
Model Checking
Lecture #17: Partial-Order Reduction

[Baier & Katoen, Chapter 8]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#17 1/52

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 2/52

Motivation

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 3/52

Motivation

Motivation

▶ Interleaving semantics
▶ independent concurrent actions are interleaved
▶ a run is defined by a totally ordered sequence of states

▶ Modelling concurrency by interleaving
▶ may enforce an order of actions that has no real “meaning”
▶ state space size = product of number of states of threads
▶ this is a major cause of the state-space explosion problem

▶ Partial-order reduction
▶ groups runs for which the order of “independent” actions is irrelevant
▶ considers a single representative run for equivalent runs

Joost-Pieter Katoen Lecture#17 4/52

Motivation

Idea of Partial-Order Reduction

Joost-Pieter Katoen Lecture#17 5/52

Motivation

Inventors of Partial-Order Reduction

Patrice Godefroid (USA) Pierre Wolper (Belgium)

Antti Valmari (Finland) Doron Peled (Israel)

Joost-Pieter Katoen Lecture#17 6/52

Motivation

Outline of Ample-Set POR

▶ Given: a syntactic description of transition system TS

▶ Aim: On-the-fly construction of “reduced” transition system TSred
▶ for state s only consider outgoing actions ample(s) ⊆ Act(s)

where Act(s) = {α ∈ Act ∣ ∃s ′ ∈ S. s α−−→ s ′ }, the enabled actions in s
▶ expand only α-successors with α ∈ ample(s)

▶ Key issue: which actions to choose from Act(s)?

▶ Requirements:
▶ such that TSred ≡sttrace TS, hence TSred and TS are LTL\◯ -equivalent
▶ TSred is (much) smaller than TS
▶ TSred can be obtained efficiently

Joost-Pieter Katoen Lecture#17 7/52

Motivation

Stutter Equivalence
Definition: stutter step
Transition s → s ′ in transition system TS is a stutter step if L(s) = L(s ′).

Definition: stutter equivalence
Paths π1 and π2 are stutter equivalent, denoted π1 ≡sttrace π2 whenever

trace(π1) and trace(π2) are both of the form A0
+A1

+A2
+
. . .

for Ai ⊆ AP.

For positive integers ni and mi :

trace(π1) = A0 . . .A0ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
n0 times

A1 . . .A1ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
n1 times

A2 . . .A2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
n2 times

. . .

trace(π2) = A0 . . .A0ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
m0 times

A1 . . .A1ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
m1 times

A2 . . .A2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
m2 times

. . .

Joost-Pieter Katoen Lecture#17 8/52

Motivation

Stutter Trace Equivalence

Definition: stutter trace equivalence
Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent:

TS1 ≡sttrace TS2 if and only if TS1 ⊴ TS2 and TS2 ⊴ TS1

where the stutter trace inclusion relation ⊴ is defined by:

TS1 ⊴TS2 iff ∀σ1 ∈ Traces(TS1) (∃σ2 ∈ Traces(TS2). σ1 ≡sttrace σ2)

Trace-equivalent transition systems are stutter trace-equivalent,
but not the converse.

Joost-Pieter Katoen Lecture#17 9/52

Motivation

Idea of Ample Sets

Transition relation ⇒ of reduced transition system TSred defined by:

s α−−→ s ′ and α ∈ ample(s)
s

α
⇒ s ′

The actions outside of ample(s) are pruned.

Joost-Pieter Katoen Lecture#17 10/52

Motivation

Example: Booking System

Joost-Pieter Katoen Lecture#17 11/52

Motivation

Example: Booking System

Joost-Pieter Katoen Lecture#17 12/52

Motivation

Example: Booking System

Joost-Pieter Katoen Lecture#17 13/52

Motivation

Example: Booking System

Joost-Pieter Katoen Lecture#17 14/52

Motivation

Example: Booking System

Proposition = “printer is in control state 1”.
Joost-Pieter Katoen Lecture#17 15/52

Motivation

Example: Booking System

TSred ≡sttrace TS, hence TSred ⊧ ϕ implies TS ⊧ ϕ
for ϕ ∈ LTL\◯ , e.g., ϕ = □◇ “printer is in control state 1”

Joost-Pieter Katoen Lecture#17 16/52

Action Independence

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 17/52

Action Independence

Action Determinism

Definition: action deterministic
Transition system TS is action deterministic whenever for any state s in
TS and action α, it holds s α−−→ u and s α−−→ t implies u = t.

