Model Checking
Lecture #15: Bisimulation Quotienting
[Baier & Katoen, Chapter 7.2–7.6]

Joost-Pieter Katoen
Software Modeling and Verification Group
Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

1. Bisimulation Equivalence
2. Quotient Transition System
3. Bisimulation Quotienting
4. Simulation Pre-Order
5. Checking Simulation Pre-order

State Spaces Can Be Gigantic

State Spaces Can Be Gigantic

Treating Gigantic Models?

- Use compact data structures
- Make models smaller prior to (or: during) model checking
- Try to make them even smaller
- If possible, try to obtain the smallest possible model
- While preserving the properties of interest
- Do this all algorithmically and possibly fast
Abstraction

Reduce a huge TS to a small \overline{TS} prior or during model checking.

Relevant issues:

- What is the formal relationship between TS and \overline{TS}?
- Can \overline{TS} be obtained algorithmically and efficiently?
- Which logical fragment (of LTL, CTL, CTL*) is preserved?
- And in what sense?
 - "strong" preservation: positive and negative results carry over
 - "weak" preservation: only positive results carry over
 - "match": logic equivalence coincides with formal relation

Bisimulation Equivalence

Definition: bisimulation relation

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i=1,2$, be transition systems. The symmetric relation $R \subseteq (S_1 \times S_2 \cup S_2 \times S_1)$ is a bisimulation for (TS_1, TS_2) whenever:

1. for all initial states $s_1 \in I_1$, $(s_1, s_2) \in R$ for some $s_2 \in I_2$
2. for all states $(s_1, s_2) \in R$ it holds:
 2.1 $L_1(s_1) = L_2(s_2)$, and
 2.2 $s'_1 \in Pos(s_1)$ implies $(s'_1, s'_2) \in R$ for some $s'_2 \in Pos(s_2)$.

Overview

- Bisimulation Equivalence
- Quotient Transition System
- Bisimulation Quotienting
- Simulation Pre-Order
- Checking Simulation Pre-order
Bisimulation Equivalence

Visually

\[s_1 \rightarrow s'_1 \]
\[R \quad \text{can be completed to} \quad R \]
\[s_2 \rightarrow s'_2 \]

and by symmetry

\[s_1 \rightarrow s'_1 \]
\[R \quad \text{can be completed to} \quad R \]
\[s_2 \rightarrow s'_2 \]

Definition: bisimulation equivalence

\[TS_1 \text{ and } TS_2 \text{ are bisimulation equivalent (short: bisimilar), denoted } \sim \text{ if there exists a bisimulation for } (TS_1, TS_2). \text{ That is:} \]

\[\sim = \bigcup \{ R \mid R \text{ is a bisimulation on } (TS_1, TS_2) \}. \]

Bisimilarity (\(\sim \)) is an equivalence relation.

Overview

1. Bisimulation Equivalence
2. Quotient Transition System
3. Bisimulation Quotienting
4. Simulation Pre-Order
5. Checking Simulation Pre-order

Quotient Transition System

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation \(R \subseteq S \times S \) is a bisimulation on \(TS \) (with state space \(S \)) if for any \((s_1, s_2) \in R \):

1. \(L(s_1) = L(s_2) \)
2. \(s'_1 \in \text{Post}(s_1) \text{ then } (s'_1, s'_2) \in R \text{ for some } s'_2 \in \text{Post}(s_2). \)

The states \(s_1 \) and \(s_2 \) are bisimilar, denoted \(s_1 \sim_{TS} s_2 \), if \((s_1, s_2) \in R \) for some bisimulation \(R \) for \(TS \).

\[s_1 \sim_{TS} s_2 \text{ if and only if } TS_{s_1} \sim TS_{s_2} \text{ where } TS_{s_i} \text{ denotes the transition system } TS \text{ in which } s_i \text{ is the only initial state.} \]
Coarsest Bisimulation

The relation \sim_{TS} is a bisimulation, an equivalence, and the coarsest bisimulation for TS.

Proof.

Property

For every transition system TS it holds: $TS \sim TS/\sim_{TS}$.

Proof.

Coarsest Bisimulation

The relation \sim_{TS} is a bisimulation, an equivalence, and the coarsest bisimulation for TS.

Proof.

