Model Checking Lecture #19: Symbolic Model Checking with BDDs [Baier & Katoen, Chapter 6.7]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Joost-Pieter Katoen 1/40 Motivation Overview Motivation The Variable Ordering Problem Symbolic CTL Model Checking Implementation Details Summary

Joost-Pieter Katoen Lecture#19

Motivation

Inventors of BDD-Based Model Checking

Randy Bryant (USA)

Ken McMillan (USA)

Edmund Clarke Jr. (USA)

David Dill (USA)

The Variable Ordering Problem	
Overview	Va
	•
Motivation	
2 The Variable Ordering Problem	
Symbolic CTL Model Checking	
(4) Implementation Details	
5 Summary	

Variable Ordering

- the size of the ROBDD crucially depends on the variable ordering
- # nodes in p- ROBDD $\mathfrak{B} = \#$ of p-consistent co-factors of f
- Some switching functions have linear and exponential ROBDDs
 - e.g., the addition function, or the stable function (see below)
- Some switching functions only have polynomial ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - ▶ examples $f(...) = x_1 \oplus ... \oplus x_n$, or f(...) = 1 iff ≥ k variables x_i are true

Some switching functions only have exponential ROBDDs

this holds, e.g., for the middle bit of the multiplication function

Lecture#19

The Variable Ordering Problem

Another Exponential Example

ROBDD for $f_3(\overline{z}, \overline{y}) = (z_1 \land y_1) \lor (z_2 \land y_2) \lor (z_3 \land y_3)$ for the variable ordering $z_1 < z_2 < z_3 < y_1 < y_2 < y_3$

Joost-Pieter Katoen	Lecture#19	9/40

The Variable Ordering Probler

Symmetric Functions

Definition: symmetric function

Switching function $f \in Eval(z_1, \ldots, z_m)$ is symmetric if and only if

$$f([z_1 = b_1, \ldots, z_m = b_m]) = f([z_1 = b_{i_1}, \ldots, z_m = b_{i_m}])$$

for each permutation (i_1, \ldots, i_m) of $(1, \ldots, m)$.

Example symmetric functions: $z_1 \vee z_2 \vee \ldots \vee z_m$, $z_1 \wedge z_2 \wedge \ldots \wedge z_m$, the parity function, and the majority function.

Let *f* be a symmetric function with *m* essential variables. Then: for each variable ordering p, the *p*-ROBDD for *f* has size $O(m^2)$.

Proof.

On the black board.

1

Joost-Pieter Katoen

Lecture#19

▶ ROBDD for $f_3(\cdot) = (z_1 \land y_1) \lor (z_2 \land y_2) \lor (z_3 \land y_3)$

• for ordering $z_1 < y_1 < z_2 < y_2 < z_3 < y_3$

- as all variables are essential for f, this ROBDD is optimal
- that is, for no variable ordering a smaller ROBDD exists

The Variable Ordering Problem

Lecture#19

The Even Parity Function

0

Joost-Pieter Katoer

Definition: the even parity function

The switching function $f_{even} \in Eval(x_1, \ldots, x_n)$ defined by

 $f_{even}(x_1, ..., x_n) = 1$ iff the number of variables x_i with value 1 is even

is called the even parity function.

 f_{even} has exponential size truth table or propositional formula but admits an ROBDD of linear size.

oost-Pieter Katoen

10/40

The Variable Ordering Probler

The Multiplication Function

Optimal Variable Ordering

The size of ROBDDs strongly depends on the variable ordering.

Consider two *n*-bit integers

- let $b_{n-1}b_{n-2}...b_0$ and $c_{n-1}c_{n-2}...c_0$
- \blacktriangleright where b_{n-1} is the most significant bit, and b_0 the least significant bit
- ▶ Multiplication yields a 2*n*-bit integer

 - ▶ the ROBDD 𝔅_{f_{n-1}} has at least 1.09ⁿ vertices
 ▶ where f_{n-1} denotes the (n-1)-st output bit of the multiplication

The decision problem whether a given variable ordering is optimal is NP-complete.