Every transition system can be made action deterministic by renaming
actions.

Assumption: from now on, transition systems are action deterministic.

Let α(s) denote the unique α-successor of s, i.e., s α−−→ α(s).

Joost-Pieter Katoen Lecture#17 18/52

Action Independence

Action Independence
Definition: action independence
Let TS be an action-deterministic transition system with action-set Act.
Actions α ∈ Act and β ∈ Act are independent in TS if for all states s with
α,β ∈ Act(s) the following holds:

β ∈ Act(α(s)) and α ∈ Act(β(s)) and β(α(s)) = α(β(s)).

Joost-Pieter Katoen Lecture#17 19/52

Action Independence

Example: Semaphore-Based Mutual Exclusion

Joost-Pieter Katoen Lecture#17 20/52

Action Independence

Example: Semaphore-Based Mutual Exclusion

Joost-Pieter Katoen Lecture#17 21/52

Action Independence

Example: Shared Variables

Joost-Pieter Katoen Lecture#17 22/52

Action Independence

Example: Shared Variables

Joost-Pieter Katoen Lecture#17 23/52

Action Independence

Example: Synchronised Threads

Joost-Pieter Katoen Lecture#17 24/52

Action Independence

Permuting Independent Actions

Let TS be action-deterministic, s a state in TS and:

s = s0 β1−−−→ s1 β2−−−→ . . . βn−1−−−−−→ sn−1
βn−−−→ sn

be a finite run in TS from s with action sequence β1 . . . βn.
Then, for α ∈ Act(s) independent of {β1, . . . ,βn }: α ∈ Act(si) and

s = s0 α−−→ α(s0) β1−−−→ α(s1) β2−−−→ . . . βn−1−−−−−→ α(sn−1) βn−−−→ α(sn)

is a run in TS from s with action sequence αβ1 . . . βn

Joost-Pieter Katoen Lecture#17 25/52

Action Independence

Pictorial Proof Sketch

Joost-Pieter Katoen Lecture#17 26/52

Action Independence

Stutter Actions

▶ If no further assumptions are made, the traces of the runs:

ρ = s0 β1−−−→ s1 β2−−−→ . . . βn−−−−−→ sn
α−−→ t and

ρ
′
= s0 α−−→ t0 β1−−−→ . . . βn−1−−−−−→ tn−1

βn−−−→ t

will be distinct

▶ If α does not affect the state-labelling (= “invisible”): ρ ≡sttrace ρ
′.

Definition: stutter action
Action α ∈ Act is a stutter action if for each s α−−→ s ′ in TS: L(s) = L(s ′).
Equivalently: α is a stutter action if all transitions s α−−→ s ′ are stutter steps.

Joost-Pieter Katoen Lecture#17 27/52

Action Independence

Permuting Independent Stutter Actions

Let TS be action-deterministic, s a state in TS and:
▶ % a finite run from s with action sequence β1 . . . βn α

▶ %
′ a finite run from s with action sequence αβ1 . . . βn

Then:
if α is a stutter action independent of {β1, . . . ,βn }, then % ≡sttrace %

′.

Joost-Pieter Katoen Lecture#17 28/52

Action Independence

Adding Independent Stutter Actions

Let TS be action-deterministic, s a state in TS and:
▶ ρ an infinite run from s with action sequence β1 β2 . . .
▶ ρ

′ an infinite run from s with action sequence αβ1 β2 . . .

Then:
if α is a stutter action independent of {β1,β2, . . . }, then ρ ≡sttrace ρ

′.

