
Model Checking
Lecture #19: Symbolic Model Checking with BDDs

[Baier & Katoen, Chapter 6.7]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#19 1/40

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 2/40

Motivation

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 3/40

Motivation

Inventors of BDD-Based Model Checking

Randy Bryant (USA) Edmund Clarke Jr. (USA)

Ken McMillan (USA) David Dill (USA)

Joost-Pieter Katoen Lecture#19 4/40

The Variable Ordering Problem

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 5/40

The Variable Ordering Problem

Variable Ordering

▶ ROBDDs are canonical for a fixed variable ordering
▶ the size of the ROBDD crucially depends on the variable ordering
▶ # nodes in ℘- ROBDD B = # of ℘-consistent co-factors of f

▶ Some switching functions have linear and exponential ROBDDs
▶ e.g., the addition function, or the stable function (see below)

▶ Some switching functions only have polynomial ROBDDs
▶ this holds, e.g., for symmetric functions (see next)
▶ examples f (. . .) = x1 ⊕ . . . ⊕ xn, or f (. . .) = 1 iff ≥ k variables xi are true

▶ Some switching functions only have exponential ROBDDs
▶ this holds, e.g., for the middle bit of the multiplication function

Joost-Pieter Katoen Lecture#19 6/40

The Variable Ordering Problem

Function Stable with Exponential ROBDD

The ROBDD of fstab(x , y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)
has 3⋅2n−1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn

Joost-Pieter Katoen Lecture#19 7/40

The Variable Ordering Problem

Function Stable with Linear ROBDD

The ROBDD of fstab(x , y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)
has 3⋅n + 2 vertices under ordering x1 < y1 < . . . < xn < yn

Joost-Pieter Katoen Lecture#19 8/40

The Variable Ordering Problem

Another Exponential Example

ROBDD for f3(z , y) = (z1 ∧ y1) ∨ (z2 ∧ y2) ∨ (z3 ∧ y3)
for the variable ordering z1 < z2 < z3 < y1 < y2 < y3

Joost-Pieter Katoen Lecture#19 9/40

The Variable Ordering Problem

And An Optimal Linear ROBDD

▶ ROBDD for f3(⋅) = (z1 ∧ y1) ∨ (z2 ∧ y2) ∨ (z3 ∧ y3)

▶ for ordering z1 < y1 < z2 < y2 < z3 < y3

▶ as all variables are essential for f , this ROBDD is
optimal

▶ that is, for no variable ordering a smaller ROBDD
exists

Joost-Pieter Katoen Lecture#19 10/40

The Variable Ordering Problem

Symmetric Functions
Definition: symmetric function
Switching function f ∈ Eval(z1, . . . , zm) is symmetric if and only if

f ([z1 = b1, . . . , zm = bm]) = f ([z1 = bi1 , . . . , zm = bim])

for each permutation (i1, . . . , im) of (1, . . . ,m).

Example symmetric functions: z1 ∨ z2 ∨ . . . ∨ zm, z1 ∧ z2 ∧ . . . ∧ zm, the
parity function, and the majority function.

Let f be a symmetric function with m essential variables. Then: for each
variable ordering ℘, the ℘-ROBDD for f has size O(m2).

Proof.
On the black board.

Joost-Pieter Katoen Lecture#19 11/40

The Variable Ordering Problem

The Even Parity Function

Definition: the even parity function
The switching function feven ∈ Eval(x1, . . . , xn) defined by

feven(x1, . . . , xn) = 1 iff the number of variables xi with value 1 is even

is called the even parity function.

feven has exponential size truth table or propositional formula

but admits an ROBDD of linear size.

Joost-Pieter Katoen Lecture#19 12/40

The Variable Ordering Problem

The Multiplication Function

▶ Consider two n-bit integers
▶ let bn−1bn−2 . . . b0 and cn−1cn−2 . . . c0
▶ where bn−1 is the most significant bit, and b0 the least significant bit

▶ Multiplication yields a 2n-bit integer
▶ the ROBDD Bfn−1 has at least 1.09n vertices
▶ where fn−1 denotes the (n−1)-st output bit of the multiplication

Joost-Pieter Katoen Lecture#19 13/40

The Variable Ordering Problem

Optimal Variable Ordering

The size of ROBDDs strongly depends on the variable ordering.

The decision problem whether a given variable ordering is optimal is
NP-complete.

Proof.
Polynomial reduction from the optimal linear arrangement problem.
Rather involved. Outside scope of this lecture. For details, see [Bollig and
Wegener, 1996].

