Model Checking
Lecture #17: Partial-Order Reduction

[Baier & Katoen, Chapter 8]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#17 1/52
Overview
© Motivation

Joost-Pieter Katoen Lecture#17 3/52

Overview

© Motivation
© Action Independence
© Ample Sets

@ Correctness and Complexity

© Summary
Joost-Pieter Katoen Lecture#17 2/52
Motivation

P Interleaving semantics
» independent concurrent actions are interleaved
P a run is defined by a totally ordered sequence of states

» Modelling concurrency by interleaving

» may enforce an order of actions that has no real “meaning”
P state space size = product of number of states of threads
P this is a major cause of the state-space explosion problem

P Partial-order reduction
» groups runs for which the order of “independent” actions is irrelevant
P considers a single representative run for equivalent runs

Joost-Pieter Katoen Lecture#17 4/52

Motivation

Idea of Partial-Order Reduction

T=T.||T> T red

Joost-Pieter Katoen Lecture#17 5/52

Motivation

Outline of Ample-Set POR

P Given: a syntactic description of transition system TS

» Aim: On-the-fly construction of “reduced” transition system TS,y

P for state s only consider outgoing actions ample(s) € Act(s)
where Act(s) = {a € Act| 3s' € S. s 255"}, the enabled actions in s
P expand only a-successors with o € ample(s)

» Key issue: which actions to choose from Act(s)?

» Requirements:

» such that TS,eq =sttrace TS, hence TS,y and TS are LTL,-equivalent
P TS,y is (much) smaller than TS
» TS,.q can be obtained efficiently

Joost-Pieter Katoen Lecture#17 7/52

Motivation

Inventors of Partial-Order Reduction

—— T

Pierre Wolper (Belgium)

Antti Valmari (Finland) Doron Peled (Israel)

Joost-Pieter Katoen Lecture#17 6/52

Motivation

Stutter Equivalence

Definition: stutter step

Transition s = s’ in transition system TS is a stutter step if L(s) = L(s').

Definition: stutter equivalence

Paths 71 and 75 are stutter equivalent, denoted m; =¢ttr2ce ™ Whenever
trace(m;) and trace(r,) are both of the form Aq A TA," ...

for A; € AP.
For positive integers n; and m;:

trace(7r1) = \/40/4()1‘/41/411(42/42’

ny times n; times n, times

A0~--AO Al--~A1 A2A2

mg times m; times m, times

trace(my)

Joost-Pieter Katoen Lecture#17 8/52

Stutter Trace Equivalence

Definition: stutter trace equivalence

Transition systems TS; over AP, i=1,2, are stutter-trace equivalent:
TS1 Ssttrace 1S> ifand only if TS; & TS, and TS, € TS,
where the stutter trace inclusion relation < is defined by:

TS12TS, iff Vop € Traces(TS;) (302 € Traces(TS,). 01 Ssttrace 02)

Trace-equivalent transition systems are stutter trace-equivalent,
but not the converse.

Joost-Pieter Katoen Lecture#17 9/52

Motivation

Example: Booking System

e O transfer g transfer g print
(73 code (1) price (7)

independent actions:
scan - transf. price
transfer code - print
scan - print

LTL, property:
(1) “printer is in state 1"

Joost-Pieter Katoen Lecture#17 11/52

Motivation

Idea of Ample Sets

Transition relation = of reduced transition system TS,y defined by:

s-%s and o € ample(s)

« f
S—>S

The actions outside of ample(s) are pruned.

Joost-Pieter Katoen Lecture#17 10/52

Motivation

Example: Booking System

print

’
-

o1l print

scan
code
price
print
scan
code

Joost-Pieter Katoen Lecture#17 12/52

Motivation

Motivation

Example: Booking System Example: Booking System

print T-

010

101
SCan SCan scan scan scan scan
code code code code code code
price price scan price scan scan
pr|nt ~ scan price print e price = price
scan print code scan code code
code code print code print print
Joost-Pieter Katoen Lecture#17 13/52 Joost-Pieter Katoen Lecture#17 14/52

Motivation

Motivation

Example: Booking System Example: Booking System

q-

Treduced .

scan 0 scan 0 scan 0
code 0 code 0 code 0
price 0 price 0 scan 0
print {1% ~> scan 1} ~ price 0 _ .
Ao print 1 print {15 TSred =sttrace 1S, hence TS,eq E o implies TSE ¢
code 0 code code T for ¢ € LTL o, e.g., ¢ = OO “printer is in control state 1”
Proposition = “printer is in control state 1".
Joost-Pieter Katoen Lecture#17 15/52 Joost-Pieter Katoen Lecture#17

16/52

Action Independence Action Independence

Overview Action Determinism

Definition: action deterministic

Transition system TS is action deterministic whenever for any state s in
© Action Independence TS and action «, it holds s %> u and s -t implies u = t.