Quotient Transition System

Definition: quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS, let the quotient transition system

$$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L'),$$

the quotient of TS under \sim_{TS}

where

- $S' = S/\sim_{TS} = \{[s]_\sim \mid s \in S\}$ with $[s]_\sim = \{s' \in S \mid s \sim_{TS} s'\}$
- \rightarrow' is defined by:
 $$s \xrightarrow{\alpha} s' \iff [s]_\sim \xrightarrow{\alpha} [s']_\sim$$
- $I' = \{[s]_\sim \mid s \in I\}$
- $L'([s]_\sim) = L(s)$
(Simplified) Lamport’s Bakery Algorithm

Thread 1:

```
while true {
  ....
  n1 : x1 := x2 + 1;
  w1 : wait until x1 = 0 || x1 < x2 {
    c1 : .... critical section ....
    x1 := 0;
  }
  ....
}
```

Thread 2:

```
while true {
  ....
  n2 : x2 := x1 + 1;
  w2 : wait until x1 = 0 || x2 < x1 {
    c2 : .... critical section ....
    x2 := 0;
  }
  ....
}
```

This algorithm can be applied to arbitrarily many processes.

Example Bakery Algorithm Run

<table>
<thead>
<tr>
<th>thread P_1</th>
<th>thread P_2</th>
<th>x_1</th>
<th>x_2</th>
<th>effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>n_2</td>
<td>0</td>
<td>0</td>
<td>P_1 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>1</td>
<td>0</td>
<td>P_2 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>1</td>
<td>2</td>
<td>P_1 enters the critical section</td>
</tr>
<tr>
<td>c_1</td>
<td>w_2</td>
<td>1</td>
<td>2</td>
<td>P_1 leaves the critical section</td>
</tr>
<tr>
<td>n_1</td>
<td>w_2</td>
<td>0</td>
<td>2</td>
<td>P_1 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>3</td>
<td>2</td>
<td>P_2 enters the critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>c_2</td>
<td>3</td>
<td>2</td>
<td>P_2 leaves the critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>n_2</td>
<td>3</td>
<td>0</td>
<td>P_2 requests access to critical section</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>3</td>
<td>4</td>
<td>P_2 enters the critical section</td>
</tr>
</tbody>
</table>

Counters may grow unboundedly large.

Bakery Algorithm Transition System

Infinite state space due to possible unbounded increase of counters.

Bisimulation Relation

Let function f map a reachable state of TS_{Bak} onto a state in TS_{Bak}^{abs}

Let $s = \langle \ell_1, \ell_2, x_1 = b_1, x_2 = b_2 \rangle \in TS_{Bak}$ with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$

Then:

$$f(s) = \begin{cases}
\langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\
\langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\
\langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\
\langle \ell_1, \ell_2, x_1 > 0, x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\
\langle \ell_1, \ell_2, x_1 > 0, x_2 > 0 \rangle & \text{if } b_2 > b_1 > 0
\end{cases}$$

It follows: $R = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$ for any subset of $AP = \{ \text{noncrit}_i, \text{wait}_i, \text{crit}_i \mid i = 1, 2 \}$.
Quotient Transition System

Quotient of Bakery Algorithm

\[TS_{\text{Bak}}^{\text{abs}} = TS_{\text{Bak}} / \sim \text{ for } AP = \{ \text{noncrit}, \text{wait}i, \text{crit}i \mid i = 1, 2 \} \]

Overview

1. Bisimulation Equivalence
2. Quotient Transition System
3. Bisimulation Quotienting
4. Simulation Pre-Order
5. Checking Simulation Pre-order

Partitions

- A partition \(\Pi = \{ B_1, \ldots, B_k \} \) of \(S \) satisfies:
 - \(B_i \) is non-empty; \(B_i \) is called a block
 - \(B_i \cap B_j = \emptyset \) for all \(i, j \) with \(i \neq j \)
 - \(B_1 \cup \ldots \cup B_k = S \)

- \(C \subseteq S \) is a super-block of partition \(\Pi \) of \(S \) if
 \[C = B_{i_1} \cup \ldots \cup B_{i_m} \text{ for } B_{i_j} \in \Pi \text{ for } 0 < j \leq m \]

- Partition \(\Pi \) (of \(S \)) is finer than partition \(\Pi' \) (of \(S \)) if:
 \[\forall B \in \Pi. \ (\exists B' \in \Pi'. B \subseteq B') \]

- each block of \(\Pi' \) equals the union of a set of blocks in \(\Pi \)

- \(\Pi \) is strictly finer than \(\Pi' \) if it is finer than \(\Pi' \) and \(\Pi \neq \Pi' \)

Partitions and Equivalences

- \(\mathcal{R} \) is an equivalence on \(S \) \(\Rightarrow \) \(S/\mathcal{R} \) is a partition of \(S \)

- Partition \(\Pi = \{ B_1, \ldots, B_k \} \) of \(S \) induces the equivalence relation
 \[\mathcal{R}_\Pi = \{ (s, t) \mid \exists B_i \in \Pi. s \in B_i \land t \in B_i \} \]
 where it holds: \(S/\mathcal{R}_\Pi = \Pi \).

