
Safety and Liveness Properties

Model Checking
Lecture #3: Safety and Liveness Properties

[Baier & Katoen, Chapter 3]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Model Checking 1/43

Safety and Liveness Properties

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 2/43

Safety and Liveness Properties

Joost-Pieter Katoen Model Checking 3/43

Safety and Liveness Properties Recapitulation: Traces

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 4/43



Safety and Liveness Properties Recapitulation: Traces

Traces

▶ Actions are mainly used to model the (possibility of) interaction
synchronous or asynchronous communication

▶ Here, focus on the states that are visited during executions
the states themselves are not “observable”, but just their atomic
propositions

▶ Traces are sequences of the form L(s0) L(s1) L(s2) . . .
record the (sets of) atomic propositions along an execution

▶ For transition systems without terminal states1:
traces are infinite words over the alphabet 2AP, i.e., they are in (2AP)ω

1This is an assumption commonly used throughout this lecture.
Joost-Pieter Katoen Model Checking 5/43

Safety and Liveness Properties Recapitulation: Traces

Traces

Definition: Traces
Let TS = (S,Act,→, I,AP, L) be transition system without terminal states.
▶ The trace of execution

ρ = s0 α1−−−→ s1 α2−−−→ s2 α3−−−→ . . .

is the infinite word trace(ρ) = L(s0) L(s1) L(s2) . . . over (2AP)ω.
Prefixes of traces are finite traces.

▶ The traces of a set Π of executions (or paths) is defined by:

trace(Π) = { trace(π) ∣ π ∈ Π }.

▶ The traces of state s are Traces(s) = trace(Paths(s)).
▶ The traces of transition system TS: Traces(TS) = ⋃s∈I Traces(s).

Joost-Pieter Katoen Model Checking 6/43

Safety and Liveness Properties Recapitulation: Traces

Example
Consider the mutex transition system. Let AP = { crit1, crit2 }.
The trace of the path:

π = ⟨n1, n2, y = 1⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L=∅

→ ⟨w1, n2, y = 1⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L=∅

→ ⟨c1, n2, y = 0⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L={crit1 }

→

⟨n1, n2, y = 1⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L=∅

→ ⟨n1,w2, y = 1⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L=∅

→ ⟨n1, c2, y = 0⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L={crit2 }

→ . . .

is:

trace(π) = ∅∅ { crit1 }∅∅ { crit2 }∅∅ { crit1 }∅∅ { crit2 } . . .

Or expressed using ω-regular expressions:

trace(π) = ∅∅ ({ crit1 }∅∅ { crit2 })ω

Joost-Pieter Katoen Model Checking 7/43

Safety and Liveness Properties Recapitulation: Traces

Regular Expressions

▶ Let Σ be an alphabet, i.e. countable set of symbols, with A ∈ Σ

▶ Regular expressions over Σ have syntax:

E ∶∶= ∅ ∣ ε ∣ A ∣ E + E′ ∣ E.E′ ∣ E∗

▶ The semantics of regular expression E is a language L(E) ⊆ Σ∗:

L(∅) = ∅, L(ε) = { ε }, L(A) = {A }

L(E+E′) = L(E) ∪ L(E′) L(E.E′) = L(E).L(E′) L(E∗) = L(E)∗

▶ Regular expressions denote languages of finite words

Joost-Pieter Katoen Model Checking 8/43



Safety and Liveness Properties Recapitulation: Traces

ω-Regular Expressions: Syntax
Definition: ω-regular expression
An ω-regular expression G over the alphabet Σ has the form:

G = E1.F
ω
1 + . . . + En.F

ω
n for n ∈ N>0

where Ei , Fi are regular expressions over Σ with ε ∉ L(Fi ).

▶ ω-Regular expressions denote languages of infinite words

▶ Examples over the alphabet Σ = {A,B }:
▶ language of all words with infinitely many As: (B∗

.A)ω

▶ language of all words with finitely many As: (A + B)∗.Bω

▶ the empty language ∅ω

Joost-Pieter Katoen Model Checking 9/43

Safety and Liveness Properties Recapitulation: Traces

ω-Regular Expressions: Semantics

Definition: semantics of ω-regular expressions
The semantics of ω-regular expression G = E1.F

ω
1 + . . . + En.F

ω
n is the

language L(G) ⊆ Σω defined by:

Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω.

where for L ⊆ Σ∗, we have L
ω

= {w1w2w3 . . . ∣ ∀i ≥ 0.wi ∈ L }.

The ω-regular expression G1 and G2 are equivalent,
denoted G1 ≡ G2, if Lω(G1) = Lω(G2).