Every transition system can be made action deterministic by renaming
actions.

Assumption: from now on, transition systems are action deterministic.

Let «(s) denote the unique a-successor of s, i.e., s =% afs).

Joost-Pieter Katoen Lecture#17 17/52 Joost-Pieter Katoen Lecture#17 18/52
Action Independence Example: Semaphore-Based Mutual Exclusion

Definition: action independence

Let TS be an action-deterministic transition system with action-set Act.

Actions o € Act and 5 € Act are independent in TS if for all states s with
a, 3 € Act(s) the following holds:

@) (W)

C1 Wo Wi Co

independent actions:
request;, request, request; is independent
entery, request :

13 IESHESE, from the action-set
release;, request, ,
request,, enters {requesty, entery, release;}
request;, release; .

p € Act{a(s)) and « € Act(B(s)) and [B(afs)) = a(B(s)).

Bla(s)) = a(B(s))

Joost-Pieter Katoen Lecture#17 19/52 Joost-Pieter Katoen Lecture#17 20/52

Action Independence

Example: Semaphore-Based Mutual Exclusion

W1 W2
entery enter;

release; release,

(n1 wa) (wp np)

dependent actions:

entery, enter;
access both to the semaphore

Joost-Pieter Katoen Lecture#17 21/52

Action Independence

Example: Shared Variables

action o

(n)
y =y) ¢ |f —X then @ o
action (3 action o 7= —z . X.=z
action vy
& @

Joost-Pieter Katoen Lecture#17 23/52

Action Independence

Example: Shared Variables

y =y %= =i if =x then @ Ty
action 3 action o Z = . T 5
@ Setion & @ action

o, 0 are dependent for Tp, p,

Joost-Pieter Katoen Lecture#17 22/52

Action Independence

Example: Synchronised Threads

@, 0 independent /
7,6 independent /
B, dependent

Joost-Pieter Katoen Lecture#17 24/52

Action Independence

Permuting Independent Actions

]
Let TS be action-deterministic, s a state in TS and:

ﬁn—l 6n

s:soﬁslﬁn..—>sn_1—>sn

be a finite run in TS from s with action sequence i ... [3,.

Then, for o € Act(s) independent of {3;,...,8,}: a € Act(s;) and
s =59 -5 afsy) 2 afsy) 2> . Lot a(s,p) L2 afs,)

is a run in TS from s with action sequence o f3; ... 5,

Joost-Pieter Katoen Lecture#17 25/52

Action Independence

Stutter Actions

P If no further assumptions are made, the traces of the runs:

p=soﬂ>51&>...i>sn % t and
p' = 55 =5 1 Lo L th-1 Lo, t

will be distinct

> If o does not affect the state-labelling (= “invisible”): p Zgtrace P

Definition: stutter action

Action o € Act is a stutter action if for each s %" in TS: L(s) = L(s').

Equivalently: « is a stutter action if all transitions s % s’ are stutter steps.

Joost-Pieter Katoen Lecture#17 27/52

Action Independence

Pictorial Proof Sketch
81 ,32 53 /Bn

So—=S1 2 Sn
|ex
to
5] B
soPl.s, P2 o Bs B s,
o
tp—14
B
B V]
sg—PL 50 P2 o B3 Ba =
o Ja e Jo
to t1 to o th
Br B2 " B3 P
Joost-Pieter Katoen Lecture#17

Action Independence

Permuting Independent Stutter Actions

Let TS be action-deterministic, s a state in TS and:
» o a finite run from s with action sequence (3 ..., «

» o' afinite run from s with action sequence o 3 ... 3,

Then:

if o is a stutter action independent of {51, ..., B, }, then 0 Zgtrace 0-

Joost-Pieter Katoen Lecture#17

Adding Independent Stutter Actions

]
Let TS be action-deterministic, s a state in TS and:

» p an infinite run from s with action sequence (31 35 . ..