Joost-Pieter Katoen Lecture#17 29/52

Ample Sets

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 30/52

Ample Sets

The Ample-Set Approach

▶ Partial-order reduction for LTL formulas using ample sets
▶ on state-space generation select ample(s) ⊆ Act(s)
▶ such that ∣ample(s)∣ << ∣Act(s)∣

▶ Reduced system TSred = (S ′,Act, ⇒ , I,AP, L′) where:
▶ S ′ = the set of states reachable from some s0 ∈ I under ⇒
▶ ⇒ is the smallest relation defined by:

s α−−→ s ′ ∧ α ∈ ample(s)
s

α
⇒ s ′

▶ L′(s) = L(s) for any s ∈ S ′

▶ Constraints: correctness (≡sttrace), effectiveness and efficiency

Joost-Pieter Katoen Lecture#17 31/52

Ample Sets

Which Actions to Put in ample(s)?
(A1) Non-emptiness condition

Select in any state in TSred at least one action.

(A2) Dependency condition
For any finite run in TS: an action depending on ample(s) can only
occur after some action in ample(s) has occurred.

(A3) Stutter condition
If an enabled action in s is not selected, then all selected actions are
stutter actions.

(A4) Cycle condition
Any action in Act(si) with si on a cycle in TSred must be selected in
some sj on that cycle.

(A1) through (A3) apply to states in S ′; (A4) to cycles in TSred .

Joost-Pieter Katoen Lecture#17 32/52

Ample Sets

Example

Joost-Pieter Katoen Lecture#17 33/52

Ample Sets

Naive Dependency Condition (A2’)
For any s ∈ S ′ with ample(s) ≠ Act(s):
α ∈ ample(s) is independent of Act(s) \ ample(s).
This is incorrect. (A2’) allows the following reduction:

TS /⊧ □¬a but TSred ⊧ □¬a, so TS /≡sttrace TSred

Joost-Pieter Katoen Lecture#17 34/52

Ample Sets

Dependency Condition (A2)

Dependency Condition (A2)

Let s β1−−−→ s1 β2−−−→ . . . βn−−−→ sn
α−−→ t be a finite run in TS such that α depends

on ample(s).
Then: βi ∈ ample(s) for some 0 < i ≤ n.

▶ In every (!) finite run of TS, an action dependent on ample(s) cannot
occur before some action from ample(s) occurs first

▶ (A2) ensures that for any state s with ample(s) ⊂ Act(s), any
α ∈ ample(s) is independent of Act(s) \ ample(s)

Joost-Pieter Katoen Lecture#17 35/52

Ample Sets

Example

run s0 β−−→ s1 γ−−→ s4 violates (A2) as γ depends on {α } = ample(s0)

Joost-Pieter Katoen Lecture#17 36/52

Ample Sets

Properties

For any α ∈ ample(s) and s ∈ Reach(TS):

if ample(s) satisfies (A2), then α is independent of Act(s) \ ample(s).

For finite run s = s0 β1−−−→ . . . βn−−−→ sn in TS:

if ample(s) satisfies (A2) and {β1, . . . ,βn } ∩ ample(s) = ∅, then:
α is independent of {β1, . . . ,βn } and α ∈ Act(si) for 0 ≤ i ≤ n.

Joost-Pieter Katoen Lecture#17 37/52

Ample Sets

Ample Set Conditions So Far

(A1) Nonemptiness condition
∅ /= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s β1−−−→ . . . βn−−−→ sn
α−−→ t be a finite run in TS such that α depends

on ample(s). Then: βi ∈ ample(s) for some 0 < i ≤ n.

(A3) Stutter condition
If ample(s) /= Act(s) then any α ∈ ample(s) is a stutter action.

Joost-Pieter Katoen Lecture#17 38/52

Ample Sets

First Consequence of (A1)–(A3)

Let % be a finite run in Reach(TS) of the form

% = s β1−−−→ s1 β2−−−→ . . . βn−−−→ sn
α−−→ t

where βi ∉ ample(s), for 0 < i ≤ n, and α ∈ ample(s).
If ample(s) satisfies (A1)–(A3), then there exists a run:

%
′
= s

α
⇒ t0 β1−−−→ t1 β2−−−→ . . . βn−1−−−−−→ tn−1

βn−−−→ t

such that % ≡sttrace %
′.