Joost-Pieter Katoen Lecture#19 14/40

The Variable Ordering Problem

Variable Ordering

▶ There are many switching functions with large ROBDDs
▶ for almost all switching functions the minimal size is in Ω(2

n

n)
▶ where n is the number of boolean variables

▶ How to deal with this problem in practice?
▶ guess a variable ordering
▶ rearrange the variable ordering during the ROBDD manipulations
▶ not necessary to test all n! orderings, best known algorithm in O(3n⋅n2)

Joost-Pieter Katoen Lecture#19 15/40

The Variable Ordering Problem

Variable Swapping

(courtesy: Bryant)

Variable swapping is a local operation only involving two adjacent levels

Joost-Pieter Katoen Lecture#19 16/40

The Variable Ordering Problem

Variable Sifting [Rudell, 1993]

Dynamic variable ordering using repeated variable swapping:

1. Select a variable xi in the ROBDD

2. Successively swap xi to determine size(B) at any position for xi

3. Shift xi to position for which size(B) is minimal

4. Go back to the first step until no improvement is made

Characteristics:
▶ a variable may change position several times during sifting
▶ often yields a local optimum, but works well in practice
▶ in practice, dynamic variable ordering is applied periodically

Joost-Pieter Katoen Lecture#19 17/40

The Variable Ordering Problem

Sifting

(courtesy: Bryant)

Joost-Pieter Katoen Lecture#19 18/40

The Variable Ordering Problem

Experimental Results

[Janssen, 1996] on an HP9000/s755 workstation

Joost-Pieter Katoen Lecture#19 19/40

The Variable Ordering Problem

Interleaved Variable Ordering

▶ Which variable ordering to use for transition relations?

▶ The interleaved variable ordering:

for encodings x1, . . . , xn and y1, . . . , yn of state s and t respectively:

x1 < y1 < x2 < y2 < . . . < xn < yn

▶ This variable ordering yields compact ROBDDs for binary relations

Joost-Pieter Katoen Lecture#19 20/40

Symbolic CTL Model Checking

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 21/40

Symbolic CTL Model Checking

Idea
▶ Take a symbolic representation of a transition system (∆ and χB)

▶ Backward reachability Pre∗(B) = { s ∈ S ∣ s ⊧ ∃◇B }

▶ Initially: f0 = χB characterizes the set T0 = B

▶ Then, successively compute the functions fj+1 = χTj+1 for:

Tj+1 = Tj ∪ { s ∈ S ∣ ∃s ′ ∈ S. s ′ ∈ Post(s) ∧ s ′ ∈ Tj }

▶ Second set is symbolically given by: ∃x ′. (∆(x , x ′)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

s ′ ∈ Post(s)

∧ fj (x ′)ÍÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÏ
s ′∈Tj

)

fj (x ′) arises from fj by renaming xi into their primed copies x ′i

Joost-Pieter Katoen Lecture#19 22/40

Symbolic CTL Model Checking

Symbolic Computation of Sat(∃(C U B))

Joost-Pieter Katoen Lecture#19 23/40

Symbolic CTL Model Checking

Symbolic Computation of Sat(∃□B)
Compute the largest set T ⊆ B with Post(t) ∩ T /= ∅ for all t ∈ T

Take T0 = B and Tj+1 = Tj ∩ {s ∈ S ∣ ∃s ′ ∈ S. s ′ ∈ Post(s) ∧ s ′ ∈ Tj }
Symbolically this amounts to:

This can be efficiently done by ROBDD representations of switching functions

Joost-Pieter Katoen Lecture#19 24/40

Implementation Details

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 25/40

Implementation Details

Synthesis of ROBDDs

▶ Construct a ℘-ROBDD for f1 op f2 given ℘-ROBDDs for f1 and f2
where op is a Boolean connective such as disjunction, implication, etc.

▶ Idea: use a single ROBDD with (global) variable ordering ℘ to
represent several switching functions

▶ This yields a shared OBDD (SOBDD, for short), which is:
▶ a multi-rooted ROBDD
▶ a combination of several ROBDDs with variable ordering ℘
▶ by sharing nodes for common ℘-consistent co-factors

▶ The size of ℘-SOBDD B for functions f1, . . . , fk is at most
Nf1 + . . . + Nfk where Nf is the size of the ℘-ROBDD for f

Joost-Pieter Katoen Lecture#19 26/40

Implementation Details

Shared OBDDs
▶ Idea: combine several OBDDs with same variable ordering.
▶ This enables sharing of common ℘-consistent co-factors.
▶ A shared ℘-OBDD is an OBDD with multiple roots.
▶ It represents multiple switching functions.

Shared OBDD representing z1 ∧ ¬z2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
f1

, ¬z2ÍÒÒÒÑÒÒÒÏ
f2

, z1 ⊕ z2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
f3

and ¬z1 ∨ z2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
f4

Joost-Pieter Katoen Lecture#19 27/40

Implementation Details

Using Shared OBDDs for CTL Model Checking

Use a single SOBDD to represent for model checking Φ:

▶ ∆(x , x ′) for the transition relation
▶ In practice, often the interleaved variable order for ∆ is used.