Joost-Pieter Katoen Model Checking 10/43

Safety and Liveness Properties Linear-Time Properties

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 11/43

Safety and Liveness Properties Linear-Time Properties

Linear-Time Properties
Definition: Linear-Time Property
A linear-time property (LT property) over AP is a subset of (2AP)ω.

▶ Linear-time properties specify desirable traces of a transition system
▶ They are infinite words A0 A1 A2 . . . with Ai ⊆ AP, i.e. traces
▶ No finite words, as TS is assumed to have no terminal states
▶ TS satisfies property P if all its “observable” behaviours are admitted

by P

Satisfaction relation for LT properties
Transition system TS (over AP) satisfies LT property P (over AP):

TS ⊧ P if and only if Traces(TS) ⊆ P.

Joost-Pieter Katoen Model Checking 12/43



Safety and Liveness Properties Linear-Time Properties

Mutual Exclusion as LT Property

“Always at most one thread is in its critical section”

▶ Let AP = { crit1, crit2 }
other atomic propositions are not of any relevance for this property

▶ Formalization as LT property
Pmutex = set of infinite words A0 A1 A2 . . .

with { crit1, crit2 } /⊆ Ai for all 0 ≤ i

▶ Contained in Pmutex are e.g., the infinite words:
▶ ({ crit1 } { crit2 })ω and ({ crit1 })ω and ∅ω

▶ but not { crit1 }∅ { crit1, crit2 } . . . or ∅ { crit1 }, (∅∅ { crit1, crit2 })ω

Joost-Pieter Katoen Model Checking 13/43

Safety and Liveness Properties Linear-Time Properties

Mutual Exclusion by Semaphores

Yes, the semaphore-based algorithm satisfies Pmutex .
Joost-Pieter Katoen Model Checking 14/43

Safety and Liveness Properties Linear-Time Properties

Starvation Freedom as LT Property

“A thread that wants to enter the critical section is eventually able
to do so‘”

▶ Let AP = {wait1, crit1,wait2, crit2 }

▶ Formalization as LT-property

Pnostarve = set of infinite words A0 A1 A2 . . . such that:

(
∞
∃ j . waiti ∈ Aj ) ⇒ (

∞
∃ j . criti ∈ Aj ) for each i ∈ { 1, 2 }

where: (
∞
∃ j .waiti ∈ Aj) abbreviates (∀k ≥ 0.∃j > k.waiti ∈ Aj )

Joost-Pieter Katoen Model Checking 15/43

Safety and Liveness Properties Linear-Time Properties

Starvation Freedom by Semaphores

Does the semaphore-based algorithm satisfy Pnostarve?

No. Trace ∅ ({wait2 } {wait1,wait2 } { crit1,wait2 } )ω ∈ Traces(TS), but /∈ Pnostarve

Joost-Pieter Katoen Model Checking 16/43



Safety and Liveness Properties Linear-Time Properties

Trace Inclusion and LT Properties

For TS and TS′ be transition systems (over AP) without terminal states:

Traces(TS) ⊆ Traces(TS′)
if and only if

for any LT property P: TS′ ⊧ P implies TS ⊧ P.

Traces(TS) = Traces(TS′) iff TS and TS′ satisfy the same LT properties.

Joost-Pieter Katoen Model Checking 17/43

Safety and Liveness Properties Safety Properties

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 18/43

Safety and Liveness Properties Safety Properties

Invariants

▶ LT property Pinv over AP is an invariant if it has the form:

Pinv = { A0A1A2 . . . ∈ (2AP)ω ∣ ∀j ≥ 0. Aj ⊧ Φ }

where (invariant condition) Φ is a propositional logic formula over AP

▶ Note that

TS ⊧ Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) ⊧ Φ for all states s that belong to a path of TS
iff L(s) ⊧ Φ for all states s ∈ Reach(TS)

▶ all initial states fulfil Φ and all transitions in the reachable fragment
of TS preserve Φ

Joost-Pieter Katoen Model Checking 19/43

Safety and Liveness Properties Safety Properties

Example Invariants

Joost-Pieter Katoen Model Checking 20/43



Safety and Liveness Properties Safety Properties

Safety Properties
▶ Safety properties may impose requirements on finite path fragments

▶ and cannot be verified by considering the reachable states only

▶ Every invariant is a safety property, but not the reverse

▶ A safety property which is not an invariant:
▶ consider a cash dispenser, aka: automated teller machine (ATM)
▶ property “money can only be withdrawn once a correct PIN has been

provided”
⇒ not an invariant, since it is not a state property

▶ But a safety property:
▶ any infinite run violating the property has a finite prefix that is “bad”
▶ i.e., in which money is withdrawn without issuing a PIN before

Joost-Pieter Katoen Model Checking 21/43

Safety and Liveness Properties Safety Properties

Safety Properties

Definition: Safety Property
LT property Psafe over AP is a safety property if for all σ ∈ (2AP)ω \ Psafe :

Psafe ∩ {σ′ ∈ (2AP)ω ∣ σ̂ is a prefix of σ′} = ∅.

for some prefix σ̂ of σ.