There is a one-to-one relationship between partitions and equivalences.
Partition Refinement

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- Initially: Π_0 equals $\Pi_{AP} = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$
- Repeat until no change: $\Pi_{i+1} \coloneqq \text{Refine}(\Pi_i)$
 - loop invariant: Π_i is coarser than S/\sim and finer than $\{ S \}$
- Return Π_i
 - termination is ensured:
 $$S \times S \supseteq R_{\Pi_0} \supseteq R_{\Pi_1} \supseteq R_{\Pi_2} \supseteq \ldots \supseteq R_{\Pi_i} = \sim_{TS}$$
 - time complexity: maximally $|S|$ iterations needed

Refinement Operator

- Let: $\text{Refine}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}(B, C)$ for C a super-block of Π

 $\text{Refine}(B, C) = \{ B \cap \text{Pre}(C), \; B \setminus \text{Pre}(C) \} \setminus \{ \emptyset \}$

- Basic properties:
 - for Π finer than Π_{AP} and coarser than S/\sim:
 $\text{Refine}(\Pi, C)$ is finer than Π and $\text{Refine}(\Pi, C)$ is coarser than S/\sim
 - Π is strictly coarser than S/\sim if and only if there exists a splitter for Π

Theorem

S/\sim is the coarsest partition Π of S such that:
1. Π is finer than the initial partition Π_{AP}, and
2. for all $B, C \in \Pi$ it holds\footnote{In fact, this also holds for all $B \in \Pi$ and all super-blocks C of Π.}:
 $$B \cap \text{Pre}(C) = \emptyset \text{ or } B \subseteq \text{Pre}(C).$$

Proof. \square

Splitters

- Let Π be a partition of S and C a super-block of Π
- C is a splitter of Π if for some $B \in \Pi$:
 $$B \cap \text{Pre}(C) \neq \emptyset \quad \text{and} \quad B \setminus \text{Pre}(C) \neq \emptyset$$
- Block B is stable wrt. C if
 $$B \cap \text{Pre}(C) = \emptyset \quad \text{and} \quad B \setminus \text{Pre}(C) = \emptyset$$
- Π is stable w.r.t. C if every $B \in \Pi$ is stable wrt. C
Algorithm Skeleton

Input: finite transition system TS over AP with state space S
Output: bisimulation quotient space S/\sim

$\Pi := \Pi_{AP}$
\[\textbf{while} \text{ there exists a splitter for } \Pi \text{ do} \]
\[\text{choose a splitter } C' \text{ for } \Pi; \]
$\Pi := \text{Refine}(\Pi, C')$; (* Refine$(\Pi, C')$ is strictly finer than Π *)
\[\textbf{od} \]
return Π

Which Splitter to Take?

How to determine a splitter for partition Π_{i+1}?

1. Simple strategy:
 $O(|S| \cdot M)$
 use any block of Π_i as splitter candidate

2. Advanced strategy:
 $O(\log |S| \cdot M)$
 use only "smaller" blocks of Π_i as splitter candidates and apply "a ternary" refinement

Advanced Selection Strategy

- Not necessary to refine with respect to all blocks $C \in \Pi_{old}$

 ⇒ Consider only the "smaller" subblocks of a previous refinement

 - Step i: refine C' into $C_1 = C' \cap \text{Pre}(D)$ and $C_2 = C' \setminus \text{Pre}(D)$

 - Step $i+1$: use the smallest $C \in \{ C_1, C_2 \}$ as splitter
 - let C be such that $|C| \leq |C'|/2$, thus $|C| \leq |C' \setminus C|$
 - combine the refinement steps with respect to C and $C' \setminus C$
 - $\text{Refine}(\Pi, C, C' \setminus C) = \text{Refine}(\text{Refine}(\Pi, C), C' \setminus C)$ where $|C| \leq |C' \setminus C|$

 the decomposed blocks are stable with respect to C and $C' \setminus C$
The Ternary Refinement Operator