Proof.

Polynomial reduction from the optimal linear arrangement problem. Rather involved. Outside scope of this lecture. For details, see [Bollig and Wegener, 1996].

Joost-Pieter Katoen	Lecture#19 13/40	Joost-Pieter Katoen Lecture#19 1
	The Variable Ordering Problem	The Variable Ordering Problem
Variable Ordering		Variable Swapping
 for almost all switchi where n is the numb How to deal with this p guess a variable orde rearrange the variabl 	roblem in practice?	(courtesy: Bryant)

[Rudell, 1993]

Variable Sifting

Dynamic variable ordering using repeated variable swapping:

- 1. Select a variable x_i in the ROBDD
- 2. Successively swap x_i to determine $size(\mathfrak{B})$ at any position for x_i
- 3. Shift x_i to position for which $size(\mathfrak{B})$ is minimal
- 4. Go back to the first step until no improvement is made

Characteristics:

- ▶ a variable may change position several times during sifting
- often yields a local optimum, but works well in practice
- ▶ in practice, dynamic variable ordering is applied periodically

Joost-Pieter Katoen

Lecture#19

The Variable Ordering Problem

Experimental Results

Circuit	Good		Bad		Bad+Dynamic	
	#nodes	secs	#nodes	secs	#nodes	secs
16-bit rotator	81	<1	1081328	56	81	1
8-bit adder	36	<1	751	<1	36	<1
16-bit adder	76	<1	196575	16	123	1
32-bit adder	156	<1	>1000000	80	452	4
32-bit alu	8869	<1	>1000000	83.4	4341	8.2
64-bit alu	17829	<1	>1000000	81.4	9487	47.2
128-bit alu	35749	1.9	>1000000	79.1	18086	149.6
256-bit alu	71598	4.0	>1000000	82.2	44870	697.9
8-bit Min_Max	890	<1	79007	6	883	3
16-bit Min_Max	3310	<1	>1000000	50	3295	16
32-bit Min_Max	12566	2	>1000000	39	39265	86
12-bit multiplier	605883	255	1324674	340	1494828	2500

[Janssen, 1996] on an HP9000/s755 workstation

Sifting

Joost-Pieter Katoen

(courtesy: Bryant)

The Variable Ordering Problem

Lecture#19

Interleaved Variable Ordering

- Which variable ordering to use for transition relations?
- ► The interleaved variable ordering:

for encodings x_1, \ldots, x_n and y_1, \ldots, y_n of state s and t respectively:

 $x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n$

This variable ordering yields compact ROBDDs for binary relations

19/40

18/40

Overview	Symbolic CTL Model Checking
1 Motivation	
2 The Variable Ordering Problem	
3 Symbolic CTL Model Checking	
Implementation Details	
5 Summary	
Joost-Pieter Katoen	Lecture#19
	Contain CTI Madel Charling

Symbolic Computation of $Sat(\exists (C \cup B))$

Symbolic CTL Model Checking

Idea

- Take a symbolic representation of a transition system (Δ and χ_B)
- ▶ Backward reachability $Pre^*(B) = \{ s \in S \mid s \models \exists \diamondsuit B \}$
- ▶ Initially: $f_0 = \chi_B$ characterizes the set $T_0 = B$
- ▶ Then, successively compute the functions $f_{j+1} = \chi_{T_{j+1}}$ for:

 $T_{j+1} = T_j \cup \{s \in S \mid \exists s' \in S. s' \in Post(s) \land s' \in T_j\}$

Second set is symbolically given by: $\exists \overline{x}' . (\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}'))$ $s' \in Post(s) \land f_j(\overline{x}')$

 $f_j(\overline{x}')$ arises from f_j by renaming x_i into their primed copies x'_i

