Objective

Consider model checking as a bug-hunting technique, not as verification engine.

The aim of bounded model checking is to find counterexamples of a certain length k.
Inventors of Bounded Model Checking

- Armin Biere (AT)
- Alessandro Cimatti (I)
- Edmund Clarke Jr. (USA)
- Yunshan Zu

Recall ROBDD-Based Symbolic Model Checking

- ROBDDs are a canonical form for representing switching functions for a given variable ordering.
- Represent transition relation and sets of states as switching functions characteristic functions, also of the set of reachable states.
- CTL model checking := formula manipulation of switching functions existential variable elimination ($\exists\varnothing$), disjunction, conjunction, negation.
- Use ROBDDs as (often) compact data structure for switching functions.

A Simple Example

Deficiencies BDD-Based Symbolic Model Checking

- ROBDDs are canonical, but often can still become too large.
- The size of ROBDDs is highly sensitive to the variable ordering.
 - finding the optimal variable ordering is NP-complete
 - for some functions, no space-efficient variable ordering does exist.
- Alternative symbolic approach: manipulate switching functions (as is).
 - Cast bug hunting $TS \not\models \varphi$ as Boolean satisfiability problem
 - for $\varphi \in \text{LTL}$, $TS \not\models \varphi$ iff $TS \models \exists\neg\varphi$
 - look for finite paths to conclude $TS \models \exists\neg\varphi$.
Using SAT Solvers

- SAT procedures work on switching functions without canonical form
- Do not suffer from potential state explosion of ROBDDs
- Different variable orderings are possible on different branches (= clauses)
- SAT is NP-complete, but there exist very efficient SAT solvers
 - handling hundreds or thousands of variables and millions of clauses
- SAT has no possibility for variable elimination (no \exists)
 - focus on falsification rather than verification

Bounded Model Checking: Idea

- Bounded model checking = SAT-based symbolic model checking
- as BMC focuses on finding counterexamples, it is mostly used for LTL
- counterexamples for LTL are simpler than for CTL
- Represent transition relation and sets of states as switching functions
- Unroll the transition relation up to certain fixed bound k, say
- Search for counterexamples of φ (aka: witnesses of $\neg \varphi$) of length k
 1. if $\pi \models \Diamond a$ implies $\pi \not\models \varphi$, and
 2. if π is a lasso and $\pi \models \Box^k a$, then $\pi \not\models \Box a$
- Transform this search into a SAT problem and exploit a SAT solver

1. Compare the counterexample of $\Box a$ and of $\exists \forall \Diamond \Box a$.

A Simple Example

- The same example as before but not tackled using BMC.
Bounded LTL Semantics

Lassos

If a path satisfies LTL-formula φ on a bounded semantics, then it satisfies φ using the standard LTL semantics over infinite paths.

This is due to the fact that some infinite paths can be represented by a finite prefix with a loop, a lasso.

Definition: (k, ℓ)-lasso

For $k, \ell \in \mathbb{N}$, the infinite path π is a (k, ℓ)-lasso if and only if for all $j \in \mathbb{N}$:

$$\pi[k+1+j] = \pi[\ell+j].$$

That is, $\pi = s_0 \ldots s_{\ell-1} \cdot (s_k \ldots s_k)^\omega$. -lasso

Example

Joost-Pieter Katoen Lecture#20 13/35

Bounded LTL Semantics

Bounded LTL Semantics for Lassos

Consider the first $k+1$ states of an infinite path. Let $i \in \{0, \ldots, k\}$.

The bounded satisfaction relation \models_k is defined as follows.

If π is an (k, ℓ)-lasso, then $\pi^{k+1+j} = \pi^{i+j}$ for all j, and:

$$\pi^i \models_k \Box \varphi \quad \text{iff} \quad \pi^{i+1} \models_k \varphi \quad \text{if} \quad i < k$$

$$\pi^i \models_k \Diamond \varphi \quad \text{iff} \quad \pi^i \models_k \varphi \quad \text{for some} \quad j \in \{\min(i, \ell), \ldots, k\}$$

$$\pi^i \models_k \lozenge \varphi \quad \text{iff} \quad \pi^i \models_k \varphi \quad \text{for all} \quad j \in \{\min(i, \ell), \ldots, k\}$$