▶ fa(x), a ∈ AP, for the satisfaction sets of the atomic propositions

▶ The satisfaction sets Sat(Ψ) for every state sub-formula Ψ of Φ

Joost-Pieter Katoen Lecture#19 28/40

Implementation Details

Synthesizing Shared Reduced OBDDs

Relies on the use of two tables

▶ The unique table
▶ keeps track of ROBDD nodes that already have been created
▶ table entry ⟨var(v), succ1(v), succ0(v)⟩ for each inner node v
▶ main operation: find_or_add(z , v1, v0) with v1 ≠ v0

▶ return v if there exists a node v = ⟨z, v1, v0⟩ in the ROBDD
▶ if not, create a new z-node v with succ0(v) = v0 and succ1(v) = v1

▶ implemented using hash functions (expected access time is O(1))

▶ The computed table
▶ keeps track of tuples for which ITE has been executed (memoisation)
⇒ realises a kind of dynamic programming

Joost-Pieter Katoen Lecture#19 29/40

Implementation Details

The ITE Normal Form
The ITE (if-then-else) operator: ITE(g , f1, f2) = (g ∧ f1) ∨ (¬ g ∧ f2).
The representation of the SOBDD nodes in the unique table:

fv = ITE(z , fsucc1(v), fsucc0(v))
Then:

¬f = ITE(f , 0, 1)
f1 ∨ f2 = ITE(f1, 1, f2)
f1 ∧ f2 = ITE(f1, f2, 0)
f1 ⊕ f2 = ITE(f1,¬f2, f2) = ITE(f1, ITE(f2, 0, 1), f2)

If g , f1, f2 are switching functions for Var, z ∈ Var and b ∈ {0, 1}, then

ITE(g , f1, f2)∣z=b = ITE(g ∣z=b, f1∣z=b, f2∣z=b).

Joost-Pieter Katoen Lecture#19 30/40

Implementation Details

ITE Operator on SOBDDs

▶ A node in a ℘-SOBDD for representing ITE(g , f1, f2)
is a node w with info⟨z ,w1,w0⟩ where:
▶ z is the minimal (wrt. ℘) essential variable of ITE(g , f1, f2)
▶ wb is an SOBDD-node with fwb = ITE(g ∣z=b, f1∣z=b, f2∣z=b)

▶ This suggests a recursive algorithm:
▶ determine z
▶ recursively compute the nodes for ITE for the cofactors of g , f1 and f2

Joost-Pieter Katoen Lecture#19 31/40

Implementation Details

ITE(u, v1, v2) on SOBDDs (Initial Version)

Joost-Pieter Katoen Lecture#19 32/40

Implementation Details

ROBDD Size

The size of the ℘-ROBDD for ITE(g , f1, f2) is bounded from above by
Ng ⋅ Nf1 ⋅ Nf2 where Nf denotes the size of the ℘-ROBDD for f .

for some ITE-functions optimisations are possible, e.g., f ⊕ g

Joost-Pieter Katoen Lecture#19 33/40

Implementation Details

Main Deficiency

Problem: for multiple paths from (u, v1, v2) to (u′, v ′1, v ′2)
multiple invocations of ITE(u′, v ′1, v ′2) occur.

⇒ Store triples (u, v1, v2) for which ITE already has been computed

This is similar as in dynamic programming.

Joost-Pieter Katoen Lecture#19 34/40

Implementation Details

ITE(u, v1, v2) on SOBDDs Revisited

The number of recursive calls for nodes u, v1, v2 equals the ℘-ROBDD size
of ITE(fu, fv1 , fv2), which is bounded by Nu ⋅ Nv1 ⋅ Nv2

Joost-Pieter Katoen Lecture#19 35/40

Implementation Details

Experimental Results

ROBDD size and state space size for cache coherence protocol [McMillan 1993]

Joost-Pieter Katoen Lecture#19 36/40

Implementation Details

BDD-Based Bisimulation Minimisation

Joost-Pieter Katoen Lecture#19 37/40

Summary

Overview

1 Motivation

2 The Variable Ordering Problem

3 Symbolic CTL Model Checking

4 Implementation Details

5 Summary

Joost-Pieter Katoen Lecture#19 38/40

Summary

Summary
▶ ROBDDs are a succinct data structure for many switching functions

▶ Crucial factor: the variable ordering

▶ Transition systems can be easily represented by switching functions

▶ Symbolic CTL model checking = fixed-point computation with
switching functions

it is all about using ROBDD representations and manipulating them

▶ If ROBDD representation is compact, CTL model checking scales well

▶ Several large companies have in-house symbolic model checkers
IBM, Lucent, Intel, Motorola, SGI, Fujitsu, Siemens, . . .

Joost-Pieter Katoen Lecture#19 39/40

Summary

Next —and Final— Lecture

Friday January 17, 14:30

Joost-Pieter Katoen Lecture#19 40/40

	Motivation
	The Variable Ordering Problem
	Symbolic CTL Model Checking
	Implementation Details
	Summary

