Model Checking
Lecture #19: Symbolic Model Checking with BDDs

[Baier & Katoen, Chapter 6.7]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#19 1/40

Overview

© Motivation

Joost-Pieter Katoen Lecture#19 3/40

Overview

© Motivation
© The Variable Ordering Problem
© Symbolic CTL Model Checking

@ Implementation Details

© Summary

Joost-Pieter Katoen Lecture#19 2/40

Inventors of BDD-Based Model Checking

Randy Bryant (USA)

David Dill (USA)

Ken McMillan (USA)

Joost-Pieter Katoen Lecture#19 4/40

The Variable Ordering Problem

Overview

© The Variable Ordering Problem

Joost-Pieter Katoen Lecture#19 5/40

The Variable Ordering Problem

Function Stable with Exponential ROBDD

The ROBDD of fp(X,y)=(x1 @ i) A ... Ax, © v,)
has 3-2"—1 vertices under ordering x; < ... <X, <y1 <...< Y,

Joost-Pieter Katoen Lecture#19 7/40

Variable Ordering

» ROBDDs are canonical for a fixed variable ordering

P the size of the ROBDD crucially depends on the variable ordering
P # nodes in - ROBDD B = # of p-consistent co-factors of f

» Some switching functions have linear and exponential ROBDDs
P e.g., the addition function, or the stable function (see below)

» Some switching functions only have polynomial ROBDDs

P this holds, e.g., for symmetric functions (see next)
P examples f(...)=x; ® ... ®x,, or f(...) = 1iff = k variables x; are true

» Some switching functions only have exponential ROBDDs
P this holds, e.g., for the middle bit of the multiplication function

Joost-Pieter Katoen Lecture#19 6/40

Function Stable with Linear ROBDD

The ROBDD of fip(X,y)=(x1 @ 1) A ... Ax, © y,)
has 3:n + 2 vertices under ordering x; < y; <...< X, <Y,

Joost-Pieter Katoen Lecture#19 8/40

Another Exponential Example

ROBDD for f3(z,y) = (z1 A y1) V(22 A y2) V (z3 A y3)
for the variable ordering z; < z, < 3 < y; < yr < 3

Joost-Pieter Katoen Lecture#19 9/40

The Variable Ordering Problem

Symmetric Functions

Definition: symmetric function

Switching function f € Eval(zy, ..., z,) is symmetric if and only if
f(lzs=b1,....2Zm=bm]) = f([z1=by,...,zm=b;])

for each permutation (i, ..., iy) of (1,..., m).

Example symmetric functions: z; Vz V...V Z,, Z1AZ A ... Az, the
parity function, and the majority function.

Let f be a symmetric function with m essential variables. Then: for each
variable ordering g, the p-ROBDD for f has size O(mz).

Proof.
On the black board.

Joost-Pieter Katoen Lecture#19 11/40

And An Optimal Linear ROBDD

» ROBDD for f5(-) = (z1 Ay1) V(22 A y2) V(23 A ys)

P as all variables are essential for f, this ROBDD is
optimal

&
// P for ordering z; < y1 < 2 < Yo < 3 < y3
)
s)
D

P that is, for no variable ordering a smaller ROBDD

@ exists

Joost-Pieter Katoen Lecture#19 10/40

The Even Parity Function

Definition: the even parity function

The switching function fe, € Eval(x, ..., x,) defined by
feven(X1, ..., xn) = 1 iff the number of variables x; with value 1 is even

is called the even parity function.

foven has exponential size truth table or propositional formula

but admits an ROBDD of linear size.

Joost-Pieter Katoen Lecture#19 12/40

The Multiplication Function Optimal Variable Ordering

The size of ROBDDs strongly depends on the variable ordering.

