Model Checking Lecture #17: Partial-Order Reduction [Baier & Katoen, Chapter 8] Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Motivation

Joost-Pieter Katoen	Lecture#17	1/52
Overview	Motivation	
1 Motivation		
2 Action Independence		
3 Ample Sets		
Correctness and Complexity		
5 Summary		

Motivation

Joost-Pieter Katoen

Interleaving semantics

- independent concurrent actions are interleaved
- ▶ a run is defined by a totally ordered sequence of states

Modelling concurrency by interleaving

- may enforce an order of actions that has no real "meaning"
- state space size = product of number of states of threads
- this is a major cause of the state-space explosion problem

► Partial-order reduction

- groups runs for which the order of "independent" actions is irrelevant
- considers a single representative run for equivalent runs

Motivation

Idea of Partial-Order Reduction

Inventors of Partial-Order Reduction

Patrice Godefroid (USA)

Pierre Wolper (Belgium)

Antti Valmari (Finland)

Doron Peled (Israel)

Joost-Pieter Katoen	Lecture#17	5/52
	Motivation	

Outline of Ample-Set POR

- **Given**: a syntactic description of transition system *TS*
- Aim: On-the-fly construction of "reduced" transition system TS_{red}
 - ▶ for state *s* only consider outgoing actions $ample(s) \subseteq Act(s)$ where $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. s \xrightarrow{\alpha} s' \}$, the enabled actions in *s*
 - expand only α -successors with $\alpha \in ample(s)$
- Key issue: which actions to choose from *Act(s)*?
- Requirements:
 - ▶ such that $TS_{red} \equiv_{sttrace} TS$, hence TS_{red} and TS are $LTL_{\setminus O}$ -equivalent
 - TS_{red} is (much) smaller than TS
 - \blacktriangleright *TS_{red}* can be obtained efficiently

Motivation

Lecture#17

Stutter Equivalence

Definition: stutter step

Transition $s \rightarrow s'$ in transition system *TS* is a stutter step if L(s) = L(s').

Definition: stutter equivalence

Paths π_1 and π_2 are stutter equivalent, denoted $\pi_1 \equiv_{sttrace} \pi_2$ whenever

trace(π_1) and *trace*(π_2) are both of the form $A_0^+A_1^+A_2^+\dots$

for $A_i \subseteq AP$.

Joost-Pieter Katoen

For positive integers n_i and m_i :

$$trace(\pi_1) = \underbrace{A_0 \dots A_0}_{n_0 \text{ times}} \underbrace{A_1 \dots A_1}_{n_1 \text{ times}} \underbrace{A_2 \dots A_2}_{n_2 \text{ times}} \dots$$
$$trace(\pi_2) = \underbrace{A_0 \dots A_0}_{m_0 \text{ times}} \underbrace{A_1 \dots A_1}_{m_1 \text{ times}} \underbrace{A_2 \dots A_2}_{m_2 \text{ times}} \dots$$

Lecture#17

7/52

Joost-Pieter Katoen

Stutter Trace Equivalence

Definition: stutter trace equivalence

Transition systems TS_i over AP, i=1, 2, are stutter-trace equivalent:

 $TS_1 \equiv_{sttrace} TS_2$ if and only if $TS_1 \triangleleft TS_2$ and $TS_2 \triangleleft TS_1$

Motivatior

where the stutter trace inclusion relation \trianglelefteq is defined by:

 $TS_1 \leq TS_2$ iff $\forall \sigma_1 \in Traces(TS_1) (\exists \sigma_2 \in Traces(TS_2), \sigma_1 \equiv_{sttrace} \sigma_2)$

Trace-equivalent transition systems are stutter trace-equivalent, but not the converse.

Lecture#17

Idea of Ample Sets

Motivation

Transition relation \implies of reduced transition system TS_{red} defined by:

 $\underline{s \longrightarrow s'}$ and $\alpha \in ample(s)$ $s \stackrel{\alpha}{\Longrightarrow} s'$

The actions outside of *ample*(*s*) are pruned.

Example: Booking System σ

Motivation

Motivation

Example: Booking System

Motivation

Motivation

Example: Booking System

 $TS_{red} \equiv_{sttrace} TS, \text{ hence } TS_{red} \models \varphi \text{ implies } TS \models \varphi$ for $\varphi \in LTL_{\setminus O}$, e.g., $\varphi = \Box \diamondsuit$ "printer is in control state 1"

Overview	
1 Motivation	
2 Action Independence	
3 Ample Sets	
Orrectness and Complexity	
5 Summary	

Action Independence

Lecture#17

Action Independence

oost-Pieter Katoen

Definition: action independence

Let TS be an action-deterministic transition system with action-set Act.