Let: \(\text{Refine}(\Pi, C, C' \setminus C) = \bigcup_{B \in \Pi} \text{Refine}(B, C, C' \setminus C) \)

where \(\text{Refine}(B, C, C' \setminus C) = \{ B_1, B_2, B_3 \} \setminus \{ \emptyset \} \) with:

- \(B_1 = B \cap \text{Pre}(C) \cap \text{Pre}(C' \setminus C) \) to both \(C \) and \(C \setminus C' \)
- \(B_2 = (B \cap \text{Pre}(C)) \setminus \text{Pre}(C' \setminus C) \) only to \(C \)
- \(B_3 = (B \cap \text{Pre}(C' \setminus C)) \setminus \text{Pre}(C) \) only to \(C' \setminus C \)

\(\Rightarrow \) blocks \(B_1, B_2, B_3 \) are stable with respect to \(C \) and \(C' \setminus C \)

\[\begin{array}{c}
\text{block } B \\
\end{array} \]

Complexity

The bisimulation quotient of finite transition system \(TS \) can be computed in \(O(N \cdot \log M) \) where \(N \) and \(M \) are the number of states and transitions in \(TS \) respectively.

Checking bisimilarity is PTIME-complete.

Proof.
Reduction from the direct circuit value problem. Outside the scope of this lecture.
Simulation Relation

Definition: simulation relation
Relation $R \subseteq S \times S$ is a simulation relation on TS if for any $(s_1, s_2) \in R$:
- $L(s_1) = L(s_2)$, and
- if $s_1' \in \text{Post}(s_1)$ then $(s_1', s_2') \in R$ for some $s_2' \in \text{Post}(s_2)$.

State s_2 simulates s_1, written $s_1 \preceq_{TS} s_2$ if $(s_1, s_2) \in R$ for some simulation relation R on TS.

$TS_1 \preceq \ TS_2$ iff $\forall s_1 \in I_1, \exists s_2 \in I_2. s_1 \preceq_{TS_1} s_2$.

\preceq_{TS} is a preorder and the coarsest simulation for TS.

Abstraction Function

Definition: abstraction function
$f : S \rightarrow \hat{S}$ is an abstraction function if $f(s) = f(s') \Rightarrow L(s) = L(s')$.

S are “concrete” states and \hat{S} are “abstract” states, mostly $|\hat{S}| < |S|$.

Abstraction functions are useful for:
- data abstraction: abstract from values of program or control variables
- $f : \text{concrete data domain} \rightarrow \text{abstract data domain}$
- predicate abstraction: use predicates over the program variables
- $f : \text{state} \rightarrow \text{valuations of the predicates}$
- localization reduction: program variables are visible or invisible
- $f : \text{all variables} \rightarrow \text{visible variables}$

Abstract Transition System

Definition: abstract transition system
For $TS = (S, \text{Act, } \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \hat{S}$ let:

$$TS_f = (\hat{S}, \text{Act, } \rightarrow_f, I_f, AP, L_f),$$

the abstraction of TS under f where

- \rightarrow_f is defined by: $s \xrightarrow{a} s'$ if $f(s) \xrightarrow{a} f(s')$.
- $I_f = \{ f(s) \mid s \in I \}$ and $L_f(f(s)) = L(s)$.

The relation $R = \{(s, f(s)) \mid s \in S \}$ is a simulation for (TS, TS_f).

Proof.
By checking all conditions of a simulation relation. Straightforward.

Visually

$\begin{align*}
\text{s}_1 & \rightarrow \text{s}_1' \\
R & \text{can be completed to} \ R & R \\
\text{s}_2 & \rightarrow \text{s}_2' \\
\text{but not necessarily:} & \\
\text{s}_1 & \rightarrow \text{s}_1' \\
\text{R} & \text{can be completed to} \ R & R \\
\text{s}_2 & \rightarrow \text{s}_2'
\end{align*}$
Simulation Pre-Order

Simulation Equivalence

Definition: simulation equivalence

Transition systems \(TS_1 \) and \(TS_2 \) are **simulation equivalent**, denoted \(TS_1 \sim TS_2 \) if \(TS_1 \preceq TS_2 \) and \(TS_2 \preceq TS_1 \).

1. Bisimilarity implies simulation equivalence; not the converse.
2. Simulation equivalence implies trace equivalence; not the converse.
3. For \(AP \)-deterministic\(^2 \) transition systems, simulation, bisimulation and trace equivalence coincide.

