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Motivation

State Spaces Can Be Gigantic

A model of the Hubble telescope
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Motivation

Treating Gigantic Models?

▶ Use compact data structures

▶ Make models smaller prior to (or: during) model checking

▶ Try to make them even smaller

▶ If possible, try to obtain the smallest possible model

▶ While preserving the properties of interest

▶ Do this all algorithmically and possibly fast
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Motivation

Symbolic CTL Model Checking

▶ Explicit representation of transition system: state explosion problem

▶ Idea: reformulate model-checking in a symbolic way

▶ Concept: represent sets of states and transitions symbolically

▶ Approach: binary encoding of states + switching functions for sets

▶ Compactly represent switching functions by binary decision diagrams

▶ Alternative: conjunctive normal form (used in SAT-based model
checking)
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Motivation

Basic Approach
▶ let TS = (S,→, I,AP, L) be a “large” finite transition system

▶ the set of actions is irrelevant here and is omitted, i.e., →⊆ S × S

▶ For n ≥ ⌈log ∣S∣⌉, let injective function enc ∶ S → { 0, 1 }n

▶ the encoding of the states by bit vectors of length n
▶ elements in { 0, 1 }n \ enc(S) encode unreachable pseudo states

▶ Identify the states s ∈ S = enc−1({ 0, 1 }n) with enc(s) ∈ {0, 1}n

▶ And T ⊆ S by its characteristic function χT ∶ { 0, 1 }n
→ { 0, 1 }

χT (enc(s)) = 1 if and only if s ∈ T

▶ And →⊆ S × S by the Boolean function ∆ ∶ { 0, 1 }2n
→ { 0, 1 }

such that ∆ (enc(s), enc(s ′)) = 1 if and only if s → s ′
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Motivation

Symbolic Representation of Transition System

Function: ∆(x1, x2ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
s

, x ′1, x
′
2ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ

s ′
) = 1 if and only if s → s ′

∆(x1, x2, x ′1, x ′2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x ′1 ∧ x ′2)
∨ (¬ x1 ∧ ¬ x2 ∧ x ′1 ∧ x ′2)
∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬ x ′2)
∨ . . .
∨ (x1 ∧ x2 ∧ x ′1 ∧ x ′2)
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Switching Functions

Switching Functions
▶ Let Var = {z1, . . . , zm} be a finite set of Boolean variables, m ≥ 0

▶ An evaluation is a function η ∶ Var → { 0, 1 }
▶ shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm

▶ Let Eval(Var) denote the set of all evaluations for Var = z1, . . . , zm

▶ f ∶ Eval(Var) → { 0, 1 } is a switching function for Var = {z1, . . . , zm}

▶ Logical operations and quantification are defined as:
▶ f1(⋅) ∧ f2(⋅) = min{ f1(⋅), f2(⋅) }
▶ f1(⋅) ∨ f2(⋅) = max{ f1(⋅), f2(⋅) }
▶ ∃z . f (⋅) = f (⋅)∣z=0 ∨ f (⋅)∣z=1, and
▶ ∀z . f (⋅) = f (⋅)∣z=0 ∧ f (⋅)∣z=1
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Switching Functions

Impossible Polynomial Data Structure

There is no polynomial-size data structure for all switching functions with
∣Eval(z1, . . . , zm)∣ = 2m; i.e., the number of switching functions is 22

m
.

Proof.

