Model Checking
Lecture #3: Safety and Liveness Properties
[Baier & Katoen, Chapter 3]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

1. Recapitulation: Traces
2. Linear-Time Properties
3. Safety Properties
4. Liveness Properties
5. Safety versus Liveness
Recapitulation: Traces

Model Checking

Safety and Liveness Properties

Joost-Pieter Katoen

Traces

Actions are mainly used to model the (possibility of) interaction synchronous or asynchronous communication

Here, focus on the states that are visited during executions the states themselves are not "observable", but just their atomic propositions

Traces are sequences of the form \(L(s_0) L(s_1) L(s_2) \ldots \) record the (sets of) atomic propositions along an execution

For transition systems without terminal states\(^1\): traces are infinite words over the alphabet \(2^\text{AP} \), i.e., they are in \((2^\text{AP})^\omega \)

\(^1\)This is an assumption commonly used throughout this lecture.

Example

Consider the mutex transition system. Let \(AP = \{ \text{crit}_1, \text{crit}_2 \} \).

The trace of the path:

\[
\pi = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle \rightarrow \langle n_1, n_2, y = 1 \rangle \rightarrow \langle n_1, w_2, y = 1 \rangle \rightarrow \langle n_1, c_2, y = 0 \rangle \rightarrow \ldots
\]

is:

\[
\text{trace}(\pi) = \emptyset \emptyset \{ \text{crit}_1 \} \emptyset \emptyset \{ \text{crit}_2 \} \emptyset \emptyset \{ \text{crit}_1 \} \emptyset \emptyset \{ \text{crit}_2 \} \ldots
\]

Or expressed using \(\omega \)-regular expressions:

\[
\text{trace}(\pi) = \emptyset \emptyset \{ \text{crit}_1 \} \emptyset \emptyset \{ \text{crit}_2 \}^\omega
\]

Regular Expressions

Let \(\Sigma \) be an alphabet, i.e. countable set of symbols, with \(A \in \Sigma \)

Regular expressions over \(\Sigma \) have syntax:

\[
E ::= \emptyset \mid \varepsilon \mid A \mid E + E' \mid EE' \mid E^+
\]

The semantics of regular expression \(E \) is a language \(\mathcal{L}(E) \subseteq \Sigma^* \):

\[
\mathcal{L}(\emptyset) = \emptyset, \quad \mathcal{L}(\varepsilon) = \{ \varepsilon \}, \quad \mathcal{L}(A) = \{ A \}
\]

\[
\mathcal{L}(E + E') = \mathcal{L}(E) \cup \mathcal{L}(E') \quad \mathcal{L}(EE') = \mathcal{L}(E) \cdot \mathcal{L}(E') \quad \mathcal{L}(E^*) = \mathcal{L}(E)^*
\]

Regular expressions denote languages of finite words
ω-Regular Expressions: Syntax

Definition: ω-regular expression
An ω-regular expression G over the alphabet $Σ$ has the form:

$$G = E_1.F_1^ω + \ldots + E_n.F_n^ω$$

for $n \in \mathbb{N}_{>0}$

where E_i, F_i are regular expressions over $Σ$ with $ε \notin L(F_i)$.

- ω-Regular expressions denote languages of infinite words
- Examples over the alphabet $Σ = \{A, B\}$:
 - language of all words with infinitely many As: $(B^*.A)ω$
 - language of all words with finitely many As: $(A + B)^*.Bω$
 - the empty language $∅^ω$

ω-Regular Expressions: Semantics

Definition: semantics of ω-regular expressions

The semantics of ω-regular expression $G = E_1.F_1^ω + \ldots + E_n.F_n^ω$ is the language $L(G) \subseteq Σ^ω$ defined by:

$$L_ω(G) = L(E_1).L(F_1)^ω \cup \ldots \cup L(E_n).L(F_n)^ω.$$

where for $L \subseteq Σ^*$, we have $L^ω = \{w_1w_2w_3\ldots | \forall i \geq 0. w_i \in L\}$.