Actions $\alpha \in Act$ and $\beta \in Act$ are independent in *TS* if for all states *s* with $\alpha, \beta \in Act(s)$ the following holds:

$$\beta \in Act(\alpha(s))$$
 and $\alpha \in Act(\beta(s))$ and $\beta(\alpha(s)) = \alpha(\beta(s))$.

Lecture#17

Action Determinism

Definition: action deterministic

Transition system *TS* is action deterministic whenever for any state *s* in *TS* and action α , it holds $s \xrightarrow{\alpha} u$ and $s \xrightarrow{\alpha} t$ implies u = t.

Every transition system can be made action deterministic by renaming actions.

Assumption: from now on, transition systems are action deterministic.

Let $\alpha(s)$ denote the unique α -successor of s, i.e., $s \xrightarrow{\alpha} \alpha(s)$.

Joost-Pieter Katoen

Lecture#17

Action Independence

Example: Semaphore-Based Mutual Exclusion

independent actions:

request₁, request₂ enter₁, request₂ release₁, request₂ request₁, enter₂ request₁, release₂ request1 is independent
from the action-set
{request2, enter2, release2}

Lecture#17

Action Independence

Example: Semaphore-Based Mutual Exclusion

Example: Shared Variables

Permuting Independent Actions

Let TS be action-deterministic, s a state in TS and:

 $s = s_0 \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} s_{n-1} \xrightarrow{\beta_n} s_n$

Action Independence

be a finite run in *TS* from *s* with action sequence $\beta_1 \dots \beta_n$. Then, for $\alpha \in Act(s)$ independent of $\{\beta_1, \dots, \beta_n\}$: $\alpha \in Act(s_i)$ and $s = s_0 \xrightarrow{\alpha} \alpha(s_0) \xrightarrow{\beta_1} \alpha(s_1) \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \alpha(s_{n-1}) \xrightarrow{\beta_n} \alpha(s_n)$

is a run in *TS* from *s* with action sequence $\alpha \beta_1 \dots \beta_n$

Lecture#17	25/52
Action Independence	

▶ If no further assumptions are made, the traces of the runs:

$\rho = s_0 \xrightarrow{\beta_1}$	s_1	$\xrightarrow{\beta_2}$	 $\xrightarrow{\beta_n}$	s _n	$\xrightarrow{\alpha}$	t and
$\rho' = s_0 \xrightarrow{\alpha}$	t ₀	$\xrightarrow{\beta_1}$	 β_{n-1}	t_{n-1}	β_n	t

will be distinct

• If α does not affect the state-labelling (= "invisible"): $\rho \equiv_{sttrace} \rho'$.

Definition: stutter action

Action $\alpha \in Act$ is a stutter action if for each $s \xrightarrow{\alpha} s'$ in *TS*: L(s) = L(s'). Equivalently: α is a stutter action if all transitions $s \xrightarrow{\alpha} s'$ are stutter steps.

Permuting Independent Stutter Actions

- Let TS be action-deterministic, s a state in TS and:
 - $\triangleright \rho$ a finite run from *s* with action sequence $\beta_1 \dots \beta_n \alpha$
 - $\triangleright \rho'$ a finite run from *s* with action sequence $\alpha \beta_1 \dots \beta_n$

Then:

if α is a stutter action independent of $\{\beta_1, \ldots, \beta_n\}$, then $\varrho \equiv_{sttrace} \varrho'$.

Action Independence

Adding Independent Stutter Actions

Let TS be action-deterministic, s a state in TS and:

- $\triangleright \rho$ an infinite run from s with action sequence $\beta_1 \beta_2 \dots$
- $\triangleright \rho'$ an infinite run from s with action sequence $\alpha \beta_1 \beta_2 \dots$

Then:

Joost-Pieter Katoen

if α is a stutter action independent of $\{\beta_1, \beta_2, ...\}$, then $\rho \equiv_{sttrace} \rho'$.

