Model Checking

Büchi Automata

Büchi Automata

NBA for LT Properties

46/50

 $⁽⁽A.A)^+.B)^{\omega} + ((A.A)^+.B)^*.A^{\omega}$

Büchi Automata

NBA versus NFA

Deterministic Büchi Automata

Definition: Deterministic Büchi automaton

Büchi automaton \mathfrak{A} is deterministic if

 $|Q_0| \le 1$ and $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$.

A DBA is total if both inequalities are equalities.

A total DBA has a unique run for each input word.

Joost-Pieter Katoen	Model Checking	49/56
Büchi Automata	Büchi Automata	
DBA Are Less Expressive	Than NBA	

Joost-Pieter Katoen	Model Checking	50/56
Büchi Automata	Büchi Automata	

LT Properties Need Nondeterminism

There is no DBA that accepts $\mathfrak{L}_{\omega}((A+B)^*B^{\omega})$.

NFA and DFA are equally expressive but NBA and DBA are not!

Büchi Automata Overview	Outlook	
 Regular Safety Properties 		
2 Refresher: Finite Automa		
3 Verifying Regular Safety I	roperties	
(4) ω -Regular Properties		
5 Büchi Automata		
6 Outlook		

Joost-Pieter Katoen	Model Checking	53/56
Büchi Automata	Outlook	

Verifying ω -Regular Safety Properties

NBA and ω -Regular Languages

Theorem

- 1. For every NBA \mathfrak{A} , the language $\mathfrak{L}_{\omega}(\mathfrak{A})$ is ω -regular.
- 2. For every ω -regular language L, there is an NBA \mathfrak{A} with $L = \mathfrak{L}_{\omega}(\mathfrak{A})$.

Proof.

Next lecture.

Joost-Pieter Katoen Model Checking 54/56 Büchi Automata Outlook

Next Lecture

Friday October 25, 14:30