The ω-regular expression G_1 and G_2 are equivalent, denoted $G_1 \equiv G_2$, if $L_ω(G_1) = L_ω(G_2)$.

Linear-Time Properties

Definition: Linear-Time Property

A linear-time property (LT property) over AP is a subset of $(2^AP)^ω$.

- Linear-time properties specify desirable traces of a transition system
- They are infinite words $A_0 A_1 A_2 \ldots$ with $A_i \subseteq AP$, i.e. traces
- No finite words, as TS is assumed to have no terminal states
- TS satisfies property P if all its “observable” behaviours are admitted by P

Satisfaction relation for LT properties

Transition system TS (over AP) satisfies LT property P (over AP):

$$TS \vDash P \text{ if and only if } Traces(TS) \subseteq P.$$
Mutual Exclusion as LT Property

“Always at most one thread is in its critical section”

Let $AP = \{ crit_1, crit_2 \}$
other atomic propositions are not of any relevance for this property

Formalization as LT property

$$P_{mutex} = \text{set of infinite words } A_0 A_1 A_2 \ldots$$
with $\{ crit_1, crit_2 \} \notin A_i$ for all $0 \leq i$

Contained in P_{mutex} are e.g., the infinite words:

- $\{ \{ crit_1 \} \{ crit_2 \} \}^\omega$ and $\{ \{ crit_1 \} \}^\omega$ and \emptyset^ω

- but not $\{ crit_1 \} \emptyset \{ crit_1, crit_2 \} \ldots$ or $\emptyset \{ crit_1 \}, (\emptyset \emptyset \{ crit_1, crit_2 \})^\omega$

Mutual Exclusion by Semaphores

Yes, the semaphore-based algorithm satisfies P_{mutex}.

Starvation Freedom as LT Property

“A thread that wants to enter the critical section is eventually able to do so”

Let $AP = \{ wait_1, crit_1, wait_2, crit_2 \}$

Formalization as LT-property

$$P_{nostarve} = \text{set of infinite words } A_0 A_1 A_2 \ldots \text{such that:}$$

$$\left(\exists j. \text{ wait}_i \in A_j \right) \Rightarrow \left(\exists j. \text{ crit}_i \in A_j \right) \text{ for each } i \in \{ 1, 2 \}$$

where: $\left(\exists j. \text{ wait}_i \in A_j \right)$ abbreviates ($\forall k \geq 0. \exists j > k. \text{ wait}_i \in A_j$)

Starvation Freedom by Semaphores

Does the semaphore-based algorithm satisfy $P_{nostarve}$?

No. Trace $\emptyset \{ \text{ wait}_2 \} \{ \text{ wait}_1, \text{ wait}_2 \} \{ \text{ crit}_1, \text{ wait}_2 \}^\omega \in \text{Traces(TS)}$, but $\notin P_{nostarve}$
Trace Inclusion and LT Properties

For TS and TS' be transition systems (over AP) without terminal states:

\[
\text{Traces}(TS) \subseteq \text{Traces}(TS')
\]

if and only if

for any LT property P: $TS' \models P$ implies $TS \models P$.

\[
\text{Traces}(TS) = \text{Traces}(TS') \text{ iff } TS \text{ and } TS' \text{ satisfy the same LT properties.}
\]
Safety Properties

- Safety properties may impose requirements on finite path fragments and cannot be verified by considering the reachable states only
- Every invariant is a safety property, but not the reverse
- A safety property which is not an invariant:
 - consider a cash dispenser, aka: automated teller machine (ATM)
 - property “money can only be withdrawn once a correct PIN has been provided”
 - not an invariant, since it is not a state property
- But a safety property:
 - any infinite run violating the property has a finite prefix that is “bad”
 - i.e., in which money is withdrawn without issuing a PIN before