Overview

Motivation
 Action Independence
 Ample Sets
 Correctness and Complexity
 Summary

Ample Sets

Ample Sets The Ample-Set Approach

Partial-order reduction for LTL formulas using ample sets

- ▶ on state-space generation select $ample(s) \subseteq Act(s)$
- such that |ample(s)| ≪ |Act(s)|
- **Reduced** system $TS_{red} = (S', Act, \implies, I, AP, L')$ where:
 - ▶ S' = the set of states reachable from some $s_0 \in I$ under \implies
 - $\blacktriangleright \implies$ is the smallest relation defined by:

$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \land \alpha \in ample(s)}{s \stackrel{\alpha}{\Longrightarrow} s'}$$

- \blacktriangleright L'(s) = L(s) for any $s \in S'$
- ▶ Constraints: correctness ($\equiv_{sttrace}$), effectiveness and efficiency

Ample Sets

Lecture#17

Which Actions to Put in *ample*(*s*)?

(A1) Non-emptiness condition Select in any state in TS_{red} at least one action.

(A2) Dependency condition

For any finite run in TS: an action depending on ample(s) can only occur after some action in ample(s) has occurred.

(A3) Stutter condition

If an enabled action in \boldsymbol{s} is not selected, then all selected actions are stutter actions.

(A4) Cycle condition

Any action in $Act(s_i)$ with s_i on a cycle in TS_{red} must be selected in some s_j on that cycle.

Lecture#17

(A1) through (A3) apply to states in S'; (A4) to cycles in TS_{red} .

29/52

Joost-Pieter Katoen

30/5

Example

Naive Dependency Condition (A2')

For any $s \in S'$ with $ample(s) \neq Act(s)$: $\alpha \in ample(s)$ is independent of $Act(s) \setminus ample(s)$.

This is incorrect. (A2') allows the following reduction:

 $TS \notin \Box \neg a$ but $TS_{red} \models \Box \neg a$, so $TS \notin_{sttrace} TS_{red}$

Then: $\beta_i \in ample(s)$ for some $0 < i \le n$.

- In every (!) finite run of TS, an action dependent on ample(s) cannot occur before some action from ample(s) occurs first
- (A2) ensures that for any state s with ample(s) ⊂ Act(s), any α ∈ ample(s) is independent of Act(s) \ ample(s)

Joost-Pieter Katoen Lecture#17 34/52
Ample Sets

Example

run $s_0 \xrightarrow{\beta} s_1 \xrightarrow{\gamma} s_4$ violates (A2) as γ depends on { α } = *ample*(s_0)

Lecture#17

Properties

For any $\alpha \in ample(s)$ and $s \in Reach(TS)$:

if *ample*(s) satisfies (A2), then α is independent of *Act*(s) \ *ample*(s).

For finite run $s = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n$ in *TS*:

if ample(s) satisfies (A2) and $\{\beta_1, \ldots, \beta_n\} \cap ample(s) = \emptyset$, then: α is independent of $\{\beta_1, \ldots, \beta_n\}$ and $\alpha \in Act(s_i)$ for $0 \le i \le n$.

Ample Set Conditions So Far

 $({\sf A1}) \ \ \textbf{Nonemptiness condition}$

 $\emptyset \neq ample(s) \subseteq Act(s)$

(A2) **Dependency condition**

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite run in *TS* such that α depends on *ample*(*s*). Then: $\beta_i \in ample(s)$ for some $0 < i \le n$.

(A3) Stutter condition

If $ample(s) \neq Act(s)$ then any $\alpha \in ample(s)$ is a stutter action.

Joost-Pieter Katoen Lecture#17 37/52	Joost-Pieter Katoen Lecture#17 38/52
Ample Sets	Ample Sets
First Consequence of (A1)–(A3)	Example: Ample Sets for Semaphore
Let ϱ be a finite run in $Reach(TS)$ of the form $\varrho = s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ where $\beta_i \notin ample(s)$, for $0 < i \le n$, and $\alpha \in ample(s)$. If $ample(s)$ satisfies (A1)–(A3), then there exists a run: $\varrho' = s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} t_{n-1} \xrightarrow{\beta_n} t$ such that $\varrho \equiv_{sttrace} \varrho'$.	$AP = \{c_1, c_2\}$ $ample(n_1, n_2) = \{request_1\}$ $ample(w_1, n_2) = \{request_2\}$ $ample(w_1, w_2) = \{request_2\}$ \dots $n_1 n_2 \frac{request_2}{request_2} n_1 w_2 \frac{enter_2}{enter_2} n_1 c_2 \frac{release_2}{request_1} n_1 n_2 \frac{request_1}{release_2} w_1 n_2$
Such that ϱ -sttrace ϱ .	$n_1 n_2 \xrightarrow{\text{request}_2} n_1 w_2 \xrightarrow{\text{request}_1} w_1 w_2 \xrightarrow{\text{enter}_2} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2$ $n_1 n_2 \xrightarrow{\text{request}_1} w_1 n_2 \xrightarrow{\text{request}_2} w_1 w_2 \xrightarrow{\text{enter}_2} w_1 c_2 \xrightarrow{\text{release}_2} w_1 n_2$