LTL Semantics Rephrased

Let φ be an LTL-formula (without until, release) in positive normal form. Let $\pi^i = \pi[i\ldots]$ be the suffix of π starting from position i. The LTL semantics of φ on (suffix) path π^i for $i \in \mathbb{N}$ is defined by:

$$\pi^i \models a \quad \text{iff} \quad a \in L(\pi[i])$$

$$\pi^i \models \neg a \quad \text{iff} \quad a \notin L(\pi[i])$$

$$\pi^i \models \varphi \land \psi \quad \text{iff} \quad \pi^i \models \varphi \text{ and } \pi^i \models \psi$$

$$\pi^i \models \varphi \lor \psi \quad \text{iff} \quad \pi^i \models \varphi \text{ or } \pi^i \models \psi$$

$$\pi^i \models \Diamond \varphi \quad \text{iff} \quad \pi^{i+j} \models \varphi \text{ for some } j \geq i$$

$$\pi^i \models \lozenge \varphi \quad \text{iff} \quad \pi^{i+j} \models \varphi \text{ for all } j \geq i.$$
Some Properties

For every $\varphi \in \text{LTL}$ and $k \in \mathbb{N}$: $\pi \models_k \varphi$ implies $\pi \models \varphi$.

If $TS \models \exists \varphi$, then $TS \models_k \exists \varphi$ for some k.

For any finite TS, it holds: $TS \models \exists \varphi$ iff $TS \models_k \exists \varphi$.

Bounded Model Checking: Basic Scheme

Procedure

1. Generate a propositional logic formula Φ from transition system TS, LTL formula φ, and unrolling depth k such that Φ is satisfiable iff $TS \models_k \varphi$

2. Translate the formula Φ into CNF-formula Ψ using the Tseitin transformation

3. Solve the CNF-formula Ψ

 3.1 Ψ satisfiable? \Rightarrow $TS \models_k \varphi$ \Rightarrow counterexample/witness

 3.2 Ψ not satisfiable? \Rightarrow $TS \not\models_k \varphi$ \Rightarrow unknown

Repeat step 1.–3. with increased k until either a counterexample is found, or some stopping criterion (e.g., maximal depth k_{max}) is reached.
Translating BMC into SAT

For transition system $TS, \varphi \in LTL$ and $k \in \mathbb{N}$, construct the propositional logic formula $[TS, \varphi]_k$ satisfying

$[TS, \varphi]_k$ is satisfiable if and only if $\pi = s_0 \ldots s_k \vdash \varphi$ for some $\pi \in \text{Paths}(TS)$.

The formula $[TS, \varphi]_k$ is obtained in three steps:

1. Encode paths $s_0 \ldots s_k$ in TS of length k; this yields formula $[TS]_k$

2. Define an auxiliary propositional formula $loop_k$ which is true if there is a backward edge from s_k to some “earlier” state $s_i, i \leq k$

3. Encode an LTL-formula as propositional formula \betaskip

Encoding Bounded LTL as SAT

The size of the propositional formula $[\varphi]_k$ is linear in $|\varphi|$ and at least cubic in k.

Proof.

The variables i and ℓ range over $\{0, \ldots, k\}$. This yields $O(k^3)$ combinations. This holds for any sub-formula of φ, so there $O(|\varphi| \cdot k^3)$ possible parameter values. Applying the encoding for \Diamond and \Box introduces $O(k)$ connectives.

More efficient encodings do exist but are outside the scope of this lecture.

BMC is mostly used for invariants like $\varphi = \Box a$.

Unfolding the Transition Relation

For $k \geq 0$, let $[TS]_k = \bigwedge_{s \in L} \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})$.

Loop condition

For $k \geq 0$, let $loop_k = \bigvee_{i=0}^{k} T(s_k, s_i)$.

Encoding of bounded LTL

For $k \geq 0$ and LTL-formula φ, let $[\varphi]_k = [\varphi]_0^k \land \left(\bigvee_{i=0}^{k} loop_k \land [\varphi]_{i,k}^0 \right)$

where $[\varphi]_i^k$ is the encoding of φ under the assumption that π' has no (k, ℓ) loop, and $[\varphi]_{i,k}^k$ is the encoding of φ in case π' has a (k, ℓ)-loop.
Translating BMC into SAT

Definition: encoding BMC as SAT instance

Let:

\[
\mathbb{S}_k = \bigwedge_{s \in I} (s \rightarrow s_{i+1})
\]

and

\[
\phi_k = \bigwedge_{i=0}^{k-1} \bigvee \text{loop}_k \land \phi^0_k
\]

Then:

\[
\left[\mathbb{S}, \phi \right]_k = \left[\mathbb{S}_k \right] \land \left[\phi \right]_k.
\]

The input to a SAT solver is the CNF transformation of \(\left[\mathbb{S}, \phi \right]_k\).