» Consider two n-bit integers
|
> let bn—lbn—2 ‘e bo and Ch-1Ch—2 ... Q o g q 0 o o o o
b where b,_y is the most significant bit, and by the least significant bit The decision problem whether a given variable ordering is optimal is
NP-complete.
» Multiplication yields a 2n-bit integer Proof.
» the ROBDD B¢ | has at least 1.09” vertices Pol 1 reduction f b ol bl
» where f,_; denotes the (n—1)-st output bit of the multiplication olynomial reduction from the optimal finear arrangement problem.
" Rather involved. Outside scope of this lecture. For details, see [Bollig and
Wegener, 1996]. L]
Joost-Pieter Katoen Lecture#19 13/40 Joost-Pieter Katoen Lecture#19 14/40

The Variable Ordering Probln
Variable Ordering Variable Swapping

» There are many switching functions with large ROBDDs

P for almost all switching functions the minimal size is in Q(%)
» where n is the number of boolean variables

» How to deal with this problem in practice?
P guess a variable ordering
P rearrange the variable ordering during the ROBDD manipulations
P not necessary to test all n! orderings, best known algorithm in O(3"-n2)

(courtesy: Bryant)

Variable swapping is a local operation only involving two adjacent levels

Joost-Pieter Katoen Lecture#19 15/40 Joost-Pieter Katoen Lecture#19 16/40

The Variable Ordering Problem

Variable Sifting [Rudell, 1993]

Dynamic variable ordering using repeated variable swapping:

1. Select a variable x; in the ROBDD

N

. Successively swap x; to determine size(B) at any position for x;
3. Shift x; to position for which size(*8) is minimal

4. Go back to the first step until no improvement is made

Characteristics:
» a variable may change position several times during sifting
P often yields a local optimum, but works well in practice

» in practice, dynamic variable ordering is applied periodically

Joost-Pieter Katoen Lecture#19 17/40

The Variable Ordering Problem

Experimental Results

L Good Bad Bad+Dynamic
Circuit
#nodes Secs #nodes secs #nodes secs
16-bit rotator 81 <1 1081328 56 81 1
8-bit adder 36 <1 751 <1 36 <1
16-bit adder 76 <1 196575 16 123 1
32-bit adder 156 <1 >1000000 80 452 4
32-bit alu 8869 <1 >1000000 83.4 4341 8.2
64-bit alu 17829 <1 >1000000 81.4 9487 47.2
128-bit alu 35749 1.9 | >1000000 79.1 18086 149.6
256-bit alu 71598 4.0 | >1000000 82.2 44870 697.9
8-bit Min_Max 890 <1 79007 6 883 3
16-bit Min_Max 3310 <1 >1000000 50 3295 16
32-bit Min_Max 12566 2 >1000000 39 39265 86
12-bit multiplier | 605883 | 255 1324674 | 340 1494828 | 2500

[Janssen, 1996] on an HP9000/s755 workstation

Joost-Pieter Katoen Lecture#19 19/40

The Variable Ordering Problem

Sifting

(courtesy: Bryant)

Joost-Pieter Katoen Lecture#19 18/40

The Variable Ordering Problem

Interleaved Variable Ordering

» Which variable ordering to use for transition relations?

» The interleaved variable ordering:

for encodings xi,...,x, and yq, ..., y, of state s and t respectively:

X1 <Y1 <X <V <...<X,<Y,

» This variable ordering yields compact ROBDDs for binary relations

Joost-Pieter Katoen Lecture#19 20/40

Symbolic CTL Model Checking

Overview

© Symbolic CTL Model Checking

Joost-Pieter Katoen Lecture#19 21/40

Symbolic Computation of Sat(3(C U B))

fo(Z) == xB(T);

j=0;

repeat
fir1(@) = f;@) V (xc@) A T (AEF,Z) A £(T)));
ji=73+1

until f](f) = f]—l(T):

return f;(7).