▶ Suppose there is a data structure that can represent Km switching functions
by at most 2m−1 bits

▶ Then Km ≤ ∑2m−1

i=0 2i
= 22

m−1+1 − 1 < 22
m−1+1

▶ But then there are at least

22
m

− 22
m−1+1

= 22
m−1+1

⋅ (22
m−2m−1−1

− 1) = 22
m−1+1

⋅ (22
m−1−1

− 1)

switching functions whose representation needs more than 2m−1 bits.
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Switching Functions

Representing Switching Functions

▶ Truth tables
▶ very space inefficient: 2n entries for n variables
▶ satisfiability and equivalence check: easy; boolean operations also easy
▶ . . . but have to consider exponentially many lines (so are hard)

▶ Disjunctive Normal Form (DNF)
▶ satisfiability is easy: find a disjunct with complementary literals
▶ negation and conjunction complicated
▶ equivalence checking (f = g?) is coNP-complete

▶ Conjunctive Normal Form (CNF)
▶ satisfiability problem is NP-complete (Cook’s theorem)
▶ negation and disjunction complicated
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Switching Functions

Representing Switching Functions

representation compact? sat equiv ∧ ∨ ¬

propositional
formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard
CNF sometimes hard hard easy hard hard

(ordered)
truth table never hard hard hard hard hard
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Switching Functions

Perhaps There is Some Hope

Nevertheless there are data structures which yield compact representations
for many switching functions that appear in practical applications

for hardware circuits, ordered binary decision diagrams (OBDDs) are successful
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Switching Functions

Representing Switching Functions

representation compact? sat equiv ∧ ∨ ¬

propositional
formula often hard hard easy easy easy

DNF sometimes easy hard hard easy hard
CNF sometimes hard hard easy hard hard

(ordered)
truth table never hard hard hard hard hard

reduced ordered
binary decision often easy easy∗ medium medium easy

diagram

∗ provided appropriate implementation techniques are used
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Switching Functions

Binary Decision Tree
▶ The BDT for function f on Var = { z1, . . . , zm } has depth m

▶ outgoing edges for node at level i stand for zi = 0 (dashed) and zi = 1
(solid)

▶ For evaluation s = [z1 = b1, . . . , zm = bm], f (s) is the value of the leaf
▶ reached by traversing the BDT from the root using branch zi = bi at

level i

▶ The sub-tree of node v at level i for variable ordering z1 < . . . < zm
represents

fv = f ∣z1=b1,...,zi−1=bi−1

▶ which is a switching function over { zi , . . . , zm } and
▶ where z1 = b1, . . . , zi−1 = bi−1 is the sequence of decisions made along

the path from the root to node v
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Switching Functions

Symbolic Representation of Transition System

Switching function: ∆(x1, x2ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
s

, x ′1, x
′
2ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ

s ′
) = 1 if and only if s → s ′

∆(x1, x2, x ′1, x ′2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x ′1 ∧ x ′2)
∨ (¬ x1 ∧ ¬ x2 ∧ x ′1 ∧ x ′2)
∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬ x ′2)
∨ . . .
∨ (x1 ∧ x2 ∧ x ′1 ∧ x ′2)
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Switching Functions

Transition Relation as a BDT

A BDT representing ∆ for our example using ordering x1 < x2 < x ′1 < x ′2
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Switching Functions

Facts About BDTs

▶ BDTs are not compact
▶ a BDT for switching function f on n variables has 2n leafs
⇒ they are as space inefficient as truth tables!

⇒ BDTs contain quite some redundancy
▶ all leafs with value one (zero) could be collapsed into a single leaf
▶ a similar scheme could be adopted for isomorphic subtrees

▶ The size of a BDT does not change if the variable order changes
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Ordered Binary Decision Diagrams
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Ordered Binary Decision Diagrams

Ordered Binary Decision Diagram
▶ OBDDs rely on compactifying BDT representations

▶ Idea: skip redundant fragments of BDT representations

▶ Collapse sub-trees with all terminals having same value

▶ Identify nodes with isomorphic sub-trees

▶ This yields directed acyclic graphs with out-degree two

▶ Inner nodes are labeled with variables

▶ Leafs are labeled with function values (zero and one)
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Ordered Binary Decision Diagrams