▶ Path fragment σ̂ is called a bad prefix of Psafe

▶ Let BadPref(Psafe) denote the set of bad prefixes of Psafe

▶ σ̂ ∈ Psafe is minimal if no proper prefix of it is in BadPref(Psafe)

Joost-Pieter Katoen Model Checking 22/43

Safety and Liveness Properties Safety Properties

Examples

Joost-Pieter Katoen Model Checking 23/43

Safety and Liveness Properties Safety Properties

Safety Properties and Finite Traces

For transition system TS without terminal states
and safety property Psafe :

TS ⊧ Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅.

Joost-Pieter Katoen Model Checking 24/43



Safety and Liveness Properties Safety Properties

Closure

Definition: closure of a property
The closure of LT property P is defined as:

closure(P) = {σ ∈ (2AP)ω ∣ every prefix of σ is a prefix of P}

▶ closure(P) contains the set of infinite traces whose finite prefixes are
also prefixes of P, or equivalently

▶ infinite traces in the closure of P do not have a prefix that is not a
prefix of P

Joost-Pieter Katoen Model Checking 25/43

Safety and Liveness Properties Safety Properties

Safety Properties and Closure

For any LT property P over AP:
P is a safety property if and only if closure(P) = P.

Joost-Pieter Katoen Model Checking 26/43

Safety and Liveness Properties Safety Properties

Safety Properties and Finite Trace Equivalence

Let TS and TS′ be transition systems (over AP) without terminal states.

Tracesfin(TS) ⊆ Tracesfin(TS′)
if and only if

for any safety property Psafe ∶ TS
′
⊧ Psafe ⇒ TS ⊧ Psafe .

Tracesfin(TS) = Tracesfin(TS′)
if and only if

TS and TS′ satisfy the same safety properties.

Joost-Pieter Katoen Model Checking 27/43

Safety and Liveness Properties Safety Properties

Finite versus Infinite Traces

For TS without terminal states and finite TS′:

Traces(TS) ⊆ Traces(TS′) iff Tracesfin(TS) ⊆ Tracesfin(TS′)

this does not hold for infinite TS′ (cf. next slide)
but also holds for image-finite TS′.2

2Transition systems in which each state has finitely many direct successors.
Joost-Pieter Katoen Model Checking 28/43



Safety and Liveness Properties Safety Properties

Trace Equivalence ≠ Finite Trace Equivalence

Joost-Pieter Katoen Model Checking 29/43

Safety and Liveness Properties Liveness Properties

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 30/43

Safety and Liveness Properties Liveness Properties

Why Liveness?

▶ Safety properties specify that:
’ “something bad never happens” [Lamport 1977]

▶ Doing nothing easily fulfils a safety property
as this will never lead to a “bad” situation

⇒ Safety properties are complemented by liveness properties
that require some progress

▶ Liveness properties assert that:
”something good” will happen eventually [Lamport 1977]

Joost-Pieter Katoen Model Checking 31/43

Safety and Liveness Properties Liveness Properties

The Meaning of Liveness

The question of whether a real system satisfies a liveness property
is meaningless; it can be answered only by observing the system for

an infinite length of time, and real systems don’t run forever.
Liveness is always an approximation to the property we really care about.
We want a program to terminate within 100 years, but proving that it does

would require addition of distracting timing assumptions.
So, we prove the weaker condition that the program eventually terminates.
This doesn’t prove that the program will terminate within our lifetimes,

but it does demonstrate the absence of infinite loops.
[Lamport 2000]

Joost-Pieter Katoen Model Checking 32/43



Safety and Liveness Properties Liveness Properties

Liveness Properties
Definition: Liveness property
LT property Plive over AP is a liveness property whenever

pref(Plive) = (2AP)∗.