Joost-Pieter Katoen Lecture#19 23/40

Idea

» Take a symbolic representation of a transition system (A and xg)
» Backward reachability Pre"(B) ={s€ S| sk 3GB}
» Initially: fy = xg characterizes the set To = B

» Then, successively compute the functions fj,; = X, for:

Ty1=Tiu{seS|3s'€S.s €Post(s) A s €T;}

> Second set is symbolically given by: 3x".(A(x,x) A fi(x))
—— .)
s' € Post(s) S'eT;

6-(7) arises from f; by renaming Xx; into their primed copies x|

Joost-Pieter Katoen Lecture#19 22/40

Symbolic CTL Model Checking

Symbolic Computation of Sat(30B)
Compute the largest set T € B with Post{(t)n T # @ forall te T
Take To=Band Tj,y = Tjn{s€S|3s'€S.s' € Post(s) A s' € T; }

Symbolically this amounts to:

fo(Z) := xB(T);

J:=0;

repeat
fiv1(®@) = f3(T) A T (AR, T) A f3(T));
Jr=g 1

until fJ(T) = fj—l(T);

return f;(7).

This can be efficiently done by ROBDD representations of switching functions

Joost-Pieter Katoen Lecture#19 24/40

Implementation Details

Overview

@ Implementation Details

Joost-Pieter Katoen Lecture#19 25/40

Implementation Details

Shared OBDDs

» ldea: combine several OBDDs with same variable ordering.
» This enables sharing of common g-consistent co-factors.
» A shared p-OBDD is an OBDD with multiple roots.

» It represents multiple switching functions.

Shared OBDD representing z; A =z5, =175, 21 ® z, and =z V 2,
| S—" i N i W — [—
fi f f3 fa

Joost-Pieter Katoen Lecture#19 27/40

Synthesis of ROBDDs

» Construct a p-ROBDD for f; opf, given p-ROBDDs for f; and

where op is a Boolean connective such as disjunction, implication, etc.

» Idea: use a single ROBDD with (global) variable ordering g to
represent several switching functions

» This yields a shared OBDD (SOBDD, for short), which is:

» a multi-rooted ROBDD
» a combination of several ROBDDs with variable ordering g
» by sharing nodes for common gp-consistent co-factors

P The size of p-SOBDD B for functions fi,..., fi is at most
Ng, + ...+ N¢ where Nf is the size of the p-ROBDD for

Joost-Pieter Katoen Lecture#19 26/40

Using Shared OBDDs for CTL Model Checking

Use a single SOBDD to represent for model checking ®:

» A(x,x') for the transition relation
P In practice, often the interleaved variable order for A is used.

» f,(x), a € AP, for the satisfaction sets of the atomic propositions

P The satisfaction sets Sat(V) for every state sub-formula W of ¢

Joost-Pieter Katoen Lecture#19 28/40

Synthesizing Shared Reduced OBDDs

Relies on the use of two tables

» The unique table

P keeps track of ROBDD nodes that already have been created
» table entry (var{v), succ;(v), succg(v)) for each inner node v
» main operation: find_or_add(z, vi, vp) with v # v
P return v if there exists a node v = (z, vi,) in the ROBDD
P if not, create a new z-node v with succy(v) = vy and succi(v) = v

» implemented using hash functions (expected access time is O(1))

» The computed table

P keeps track of tuples for which ITE has been executed (memoisation)
= realises a kind of dynamic programming

Joost-Pieter Katoen Lecture#19 29/40

ITE Operator on SOBDDs

» A node in a p-SOBDD for representing ITE(g, f1, f>)
is a node w with info(z, wy, wg) where:

P z is the minimal (wrt.) essential variable of ITE(g, f;, f)
» w, is an SOBDD-node with f,, = ITEg|.-p, fil =, f2],=5)

P This suggests a recursive algorithm:

» determine z
P recursively compute the nodes for ITE for the cofactors of g, f; and £,