Ordered BDDs

Definition: Ordered BDDs
Let ℘ = (z1, . . . , zm) be a (total) variable ordering for Var = { z1, . . . , zm }
where, i.e., z1 <℘ . . . <℘ zm.
An ℘-OBDD is a tuple B = (V ,VI ,VT , succ0, succ1, var, val, v0) with:
▶ a finite set V of nodes, partitioned into VI (inner) and VT (terminals)

▶ and a distinguished root (node) v0 ∈ VI
▶ successor functions succ0, succ1 ∶ VI → V

▶ such that each node v ∈ V \ {v0} has at least one predecessor
▶ i.e., all nodes of the OBDD B are reachable from the root

▶ labeling functions var ∶ VI → Var and val ∶ VT → { 0, 1 } satisfying for
v ∈ VI and w ∈ { succ0(v ), succ1(v ) }:

(var(v ) = zi ∧ w ∈ VI ) ⇒ var(w ) = zj with zi <℘ zj
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Ordered Binary Decision Diagrams

Examples
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Ordered Binary Decision Diagrams

Example: Transition Relation as OBDD

Example OBDD representing f→ for our example with x1 <℘ x2 <℘ x ′1 <℘ x ′2
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Ordered Binary Decision Diagrams

OBDD Semantics

Definition: OBDD semantics
The semantics of ℘-OBDD B is the switching function fB where

fB([z1 = b1, . . . , zm = bm])

is the value of the resulting leaf when traversing B starting in v0 and
branching according to the evaluation [z1 = b1, . . . , zm = bm].
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Ordered Binary Decision Diagrams

Intermezzo: OBDDs and DFA

each OBDD B is a deterministic finite-state automaton AB with f −1B (1) = L(AB).
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Ordered Binary Decision Diagrams

Bottom-up Characterisation of fB

Let B be a ℘-OBDD.
The switching function fv for node v ∈ V can be obtained as follows:

▶ If v ∈ VT , then fv is the constant switching function with value val(v )

▶ If v ∈ VI with var(v ) = z , then fv = (¬z ∧ fsucc0(v )) ∨ (z ∧ fsucc1(v ))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Shannon expansion

Furthermore, fB = fv0 for the root v0 of B.
The function fB is the switching function represented by OBDD ℘ −B.
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Ordered Binary Decision Diagrams

Consistent Co-factors in OBDDs

Definition: consistent co-factors
Let f be a switching function for Var and let ℘ = (z1, . . . , zm) be a variable
ordering for Var, i.e., z1 <℘ . . . <℘ zm.
The switching function g is a ℘-consistent cofactor of f if

g = f ∣z1=b1,...,zi=bi for some i ∈ { 0, 1, . . . ,m }.

It holds that:
▶ for each node v of an ℘-OBDD B, fv is a ℘-consistent cofactor of fB

▶ for each ℘-consistent cofactor g of fB, fv = g for some node v ∈ B
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Reduced Ordered Binary Decision Diagrams

Reduced OBDDs

Definition: reduced OBDD
A ℘-OBDD B is reduced if for every pair (v ,w ) of nodes in B it holds:

v /= w implies fv /= fw .

A reduced ℘-OBDD is abbreviated as ℘-ROBDD.

In ℘-ROBDDs every ℘-consistent cofactor is represented by exactly one node.
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Reduced Ordered Binary Decision Diagrams

Example Reduced OBDDs
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Reduced Ordered Binary Decision Diagrams

Example: Transition Relation as OBDD

An example OBDD representing f→ for our example using x1 < x2 < x ′1 < x ′2
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Reduced Ordered Binary Decision Diagrams

Example: Transition Relation as ROBDD
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Reduced Ordered Binary Decision Diagrams

Universality and Canonicity Theorem

[Fortune, Hopcroft & Schmidt, 1978]

For finite set Var of Boolean variables and variable ordering ℘ for Var:
(a) For each switching function f on Var, f = fB for some ℘-ROBDD B.

(b) For any ℘-ROBDDs B and C with fB = fC, B and C are isomorphic1.