Joost-Pieter Katoen

Symbolic CTL Model Checking

Symbolic Computation of $Sat(\exists \Box B)$

Compute the largest set $T \subseteq B$ with $Post(t) \cap T \neq \emptyset$ for all $t \in T$

Take $T_0 = B$ and $T_{j+1} = T_j \cap \{s \in S \mid \exists s' \in S. s' \in Post(s) \land s' \in T_j \}$

Symbolically this amounts to:

$$\begin{split} f_0(\overline{x}) &:= \chi_B(\overline{x});\\ j &:= 0;\\ \text{repeat}\\ f_{j+1}(\overline{x}) &:= f_j(\overline{x}) \land \exists \overline{x}'. \left(\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}') \right);\\ j &:= j + 1\\ \text{until } f_j(\overline{x}) &= f_{j-1}(\overline{x});\\ \text{return } f_j(\overline{x}). \end{split}$$

This can be efficiently done by ROBDD representations of switching functions

$$j := 0;$$

repeat
 $f_{j+1}(\overline{x}) := f_j(\overline{x}) \lor (\chi_C(\overline{x}) \land \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}')))$
 $j := j + 1$
until $f_j(\overline{x}) = f_{j-1}(\overline{x});$
return $f_j(\overline{x}).$

 $f_0(\overline{x}) := \chi_B(\overline{x});$

Symbolic CTL Model Checking

);

Overview	
Motivation	
2 The Variable Ordering Problem	
3 Symbolic CTL Model Checking	
4 Implementation Details	
5 Summary	
Joost-Pieter Katoen	Lecture#19

Synthesis of ROBDDs

- Construct a p-ROBDD for f₁ op f₂ given p-ROBDDs for f₁ and f₂ where op is a Boolean connective such as disjunction, implication, etc.
- Idea: use a single ROBDD with (global) variable ordering p to represent several switching functions
- ▶ This yields a shared OBDD (SOBDD, for short), which is:
 - a multi-rooted ROBDD
 - \blacktriangleright a combination of several ROBDDs with variable ordering \wp
 - ▶ by sharing nodes for common ℘-consistent co-factors
- ▶ The size of p-SOBDD $\overline{\mathfrak{B}}$ for functions f_1, \ldots, f_k is at most $N_{f_1} + \ldots + N_{f_k}$ where N_f is the size of the p-ROBDD for f

mplementation Detail

Shared OBDDs

- Idea: combine several OBDDs with same variable ordering.
- ▶ This enables sharing of common ℘-consistent co-factors.
- ► A shared ℘-OBDD is an OBDD with multiple roots.
- It represents multiple switching functions.

Lecture#19

Lecture#19

Implementation Details

26/40

28/40

Using Shared OBDDs for CTL Model Checking

Use a single SOBDD to represent for model checking Φ :

- Δ(x, x') for the transition relation
 In practice, often the interleaved variable order for Δ is used.
- ▶ $f_a(\overline{x})$, $a \in AP$, for the satisfaction sets of the atomic propositions
- ▶ The satisfaction sets $Sat(\Psi)$ for every state sub-formula Ψ of Φ

Lecture#19

25/40

Joost-F

Implementation Detail

Synthesizing Shared Reduced OBDDs

Relies on the use of two tables

- The unique table
 - keeps track of ROBDD nodes that already have been created
 - ▶ table entry $\langle var(v), succ_1(v), succ_0(v) \rangle$ for each inner node v
 - ▶ main operation: $find_or_add(z, v_1, v_0)$ with $v_1 \neq v_0$
 - **•** return v if there exists a node $v = \langle z, v_1, v_0 \rangle$ in the ROBDD
 - ▶ if not, create a new z-node v with $succ_0(v) = v_0$ and $succ_1(v) = v_1$
 - implemented using hash functions (expected access time is O(1))
- The computed table

loost-Pieter Katoen

keeps track of tuples for which ITE has been executed (memoisation)