As \(k\) is increased iteratively and \(\left[\mathbb{S}, \phi \right]_k\) and \(\left[\mathbb{S}, \phi \right]_{k+1}\) have a lot in common, incremental SAT solving algorithms are exploited.

Review of BMC

- BMC can be used to **disprove invariants** \(\square \varphi\)
 - by proving \(\exists \Diamond \neg \varphi\) considering paths of length \(k\)
 - if paths longer than \(k\) are needed to show \(\exists \Diamond \neg \varphi\), then BMC fails

- BMC can be used to disprove liveness properties like \(\Diamond \varphi\)
 - by proving \(\exists \Box \neg \varphi\) for lassos of length \(k\)
 - if lassos longer than \(k\) are needed to show \(\exists \Box \neg \varphi\), then BMC fails

Thus: BMC is sound, but intrinsically incomplete

BMC is in particular efficient if there are short counterexamples

Complete variant: using completeness thresholds or \(k\)-induction

How to obtain a completeness threshold for \(k\)?

Towards Completeness

- Consider checking the invariant \(\varphi = \Box p\)

- Find bounds for the maximal length of counterexamples
 - these are referred to as **completeness threshold** \(ct\)
 - exact bounds are hard to find \(\Rightarrow\) use approximations

Idea: let \(ct\) be a completeness threshold for formula \(\varphi\).

\[
\mathbb{S} \not\models \varphi \iff \forall \pi \in \text{Paths}(\mathbb{S}), |\pi| \leq ct \Rightarrow \pi \not\models ct \varphi.
\]

If no path of length at most \(ct\) refutes \(\varphi\), the invariant holds
Radius

Definition: radius of a transition system

The radius of a transition system TS is defined as:

$$ r_{TS} = \max\{ d(s, t) \mid s \in I \land s \rightarrow^* t \land d(s, t) = \min\{ d(s', t) \mid s' \in I \} \} $$

where $d(s, t)$ is the length of the shortest path from s to t in TS.

The radius is the maximal distance of a reachable state from some initial state in TS.

Radius = minimal number of steps to reach an arbitrary state in a BFS

Completeness Threshold for Invariants

- A bad state is reached in at most r_{TS} steps from the initial states
- A bad state is a state violating the given invariant $\square p$
- Thus, the radius is a completeness threshold for invariants
- For invariants, the maximal k for doing BMC is r_{TS}
- If no counterexample of this length can be found, the invariant holds.

How to obtain a propositional formula for radius for the SAT solver?

Precise Bound

Let r be the radius of finite transition system TS. Then: r is the minimal number such that:

$$ \forall s_0, \ldots, s_{r+1}. \left(l(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1}) \right) \Rightarrow \exists n \geq rr. \exists t_0, \ldots, t_n. \left(l(t_0) \land \bigwedge_{i=0}^{r-1} T(t_i, t_{i+1}) \land t_n = s_{r+1} \right). $$

Note that the conclusion is a quantified Boolean formula (QBF)

The satisfiability problem for such formulas is PSPACE-complete

This is much harder than solving the SAT problem for propositional logic

Weakened Bounds

The radius is mostly too hard to compute; thus: use an upper bound.

Definition: recurrence radius

The recurrence radius rd_{TS} of transition system TS is the maximal number r which makes the following formula satisfiable:

$$ rd_{TS} = l(s_0) \land \bigwedge_{i=0}^{r-1} T(s_i, s_{i+1}) \land \bigwedge_{i=0}^{r-1} \bigwedge_{k=i+1}^{r} (s_j \neq s_k). $$

The recurrence radius can be computed by a SAT solver (instead of QBF)

It may be considerably larger than the radius of the transition system TS
Overview

1. Motivation
2. Bounded LTL Semantics
3. From BMC To SAT
4. Completeness and Distances
5. Summary

Summary

- Bounded model checking: use SAT solving
- To find finite counterexamples
- BMC unfolds the transition system up to a given depth
- BMC is incomplete: no counterexample of length k does not mean that there are no counterexamples
- Extensions for completeness: completeness thresholds
- BMC is mostly used in practice for safety properties

Next Lecture

None