▶ A liveness property does not rule out any prefix

▶ Liveness properties are violated in “infinite time”
▶ whereas safety properties are violated in finite time
▶ finite traces are of no use to decide whether Plive holds or not
▶ any finite prefix can be extended such that the resulting infinite trace

satisfies Plive

▶ Equivalently, Plive is a liveness property iff closure(Plive) = (2AP)ω

Joost-Pieter Katoen Model Checking 33/43

Safety and Liveness Properties Liveness Properties

Example Liveness Properties for Mutual Exclusion

P = {A0 A1 A2 . . . ∣ Aj ⊆ AP & . . . } and AP = {wait1, crit1,wait2, crit2}.

▶ Any thread eventually is in its critical section:

(∃j ≥ 0. crit1 ∈ Aj ) ∧ (∃j ≥ 0. crit2 ∈ Aj )

▶ Any thread is Infinitely often in its critical section:

(
∞
∃ j ≥ 0. crit1 ∈ Aj) ∧ (

∞
∃ j ≥ 0. crit2 ∈ Aj)

▶ Starvation freedom — no thread is "starving’:’

∀j ≥ 0. (wait1 ∈ Aj ⇒ (∃k > j . crit1 ∈ Ak )) ∧

∀j ≥ 0. (wait2 ∈ Aj ⇒ (∃k > j . crit2 ∈ Ak ))

Joost-Pieter Katoen Model Checking 34/43

Safety and Liveness Properties Safety versus Liveness

Overview

1 Recapitulation: Traces

2 Linear-Time Properties

3 Safety Properties

4 Liveness Properties

5 Safety versus Liveness

Joost-Pieter Katoen Model Checking 35/43

Safety and Liveness Properties Safety versus Liveness

Safety versus Liveness

▶ Are safety and liveness properties disjoint? Yes, almost

▶ The property (2AP)ω is both a safety and a liveness property

▶ Is any linear-time property a safety or liveness property? No

▶ But:
for any LT property P there exists an equivalent LT property P ′

which is a conjunction of a safety and a liveness property

⇒ safety and liveness provide an essential characterization of LT properties

Joost-Pieter Katoen Model Checking 36/43



Safety and Liveness Properties Safety versus Liveness

Neither Safe nor Live

“the machine provides infinitely often beer
after initially providing sprite three times in a row”

▶ This property consists of two parts:
▶ it requires beer to be provided infinitely often
⇒ as any finite trace fulfills this, it is a liveness property
▶ the first three drinks it provides should all be sprite
⇒ bad prefix = one of first three drinks is beer; this is a safety property

▶ This property is thus a conjunction of a safety and a liveness property

does this apply to all such properties?

Joost-Pieter Katoen Model Checking 37/43

Safety and Liveness Properties Safety versus Liveness

Decomposition Theorem

Decomposition theorem for LT properties
For any LT property P over AP there exists a safety property Psafe and a
liveness property Plive (both over AP) such that:

P = Psafe ∩ Plive .

Proposal: P = closure(P)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=Psafe

∩ (P ∪ ((2AP)ω \ closure(P)))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=Plive

Joost-Pieter Katoen Model Checking 38/43

Safety and Liveness Properties Safety versus Liveness

Proof

Joost-Pieter Katoen Model Checking 39/43

Safety and Liveness Properties Safety versus Liveness

"Sharpest" Decomposition

Let P be an LT property and P = Psafe ∩ Plive where Psafe is a safety
property and Plive a liveness property.
Then:
1. closure(P) ⊆ Psafe , and

2. Plive ⊆ P ∪ ((2AP)ω \ closure(P)).

closure(P) is the strongest safety property and
((2AP)ω \ closure(P)) the weakest liveness property

Joost-Pieter Katoen Model Checking 40/43



Safety and Liveness Properties Safety versus Liveness

Classification of LT Properties

[Alpern and Schneider, 1987]

Joost-Pieter Katoen Model Checking 41/43

Safety and Liveness Properties Safety versus Liveness

Summary

▶ LT properties are finite sets of infinite words over 2AP (= traces)

▶ An invariant requires a condition Φ to hold in any reachable state

▶ Each trace refuting a safety property has a finite prefix causing this
▶ invariants are safety properties with bad prefix Φ∗(¬Φ)
⇒ safety properties constrain finite behaviours

▶ A liveness property does not rule out any finite behaviour
⇒ liveness properties constrain infinite behaviours

▶ Any LT property is equivalent to a conjunction of a safety and a
liveness property

Joost-Pieter Katoen Model Checking 42/43

Safety and Liveness Properties Safety versus Liveness

Next Lecture

Thursday October 24, 10:30

Joost-Pieter Katoen Model Checking 43/43


	Recapitulation: Traces
	Linear-Time Properties
	Safety Properties
	Liveness Properties
	Safety versus Liveness