1agree up to renaming of nodes
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Reduced Ordered Binary Decision Diagrams

Proof
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Reduced Ordered Binary Decision Diagrams

The Importance of Canonicity
▶ Absence of redundant vertices

▶ if fB does not depend on xi , ROBDD B does not contain an xi node

▶ Test for equivalence: f (x1, . . . , xn) ≡ g (x1, . . . , xn)?
▶ generate ROBDDs Bf and Bg , and check isomorphism

▶ Test for validity: for all x1, . . . , xn, is f (x1, . . . , xn) = 1?
▶ generate ROBDD Bf and check whether it only consists of a 1-leaf

▶ Test for implication: f (x1, . . . , xn) → g (x1, . . . , xn)?
▶ generate ROBDD Bf ∧ ¬g and check if it just consists of a 0-leaf

▶ Test for satisfiability
▶ f is satisfiable if and only if Bf has a reachable 1-leaf
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Reduced Ordered Binary Decision Diagrams

Minimality of ROBDDs

Let B be an ℘-OBDD for f .
Then: B is reduced iff size(B) ≤ size(C) for each ℘-OBDD C for f .

Proof.
This follows from the fact that:

1. Each ℘-consistent cofactor of f is represented in any ℘-OBDD for f by at
least one node, and

2. A ℘-OBDD B for f is reduced iff there is a 1-to-1 correspondence between
the nodes in B and the ℘-consistent cofactors of B.
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Reduced Ordered Binary Decision Diagrams

Reducing OBDDs

▶ Generate an OBDD (or BDT) for a boolean expression, then reduce
▶ by means of a recursive descent over the OBDD

▶ Elimination of duplicate leafs
▶ for a duplicate 0-leaf (or 1-leaf), redirect all in-edges to just one of

them

▶ Elimination of “don’t care” (non-leaf) vertices
▶ if succ0(v ) = succ1(v ) = w , delete v and redirect all its in-edges to w

▶ Elimination of isomorphic subtrees
▶ if v ≠ w are roots of isomorphic subtrees, remove w
▶ and redirect all incoming edges to w to v
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Reduced Ordered Binary Decision Diagrams

How to Reduce an OBDD?

(special case of) isomorphism rule
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Reduced Ordered Binary Decision Diagrams

How to Reduce an OBDD?

isomorphism rule
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Reduced Ordered Binary Decision Diagrams

How to Reduce an OBDD?

elimination rule
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Reduced Ordered Binary Decision Diagrams

Example
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Reduced Ordered Binary Decision Diagrams

Soundness

if C arises from a ℘-OBDD B by the elimination or isomorphism rule, then
C is a ℘-OBDD with fB = fC.

Proof.
Elimination rule for v with var(v ) = z , and w = succ0(v ) = succ1(v ):

fv = (¬z ∧ fsucc0(v )) ∨ (z ∧ fsucc1(v )) = (¬z ∧ fw ) ∨ (z ∧ fw ) = fw

Isomorphism rule for v ,w with var(v ) = var(w ) = z yields:

fv = (¬z ∧ fsucc0(v )) ∨ (z ∧ fsucc1(v ))
= (¬z ∧ fsucc0(w )) ∨ (z ∧ fsucc1(w ))
= fw

as each reduction rule decreases the # nodes, repeatedly applying them terminates
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Reduced Ordered Binary Decision Diagrams

Completeness of Reduction Rules

℘-OBDD B is reduced iff no reduction rule is applicable to B.
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Summary

Summary
▶ ROBDDs are directed acyclic graphs aimed at succinctly representing

switching functions

▶ They provide a compact representation for many switching functions

▶ In an ROBDD, each co-factor is represented by exactly one node

▶ ROBDDs are canonical for a given variable ordering

▶ Any OBDD can be reduced by two reduction rules (applied in any
order)

▶
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Summary

Next Lecture

Thursday January 16, 10:30
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