Second Consequence of (A1)–(A3)

Let $\rho = s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} s_2 \xrightarrow{\beta_3} \dots$ be an infinite run in *Reach(TS)* where $\beta_i \notin ample(s)$, for i > 0.

If ample(s) satisfies (A1)–(A3), then there exists a run:

$$\rho' = s \xrightarrow{\alpha} t_0 \xrightarrow{\beta_1} t_1 \xrightarrow{\beta_2} t_2 \xrightarrow{\beta_3} \dots$$

where $\alpha \in ample(s)$ and $\rho \equiv_{sttrace} \rho'$.

Joost-Pieter Katoen

Example: Ample Sets for Semaphore

Ample Sets

Cycle Condition

(A4) Cycle condition

For any cycle $s_0 \ldots s_n$ in TS_{red} and $\alpha \in Act(s_i)$, for some $0 < i \le n$, $\alpha \in ample(s_i)$ for some $j \in \{1, \ldots, n\}$.

Every enabled action in some state on a cycle in TS_{red} must be selected in some state on that cycle.

Ample Set Conditions

(A1) Nonemptiness condition

 $\emptyset \neq ample(s) \subseteq Act(s)$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite run in *TS* such that α depends on *ample*(*s*). Then: $\beta_i \in ample(s)$ for some $0 < i \le n$.

$(\mathsf{A3}) \ \textbf{Stutter condition}$

If $ample(s) \neq Act(s)$ then any $\alpha \in ample(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 \ldots s_n$ in TS_{red} and $\alpha \in Act(s_i)$, for some $0 < i \le n$, $\alpha \in ample(s_i)$ for some $j \in \{1, \ldots, n\}$.

Joost-Pieter Katoen

Lecture#17

Correctness and Complexity

Correctness

Let TS be a finite, action-deterministic transition system w/o terminal states.

If all ample sets satisfy conditions (A1)–(A4), then $TS_{red} \equiv_{sttrace} TS$.

Overview

Correctness and Complexity

Complexity Considerations

Let TS be a finite, action-deterministic transition system w/o terminal states.

The worst-case time complexity of checking (A2) in *TS* equals that of checking $TS' \models \exists \diamondsuit a$ for some $a \in AP$ where $size(TS') \in O(size(TS))$.

Proof.

Sketch on the black board.

(A1), (A3) and (A4) can relatively easy be incorporated in a DFS-based state-space generation.

45/52

Correctness and Complexity

Some Experimental Results

[Clarke, Grumberg, Minea, Peled, 1999]

Algorithm	TS			TS _{red}		
	states	transition	time	states	transitions	time
sieve	10,878	35,594	1.68	157	157	0.08
data transfer protocol	251,049	648,467	32.2	16,459	17,603	1.47
snoopy (cache coherence)	164,258	546,805	33.6	29,796	44,145	3.58
file transfer protocol	514,188	1,138,750	123.4	125,595	191,466	18.6

partial-order reduction works good for loosely-synchronised multi-threaded systems

Joost-Pieter Katoen	Lecture#17	49/52
	Summary	
Summary		

- POR ignores several interleavings of independent actions in an on-the-fly-manner; i.e., during state-space generation
- The ample set method relies on choosing ample(s) ⊆ Act(s) in state s actions not in ample(s) are pruned
- ▶ (A1) non-emptiness, (A2) dependency, (A3) stutter and (A4) cycle
- Conditions (A1) and (A2) ensure that any run in TS can be turned into an equivalent run in TS_{red} by permuting independent actions (and adding independent actions)
- ▶ (A3) and (A4) ensure that these two runs are stutter equivalent
- ▶ POR is effective for loosely coupled multi-threaded systems

Overview

Summary

Next Lecture

Friday January 10, 14:30