Lecture#19

mplementation Details

 \Rightarrow realises a kind of dynamic programming

ementati	

The ITE Normal Form

The ITE (if-then-else) operator: $ITE(g, f_1, f_2) = (g \land f_1) \lor (\neg g \land f_2)$. The representation of the SOBDD nodes in the unique table:

$$f_{v} = ITE(z, f_{succ_{1}(v)}, f_{succ_{0}(v)})$$

Then:

 $\neg f = ITE(f, 0, 1)$ $f_1 \lor f_2 = ITE(f_1, 1, f_2)$ $f_1 \land f_2 = ITE(f_1, f_2, 0)$ $f_1 \oplus f_2 = ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2)$

If g, f_1 , f_2 are switching functions for Var, $z \in Var$ and $b \in \{0, 1\}$, then

 $|TE(g, f_1, f_2)|_{z=b} = |TE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b}).$

Lecture#19

Joost-Pieter Katoen

Implementation Details

$ITE(u, v_1, v_2)$ on SOBDDs (Initial Version)

if u is terminal then	•
if $val(u) = 1$ then	
$w := v_1$	$(* ITE(1, f_{v_1}, f_{v_2}) = f_{v_1} *)$
else	
$w := v_2$	$(* ITE(0, f_{v_1}, f_{v_2}) = f_{v_2} *)$
fi	
else	
$z := \min\{ \operatorname{var}(u), \operatorname{var}(v_1), \operatorname{var}(v_2) \};$	(* minimal essential variable *)
$w_1 := ITE(u _{z=1}, v_1 _{z=1}, v_2 _{z=1});$	
$w_0 := ITE(u _{z=0}, v_1 _{z=0}, v_2 _{z=0});$	
if $w_0 = w_1$ then	
$w := w_1;$	(* elimination rule *)
else	
$w := find_or_add(z, w_1, w_0);$	(* isomorphism rule *)
fi	
fi	
return w	

ITE Operator on SOBDDs

- A node in a p-SOBDD for representing ITE(g, f₁, f₂) is a node w with info(z, w₁, w₀) where:
 - > z is the minimal (wrt. p) essential variable of $ITE(g, f_1, f_2)$
 - w_b is an SOBDD-node with $f_{w_b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$

▶ This suggests a recursive algorithm:

- determine z
- \blacktriangleright recursively compute the nodes for ITE for the cofactors of g, f₁ and f₂

29/40

ROBDD Size

Main Deficiency

The size of the p-ROBDD for $ITE(g, f_1, f_2)$ is bounded from above by $N_g \cdot N_{f_1} \cdot N_{f_2}$ where N_f denotes the size of the p-ROBDD for f.

```
for some ITE-functions optimisations are possible, e.g., f \oplus g
```

Problem: for multiple paths from (u, v_1, v_2) to (u', v'_1, v'_2)

multiple invocations of $ITE(u', v'_1, v'_2)$ occur.

 \Rightarrow Store triples (u, v1, v2) for which ITE already has been computed

This is similar as in dynamic programming.

Lecture#19

ROBDD size and state space size for cache coherence protocol [McMillan 1993]

Lecture#19

Joost-Pieter Katoen

Implementation Details

BDD-Based Bisimulation Minimisation

Summary

Next —and Final— Lecture

Friday January 17, 14:30

Joost-Pieter Katoen	Lecture#19	37/40
	Summary	
_		

Summary

- ROBDDs are a succinct data structure for many switching functions
- Crucial factor: the variable ordering
- > Transition systems can be easily represented by switching functions
- Symbolic CTL model checking = fixed-point computation with switching functions
 - it is all about using ROBDD representations and manipulating them
- ▶ If ROBDD representation is compact, CTL model checking scales well
- Several large companies have in-house symbolic model checkers IBM, Lucent, Intel, Motorola, SGI, Fujitsu, Siemens, ...

Overview