Joost-Pieter Katoen Lecture#17 39/52

Ample Sets

Example: Ample Sets for Semaphore

Joost-Pieter Katoen Lecture#17 40/52

Ample Sets

Second Consequence of (A1)–(A3)

Let ρ = s β1−−−→ s1 β2−−−→ s2 β3−−−→ . . . be an infinite run in Reach(TS) where
βi ∉ ample(s), for i > 0.
If ample(s) satisfies (A1)–(A3), then there exists a run:

ρ
′
= s

α
⇒ t0 β1−−−→ t1 β2−−−→ t2 β3−−−→ . . .

where α ∈ ample(s) and ρ ≡sttrace ρ
′.

Joost-Pieter Katoen Lecture#17 41/52

Ample Sets

Example: Ample Sets for Semaphore

Joost-Pieter Katoen Lecture#17 42/52

Ample Sets

The Necessity of Cycle Condition (A4)

Joost-Pieter Katoen Lecture#17 43/52

Ample Sets

Cycle Condition

(A4) Cycle condition

For any cycle s0 . . . sn in TSred and α ∈ Act(si), for some 0 < i ≤ n,
α ∈ ample(sj) for some j ∈ { 1, . . . , n }.

Every enabled action in some state on a cycle in TSred must be selected in
some state on that cycle.

Joost-Pieter Katoen Lecture#17 44/52

Ample Sets

Ample Set Conditions
(A1) Nonemptiness condition

∅ /= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s β1−−−→ . . . βn−−−→ sn
α−−→ t be a finite run in TS such that α depends

on ample(s). Then: βi ∈ ample(s) for some 0 < i ≤ n.

(A3) Stutter condition
If ample(s) /= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition
For any cycle s0 . . . sn in TSred and α ∈ Act(si), for some 0 < i ≤ n,
α ∈ ample(sj) for some j ∈ { 1, . . . , n }.

Joost-Pieter Katoen Lecture#17 45/52

Correctness and Complexity

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 46/52

Correctness and Complexity

Correctness

Let TS be a finite, action-deterministic transition system w/o terminal
states.
If all ample sets satisfy conditions (A1)–(A4), then TSred ≡sttrace TS.

Joost-Pieter Katoen Lecture#17 47/52

Correctness and Complexity

Complexity Considerations

Let TS be a finite, action-deterministic transition system w/o terminal
states.
The worst-case time complexity of checking (A2) in TS equals that of
checking TS′ ⊧ ∃◇ a for some a ∈ AP where size(TS′) ∈ O(size(TS)).

Proof.
Sketch on the black board.

(A1), (A3) and (A4) can relatively easy be incorporated in a DFS-based
state-space generation.

Joost-Pieter Katoen Lecture#17 48/52

Correctness and Complexity

Some Experimental Results
[Clarke, Grumberg, Minea, Peled, 1999]

Algorithm TS TSred

states transition time states transitions time

sieve 10,878 35,594 1.68 157 157 0.08
data transfer 251,049 648,467 32.2 16,459 17,603 1.47
protocol
snoopy 164,258 546,805 33.6 29,796 44,145 3.58
(cache coherence)
file transfer 514,188 1,138,750 123.4 125,595 191,466 18.6
protocol

partial-order reduction works good for
loosely-synchronised multi-threaded systems

Joost-Pieter Katoen Lecture#17 49/52

Summary

Overview

1 Motivation

2 Action Independence

3 Ample Sets

4 Correctness and Complexity

5 Summary

Joost-Pieter Katoen Lecture#17 50/52

Summary

Summary
▶ POR ignores several interleavings of independent actions

in an on-the-fly-manner; i.e., during state-space generation

▶ The ample set method relies on choosing ample(s) ⊆ Act(s) in state s
actions not in ample(s) are pruned

▶ (A1) non-emptiness, (A2) dependency, (A3) stutter and (A4) cycle

▶ Conditions (A1) and (A2) ensure that any run in TS can be turned
into an equivalent run in TSred by permuting independent actions
(and adding independent actions)

▶ (A3) and (A4) ensure that these two runs are stutter equivalent

▶ POR is effective for loosely coupled multi-threaded systems
Joost-Pieter Katoen Lecture#17 51/52

Summary

Next Lecture

Friday January 10, 14:30

Joost-Pieter Katoen Lecture#17 52/52

	Motivation
	Action Independence
	Ample Sets
	Correctness and Complexity
	Summary

