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I —
Treating Gigantic Models?

» Use compact data structures

» Make models smaller prior to (or: during) model checking
» Try to make them even smaller

P If possible, try to obtain the smallest possible model

» While preserving the properties of interest

» Do this all algorithmically and possibly fast
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Abstraction
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Is a crash state reachable? v v
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Bisimulation Equivalence

Overview

@ Bisimulation Equivalence
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I e
Abstraction

Reduce (a huge) TS to (a small) TS prior or during model checking
Relevant issues:

» What is the formal relationship between TS and TS?
» Can TS be obtained algorithmically and efficiently?

» Which logical fragment (of LTL, CTL, CTL") is preserved?

» And in what sense?

P “strong” preservation: positive and negative results carry over
P “weak” preservation: only positive results carry over
P “match”: logic equivalence coincides with formal relation
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Bisimulation Equivalence

Bisimulation

Definition: bisimulation relation

Let TS; = (S;, Act;, =, I;, AP, L;), i=1,2, be transition systems. The
symmetric relation R € (51 XS, U S, X 51) is a bisimulation for (TS, TS,)
whenever:

1. for all initial states s; € /1. (s1, 5p) € R for some s, €
2. for all states (s1, sp) € R it holds:

2.1 Ly(s1) = Ly(sy), and

2.2 s, € Post(s;) implies (s, s3) € R for some s, € Post(s,).
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Bisimulation Equivalence

Visually Bisimulation Equivalence
si > s si > s e :
Definition: bisimulation equivalence
R can be completed to R R
) TS; and TS, are bisimulation equivalent (short: bisimilar), denoted
2 2 7 = TS, ~ TS,, if there exists a bisimulation for (TS, TS,). That is:
~ = U { " | R is a bisimulation on (TS;, TS,) }.
and by symmetry

S1 ) Si |
R can be completed to %R R Bisimilarity (~) is an equivalence relation.
5 - s s - 5
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Quotient Transition System Quotient Transition System
Overview

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation 98 € S x S is a bisimulation on TS (with state space S)
9 Quotient Transition System

if for any (s1, s) € A:
L. L(s1) = Ls»)

2. 51 € Post(s;) then (s, s5) € R for some s, € Post(s,).

The states s; and s, are bisimilar, denoted s; ~45 sy, if (s1,52) € R for
some bisimulation R for TS.

s1 ~rs S ifand only if TS, TS, where TS, denotes the transition
system TS in which s; is the only initial state.
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Quotient Transition System Quotient Transition System

Coarsest Bisimulation Quotient Transition System

Definition: quotient transition system

For TS = (S, Act,—, I, AP, L) and bisimulation ~s € Sx S on TS, let the
quotient transition system

The relation ~4s is a bisimulation, an equivalence, and the coarsest TS/~ = (S {7},>" I AP, L) the quotient of TS under ~
bisimulation for TS.
where

b S'=S/~rs= {[s]. | s€S}with [s]. = {s'€S|s~rss}

L] @
» ' is defined by: s> s

[s]. = [s]
» I'={[s]l.|sel}
> L'([s].) = L(s).
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Property Example

For every transition system TS it holds: TS ~ TS/ ~s.

Ll

Joost-Pieter Katoen Lecture#15 15/52 Joost-Pieter Katoen Lecture#15 16/52



(Simplified) Lamport’s Bakery Algorithm

Thread 1: Thread 2:
while true { while true {
ng: X1 =X + 1, ny: Xp = x1 + 1,
wy t wait until(x, = 0||x; < x ){ W, wait until(x; = 0| x, < x¢){
Gt ... critical section...} Gt ... critical section. ..}
x; :=0; Xp :=0;
} }

This algorithm can be applied to arbitrarily many processes
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Quotient Transition System