Joost-Pieter Katoen Lecture#19 31/40

Implementation Details

The ITE Normal Form
The ITE (if-then-else) operator: ITE(g, fi,f) = (gAf) VvV (mg A h).
The representation of the SOBDD nodes in the unique table:

f, = ITE(2, fyee,(v): Tsucey(v))
Then:
-f = ITEf,0,1)
hvh = ITEh, 1 fH)
hnfh = ITE(fi,£,0)
hefh = ITEf, -~ h) = ITEH, ITEfH,0,1), f)

If g, f, > are switching functions for Var, z € Var and b € {0, 1}, then

ITEg, fi, b)l.=p = ITE(gl,=b, filo=b, fol2=p)-

Joost-Pieter Katoen Lecture#19 30/40

ITE(u, vi, v») on SOBDDs (Initial Version)

if is terminal then
if val(u) — 1 then

w = vy (* ITE(L, foys fog) = fur*)
else
w = vy (* ITEO, foys fog) = fup*)
fi
else

z := min{var(u), var(vi), var(va) }; (* minimal essential variable *)
wi := ITE(w|z=1, vi|2=1, v2|2=1);
wo := ITE(u|,=0, v1|2=0, V2|2=0);

if wy = w; then

w 1= wy; (* elimination rule *)
else
w := find_or-add(z, wy, wp); (* isomorphism rule *)
fi
fi
return w
Joost-Pieter Katoen Lecture#19 32/40

ROBDD Size

|
The size of the p-ROBDD for ITE(g, f;, ») is bounded from above by
Ng « Ny, - Nr, where N denotes the size of the p-ROBDD for f.

for some ITE-functions optimisations are possible, e.g., f & g

Joost-Pieter Katoen Lecture#19 33/40

ITE(u, vi, v») on SOBDDs Revisited

if there is an entry for (u, vi, vo, w) in the computed table then
return node w
else
if u is terminal then
if val(u) = 1 then w := v, else w := vs fi
else
z = min{var(u), var(vy), var(ve) };
wy = ITE(u|.=1, v1]2=1, V2|2=1);
wo = ITE(u|;=0, v1|2=0, v2|2=0);
if wo = wy then w := w; else w := find_or_add(z, w1, wy) fi;
insert (u, v1, vo, w) in the computed table;
return node w
fi
fi

The number of recursive calls for nodes u, vy, v» equals the p-ROBDD size

of ITE(f,, f,,, f,,), which is bounded by N, - N,, - N,,

Joost-Pieter Katoen Lecture#19 35/40

Main Deficiency

Problem: for multiple paths from (u, v1, v») to (u', v4, v5)
multiple invocations of ITE(u', vi, v5) occur.

= Store triples (u, v, v») for which ITE already has been computed

This is similar as in dynamic programming.

Joost-Pieter Katoen Lecture#19 34/40

Experimental Results

250000 o—o Total, 2 clusters

o——=a Transition relation, 2 clusters

200000

150000

OBDD nodes used

100000

50000

0 1 2 3

4 5
Caches per Cluster

1 2 3 4 5 6
Caches per Cluster

ROBDD size and state space size for cache coherence protocol [McMillan 1993]

Joost-Pieter Katoen Lecture#19 36/40

BDD-Based Bisimulation Minimisation Overview

© Summary
Joost-Pieter Katoen Lecture#19 37/40 Joost-Pieter Katoen Lecture#19 38/40
Summary Next —and Final— Lecture

» ROBDDs are a succinct data structure for many switching functions
» Crucial factor: the variable ordering

P Transition systems can be easily represented by switching functions

Friday January 17, 14:30

» Symbolic CTL model checking = fixed-point computation with
switching functions

it is all about using ROBDD representations and manipulating them

» If ROBDD representation is compact, CTL model checking scales well

» Several large companies have in-house symbolic model checkers
IBM, Lucent, Intel, Motorola, SGI, Fujitsu, Siemens, ...

Joost-Pieter Katoen Lecture#19 39/40 Joost-Pieter Katoen Lecture#19 40/40

	Motivation
	The Variable Ordering Problem
	Symbolic CTL Model Checking
	Implementation Details
	Summary