» o' an infinite run from s with action sequence o 31 3> . ..

Then:

if o is a stutter action independent of {51, B, ...}, then p Zcitrace P

Joost-Pieter Katoen Lecture#17 29/52

The Ample-Set Approach

» Partial-order reduction for LTL formulas using ample sets

P on state-space generation select ample(s) € Act(s)
» such that |ample(s)| < |Act(s)|

» Reduced system TS,y = (S', Act, =, I, AP, L') where:

P S’ = the set of states reachable from some sy € / under =
» —= is the smallest relation defined by:

s-% 5" A o € ample(s)

o]
S—=S

» ['(s)=L(s) forany s€ S’

» Constraints: correctness (Sgtrace), effectiveness and efficiency

Joost-Pieter Katoen Lecture#17 31/52

Overview

© Ample Sets

Joost-Pieter Katoen Lecture#17 30/52

AmpIeSets
Which Actions to Put in ample(s)?

(A1) Non-emptiness condition
Select in any state in TS,y at least one action.

(A2) Dependency condition
For any finite run in TS: an action depending on ample(s) can only
occur after some action in ample(s) has occurred.

(A3) Stutter condition
If an enabled action in s is not selected, then all selected actions are
stutter actions.

(A4) Cycle condition
Any action in Act(s;) with s; on a cycle in TS,.y must be selected in
some s; on that cycle.

(A1) through (A3) apply to states in S'; (A4) to cycles in TS,eq.

Joost-Pieter Katoen Lecture#17 32/52

Ample Sets

Example

Joost-Pieter Katoen Lecture#17 33/52

Ample Sets

Dependency Condition (A2)

Dependency Condition (A2)

Let s—§1—>51 L2y —ﬂ"—>s,, -2 t be a finite run in TS such that « depends
on ample(s).

Then: 8; € ample(s) for some 0 < i < n.

» In every (!) finite run of TS, an action dependent on ample(s) cannot
occur before some action from ample(s) occurs first

» (A2) ensures that for any state s with ample(s) C Act(s), any
a € ample(s) is independent of Act(s)\ ample(s)

Joost-Pieter Katoen Lecture#17 35/52

Ample Sets

Naive Dependency Condition (A2’)

For any s € S' with ample(s) # Act(s):
a € ample(s) is independent of Act(s) \ ample(s).

This is incorrect. (A2') allows the following reduction:

TS# O -a but TS,ed FO-a,s0 TS isttrace TSr&d

Joost-Pieter Katoen Lecture#17 34/52

Ample Sets

Example

run sy -5 s; = s, violates (A2) as y depends on {« } = ample(sg)

Joost-Pieter Katoen Lecture#17 36/52

Properties

|
For any o € ample(s) and s € Reach(TS):

if ample(s) satisfies (A2), then « is independent of Act(s) \ ample(s).

For finite run s = soﬂ> ﬁ)Sn in TS:

if ample(s) satisfies (A2) and {f1, ..., 3, } N ample(s) = @, then:
a is independent of {81, ..., 3,} and « € Act(s;) for 0 < i < n.

Joost-Pieter Katoen Lecture#17 37/52

First Consequence of (Al)—(A3)

|
Let o be a finite run in Reach(TS) of the form

0 = sBbg B2 | By o5y

where f3; ¢ ample(s), for 0 < i < n, and o € ample(s).
If ample(s) satisfies (A1)—(A3), then there exists a run:

such that 0 Z¢trace O -

Joost-Pieter Katoen Lecture#17 39/52

Ample Set Conditions So Far

(A1) Nonemptiness condition
@ # ample(s) € Act(s)

(A2) Dependency condition

Let s25 ... £155, % ¢ be a finite run in TS such that a depends
on ample(s). Then: [3; € ample(s) for some 0 < i < n.

(A3) Stutter condition

If ample(s) # Act(s) then any o € ample(s) is a stutter action.