\(^2\) \(TS \) is \(AP \)-deterministic if all initial states are labelled differently, and this also applies to all direct successors of any state in \(TS \).

Logical Characterisation

- Negation of formulas is problematic as \(\preceq_{TS} \) is not symmetric.
- Let \(L \) be a fragment of CTL\(^*\) which is closed under negation.
- And assume \(L \) weakly matches \(\preceq_{TS} \), that is:

 \[s_1 \preceq_{TS} s_2 \iff \text{ for all state formulae } \Phi \text{ of } L: \ s_2 \models \Phi \implies s_1 \not\models \Phi. \]

- Let \(s_1 \preceq_{TS} s_2 \). Then, for any state formula \(\Phi \) of \(L \):

 \[s_1 \models \Phi \implies s_2 \not\models \Phi \implies s_2 \models \Phi. \]

- Hence, \(s_2 \preceq_{TS} s_1 \) which requires \(\preceq_{TS} \) to be symmetric. Contradiction.
Universal Fragment of CTL*

Definition: universal fragment of CTL*

\(\forall \text{CTL}^* \) state-formulas are formed according to:

\[\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi \]

where \(a \in \text{AP} \) and \(\varphi \) is a path-formula. \(\forall \text{CTL}^* \) path-formulas are formed according to:

\[\varphi ::= \Phi \mid \Box \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 U \varphi_2 \mid \varphi_1 R \varphi_2 \]

where \(\Phi \) is a state-formula, and \(\varphi, \varphi_1 \) and \(\varphi_2 \) are path-formulas.

\(\forall \text{CTL} \) does not contain (general) negation and no existential path quantifier.

Simulation and CTL

Theorem: Simulation equivalence, CTL and and CTL*

Let \(TS \) be a finitely branching transition system and \(s, s' \) states in \(TS \). The following statements are equivalent:

1. \(s \preceq_{TS} s' \)
2. for any \(\forall \text{CTL}^* \)-formula \(\Phi \): \(s' \vDash \Phi \) implies \(s \vDash \Phi \)
3. for any \(\forall \text{CTL} \)-formula \(\Phi \): \(s' \vDash \Phi \) implies \(s \vDash \Phi \)
4. for any \(\forall \text{CTL} \setminus U, R \)-formula \(\Phi \): \(s' \vDash \Phi \) implies \(s \vDash \Phi \)

Proof.

Along similar lines as the proof for the corresponding theorem for bisimilarity and CTL*, CTL and CTL -equivalence.
Algorithm Skeleton

Input: finite transition system TS over AP with state space S
Output: simulation order \preceq_{TS}

$\mathcal{R} := \{(s_1, s_2) \mid L(s_1) = L(s_2)\}$

while \mathcal{R} is not a simulation do
 let $(s_1, s_2) \in \mathcal{R}$ such that $s_1 \rightarrow s_1'$ and $\forall s_2', s_2 \rightarrow s_2'$ implies $(s_1', s_2') \notin \mathcal{R}$;
 $\mathcal{R} := \mathcal{R} \setminus \{(s_1, s_2)\}$;
end

return \mathcal{R}

The number of iterations is bounded above by $|S|^2$, since:

$S \times S \supseteq \mathcal{R}_0 \supseteq \mathcal{R}_1 \supseteq \mathcal{R}_2 \supseteq \ldots \supseteq \mathcal{R}_n = \preceq_{TS}$

Time complexity

The time complexity of computing \preceq_{TS} is $O(M \cdot N^2)$.

Proof.

In the worst case, there are N^2 iterations as there are N^2 pairs of states. For each pair of states in the worst case all transitions have to be examined.

The best known algorithm\(^4\) has complexity $O(M \cdot N)$. It removes several pairs in each iteration at a time and uses efficient data structures for the sets $Sim_{\mathcal{R}_i}(s)$.

\(^4\)Due to Henzinger, Henzinger and Kopke.

Algorithm

for all $s_1 \in S$ do
 $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \}$;
end

while $\exists (s_1, s_2) \in S \times Sim(s_1), \exists s'_1 \in Post(s_1)$ with $Post(s_2) \cap Sim(s'_1) = \emptyset$ do
 choose such a pair of states (s_1, s_2);
 $Sim(s_1) := Sim(s_1) \setminus \{s_2\}$;
end

return $\{(s_1, s_2) \mid s_2 \in Sim(s_1)\}$

Next Lecture

Thursday December 19, 10:30