Examples

For transition system TS without terminal states and safety property P_{safe}:

$$TS \models P_{safe} \text{ if and only if } \text{Traces}_{\text{fin}}(TS) \cap \text{BadPref}(P_{safe}) = \emptyset.$$
Safety and Liveness Properties

Safety Properties

Closure

Definition: closure of a property

The closure of LT property \(P \) is defined as:

\[
\text{closure}(P) = \{ \sigma \in (2^{AP})^\omega \mid \text{every prefix of } \sigma \text{ is a prefix of } P \}
\]

- closure\((P)\) contains the set of infinite traces whose finite prefixes are also prefixes of \(P \), or equivalently

- infinite traces in the closure of \(P \) do not have a prefix that is not a prefix of \(P \)

Safety Properties and Closure

For any LT property \(P \) over \(AP \):

\(P \) is a safety property if and only if \(\text{closure}(P) = P \).

Safety Properties and Finite Trace Equivalence

Let \(TS \) and \(TS' \) be transition systems (over \(AP \)) without terminal states.

\[
\text{Traces}_{\text{fin}}(TS) \subseteq \text{Traces}_{\text{fin}}(TS')
\]

if and only if

for any safety property \(P_{\text{safe}} : TS' \not\models P_{\text{safe}} \Rightarrow TS \models P_{\text{safe}} \).

\[
\text{Traces}_{\text{fin}}(TS) = \text{Traces}_{\text{fin}}(TS')
\]

if and only if

\(TS \) and \(TS' \) satisfy the same safety properties.

Finite versus Infinite Traces

For \(TS \) without terminal states and finite \(TS' \):

\[
\text{Traces}(TS) \subseteq \text{Traces}(TS') \iff \text{Traces}_{\text{fin}}(TS) \subseteq \text{Traces}_{\text{fin}}(TS')
\]

this does not hold for infinite \(TS' \) (cf. next slide)

but also holds for image-finite \(TS' \).\(^2\)

\(^2\)Transition systems in which each state has finitely many direct successors.
Safety and Liveness Properties

Trace Equivalence ≠ Finite Trace Equivalence

\[
\begin{align*}
\text{Traces}(T) &= \{ \varnothing^\omega \} \\
\text{Traces}_{\text{fin}}(T) &= \{ \varnothing^n : n \geq 0 \} \\
\text{Traces}(T') &= \{ \varnothing^n \{ b \}^\omega : n \geq 2 \} \\
\text{Traces}_{\text{fin}}(T') &= \{ \varnothing^n : n \geq 0 \} \cup \{ \varnothing^n \{ b \}^m : n \geq 2 \land m \geq 1 \}
\end{align*}
\]

\[\begin{align*}
\text{Traces}(T) \not\subseteq \text{Traces}(T'), \text{ but} \\
\text{Traces}_{\text{fin}}(T) \subseteq \text{Traces}_{\text{fin}}(T')
\end{align*}\]

LT property
\[E \equiv \text{"eventually } b\text{"}\]
\[T \not\models E, \quad T' \models E\]

Overview

Recapitulation: Traces

Linear-Time Properties

Safety Properties

Liveness Properties

Safety versus Liveness

Why Liveness?

- Safety properties specify that:
 * "something bad never happens" [Lamport 1977]

- Doing nothing easily fulfils a safety property
 as this will never lead to a "bad" situation

⇒ Safety properties are complemented by liveness properties
 that require some progress

- Liveness properties assert that:
 * "something good" will happen eventually [Lamport 1977]

The Meaning of Liveness

The question of whether a real system satisfies a liveness property is meaningless; it can be answered only by observing the system for an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about. We want a program to terminate within 100 years, but proving that it does would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates. This doesn’t prove that the program will terminate within our lifetimes, but it does demonstrate the absence of infinite loops. [Lamport 2000]
Liveness Properties

Definition: Liveness property

LT property P_{live} over AP is a *liveness* property whenever

$$\text{pref}(P_{\text{live}}) = (2^{\mathbb{N}_0})^*.$$

- A liveness property *does not rule out any prefix*
- Liveness properties are violated in “infinite time”
 - whereas safety properties are violated in *finite time*
 - finite traces are of no use to decide whether P_{live} holds or not
 - any finite prefix can be extended such that the resulting infinite trace satisfies P_{live}
- Equivalently, P_{live} is a liveness property iff $\text{closure}(P_{\text{live}}) = (2^{\mathbb{N}_0})^\omega$.