Joost-Pieter Katoen Lecture#17 38/52

Ample Sets

Example: Ample Sets for Semaphore

AP = {Cl, Cg}

ample(ny, np) = {request, }
ample(wy, ny) = {request, }
ample(wy, wp) =

{entery, enter,}

request enter release request
q 2['11W2 2 nco 2!71"2 q 1W1I'I2

nyny

request enter request release
queS2 mwsy 2. oy <9 W 6 2w

1M

nym
request request enter release
2 d 2f71W2 i 1W1W2 2 w1 2

nmn Wi nz

request request enter release
q Lwin, q 2wy 2, wic 2

nimp Wiz

Joost-Pieter Katoen Lecture#17 40/52

Ample Sets Ample Sets

Second Consequence of (A1)—(A3) Example: Ample Sets for Semaphore

|
Let p = s-25s 255,555 . be an infinite run in Reach(TS) where
B; & ample(s), for i > 0. (Cl n2>

If ample(s) satisfies (A1)—(A3), then there exists a run:

execution where request;

is not executed

; a
p = S:toﬂ)tlﬂ)tzﬂ)...

where a € ample(s) and p Zgitrace P

Joost-Pieter Katoen Lecture#17 41/52 Joost-Pieter Katoen Lecture#17 42/52
Ample Sets Ample Sets
The Necessity of Cycle Condition (A4) Cycle Condition
7—1 T2 T = Tl |||T2
a1 jap
& (A4) Cycle condition
For any cycle sq ... s, in TS,.y and « € Act(s;), for some 0 < i < n,
T % O-blue a € ample(s;) for some j € {1,...,n}.
B.a; independent- T .4 satisfies (Al)_ (AQ)_ (A3) Every enabled action in some state on a cycle in TS,.y must be selected in
«1, xr stutter actions some state on that cycle.
aq @)

T (e = O-blue

Joost-Pieter Katoen Lecture#17 43/52 Joost-Pieter Katoen Lecture#17 44/52

Ample Set Conditions Overview

(A1) Nonemptiness condition

@ # ample(s) € Act(s)

(A2) Dependency condition

Let s -2 .. —-@"—>s,,—9-> t be a finite run in TS such that o depends
on ample(s). Then: 3; € ample(s) for some 0 < i < n.

(A3) Stutter condition _
@ Correctness and Complexity

If ample(s) # Act(s) then any « € ample(s) is a stutter action.

(A4) Cycle condition

For any cycle sq ... s, in TS,y and « € Act(s;), for some 0 < i < n,

a € ample(s;) for some j € {1,...,n}.
Joost-Pieter Katoen Lecture#17 45/52 Joost-Pieter Katoen Lecture#17 46/52
Correctness Complexity Considerations

|
Let TS be a finite, action-deterministic transition system w/o terminal

states.

The worst-case time complexity of checking (A2) in TS equals that of

Is_te:teCS be a finite, action-deterministic transition system w/o terminal s TS I 26 & for somie £ & AP whare 522 TS € Clake TS
If all ample sets satisfy conditions (A1)—(A4), then TS,ey Ssttrace TS Proof.

Sketch on the black board.

(A1), (A3) and (A4) can relatively easy be incorporated in a DFS-based
state-space generation.

Joost-Pieter Katoen Lecture#17 47/52 Joost-Pieter Katoen Lecture#17 48/52

Some Experimental Results Overview

[Clarke, Grumberg, Minea, Peled, 1999]

Algorithm TS TS,ed
states transition time states transitions time

sieve 10,878 35,594 1.68 157 157 0.08

data transfer 251,049 648,467 322 16,459 17,603 1.47

protocol

snoopy 164,258 546,805 33.6 | 29,796 44,145 358

(cache coherence)

file transfer 514,188 1,138,750 123.4 | 125,595 191,466 18.6

protocol

© Summary
partial-order reduction works good for
loosely-synchronised multi-threaded systems

Joost-Pieter Katoen Lecture#17 49/52 Joost-Pieter Katoen Lecture#17 50/52
Summary Next Lecture

» POR ignores several interleavings of independent actions
in an on-the-fly-manner; i.e., during state-space generation

» The ample set method relies on choosing ample(s) € Act(s) in state s
actions not in ample(s) are pruned

» (A1) non-emptiness, (A2) dependency, (A3) stutter and (A4) cycle F”d ay Ja n Uary].O,].430

» Conditions (Al) and (A2) ensure that any run in TS can be turned
into an equivalent run in TS,.y by permuting independent actions
(and adding independent actions)

» (A3) and (A4) ensure that these two runs are stutter equivalent

» POR is effective for loosely coupled multi-threaded systems

Joost-Pieter Katoen Lecture#17 51/52 Joost-Pieter Katoen Lecture#17 52/52

	Motivation
	Action Independence
	Ample Sets
	Correctness and Complexity
	Summary