Example Liveness Properties for Mutual Exclusion

Let $P = \{A_0, A_1 A_2 \ldots | A_j \subseteq AP \land \ldots\}$ and $AP = \{\text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2\}$.

- Any thread *eventually* is in its critical section:
 $$\left(\exists j \geq 0. \ \text{crit}_1 \in A_j\right) \land \left(\exists j \geq 0. \ \text{crit}_2 \in A_j\right)$$

- Any thread is *infinitely often* in its critical section:
 $$\left(\exists j \geq 0. \ \text{crit}_1 \in A_j\right) \land \left(\exists j \geq 0. \ \text{crit}_2 \in A_j\right)$$

- Starvation freedom — no thread is “starving”:
 $$\forall j \geq 0. \ \left(\text{wait}_1 \in A_j \Rightarrow (\exists k > j. \ \text{crit}_1 \in A_k)\right) \land \forall j \geq 0. \ \left(\text{wait}_2 \in A_j \Rightarrow (\exists k > j. \ \text{crit}_2 \in A_k)\right)$$

Safety versus Liveness

- Are safety and liveness properties disjoint? *Yes, almost*
- The property $(2^{\mathbb{N}_0})^\omega$ is both a safety and a liveness property
- Is any linear-time property a safety or liveness property? *No*
- But:
 - for any LT property P there exists an equivalent LT property P' which is a conjunction of a safety and a liveness property
 $$\Rightarrow$$ safety and liveness provide an essential characterization of LT properties
Neither Safe nor Live

“the machine provides infinitely often beer after initially providing sprite three times in a row”

- This property consists of two parts:
 - it requires beer to be provided infinitely often
 ⇒ as any finite trace fulfills this, it is a liveness property
 - the first three drinks it provides should all be sprite
 ⇒ bad prefix = one of first three drinks is beer; this is a safety property

- This property is thus a conjunction of a safety and a liveness property

Proof

"Sharpest" Decomposition

Let \(P \) be an LT property and \(P = P_{safe} \cap P_{live} \) where \(P_{safe} \) is a safety property and \(P_{live} \) a liveness property.

Then:

1. \(\text{closure}(P) \subseteq P_{safe} \), and
2. \(P_{live} \subseteq P \cup \left((2^A)^* \setminus \text{closure}(P) \right) \).

\(\text{closure}(P) \) is the strongest safety property and
\(\left((2^A)^* \setminus \text{closure}(P) \right) \) the weakest liveness property.

Decomposition Theorem

Decomposition theorem for LT properties

For any LT property \(P \) over \(AP \) there exists a safety property \(P_{safe} \) and a liveness property \(P_{live} \) (both over \(AP \)) such that:

\[
P = P_{safe} \cap P_{live}.
\]

Proposal: \(P = \overline{\text{ closure}(P) } \cap (P \cup \left((2^A)^* \setminus \text{ closure}(P) \right)) \)

\(\overline{\text{ closure}(P) } \) is the strongest safety property and
\((2^A)^* \setminus \text{ closure}(P) \) the weakest liveness property.
Summary

- LT properties are finite sets of infinite words over 2^{AP} (= traces)
- An invariant requires a condition Φ to hold in any reachable state
- Each trace refuting a safety property has a finite prefix causing this
 - invariants are safety properties with bad prefix $\Phi^*(\neg \Phi)$
 - safety properties constrain finite behaviours
- A liveness property does not rule out any finite behaviour
 - liveness properties constrain infinite behaviours
- Any LT property is equivalent to a conjunction of a safety and a liveness property