Bakery Algorithm Transition System

Infinite state space due to possible unbounded increase of counters
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Example Bakery Algorithm Run

thread P, | thread P, | x; | x, | effect

ny ny 0 | 0 | P; requests access to critical section
wy ny 1 | 0 | P, requests access to critical section
wy Wy 1 | 2 | P; enters the critical section
a Wy 1 | 2 | P; leaves the critical section
m Wy 0 | 2 | P; requests access to critical section
wy Wy 3 | 2 | P, enters the critical section
wq G 3 | 2 | P, leaves the critical section
wy n, 3 | 0 | P, requests access to critical section
wy Wy 3 | 4 | P, enters the critical section

Counters may grow unboundedly large.
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Quotient Transition System

Bisimulation Relation

Let function f map a reachable state of TSg,, onto a state in TSaBZi

Let s = (¢1,0p, x1 = by, xo = by) € TSpa with £; € {n;,w;,¢;} and b; € N
Then:
( (01,03, x1=0,x%=0) if by =b=0
(b1,0>,x1=0,%x>0) if by=0and b, >0
f(s) = 3 (b1,02,x1>0,% =0) if by >0and b, =0
(
L (

£1,£2,X1>X2>0) if by >by,>0

el,£2,X2>X1>O) if bo > b; >0
|
It follows: R = {(s, f(s)) | s € S} is a bisimulation for (TSgax, TSar) for

any subset of AP = { noncrit;, wait;, crit; | i = 1,2}.
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Quotient Transition System

Quotient of Bakery Algorithm

ny no

TS‘Z;[;i = TSg./ ~ for AP={noncrit;, wait;, crit; | i =1,2}
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Bisimulation Quotienting

Partitions

» A partition M ={By,..., Bi} of S satisfies:
» B, is non-empty; B; is called a block
> B n B =@ foralli,jwith i #]
» Bl u...uU Bk=5

» C c S is a super-block of partition 1 of S if
C=B,u...uB, forBjellfor0<j<m

» Partition M (of S) is finer than partition M’ (of S) if:

vBeM. (3B eN’. B ¢ B)

P each block of M’ equals the union of a set of blocks in

» I is strictly finer than M" if it is finer than M' and M # N’
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Bisimulation Quotienting

Overview

© Bisimulation Quotienting
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Partitions and Equivalences

» R s an equivalenceon S = S/R is a partition of S

» Partition M ={By,..., Bk} of S induces the equivalence relation
Rn = {(s,t)|3IB;eN.se B AteB;}

where it holds: S/Rp = Tl.

There is a one-to-one relationship between partitions and equivalences.
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Partition Refinement

from now on, we assume that TS is finite

P lteratively compute a partition of S

» Initially: Mg equals My, = {(s,t) € Sx S| L(s) = L(t)}

» Repeat until no change: ‘I_IH_]_ = Refine(ﬂ,-)‘

loop invariant: [; is coarser than S/~ and finer than {S}

» Return I1;

» termination is ensured:
SXSQ%HO 2 %nl 2 9%,—.2 2...2 i)%nl_ = ~715

P time complexity: maximally | S| iterations needed
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Bisimulation Quotienting

Refinement Operator

» Let: Refine(lN, C) = (Jgen Refine(B, C) for C a super-block of Tl
where

» Refine(B, C) = {Bn Pre(C), B\ Pre(C)} \ {2}

block B superblock C

» Basic properties:
» for I finer than MM, and coarser than S/~:

Refine(M, C) is finer than M and  Refine(N, C) is coarser than S/~

» [ is strictly coarser than S/~ if and only if there exists a splitter for I1
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Theorem

|
S/~ is the coarsest partition N of S such that:

1. [1is finer than the initial partition I1,p, and
2. for all B, C € M it holds":

B n Pre(C) =@ or B < Pre(C).

[]

1 .
In fact, this also holds for all B € Il and all super-blocks C of 1.
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Splitters

P Let N be a partition of S and C a super-block of I

» C is a splitter of I if for some B € I1:

BnPre(C)+@ and B\ Pre(C) + @

» Block B is stable wrt. C if

BnPre(C)=@ and B\ Pre(C)=02

P 1 is stable w.r.t. C if every B €I is stable wrt. C
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Algorithm Skeleton Splitter Selection

Input: finite transition system TS over AP with state space S
Output: bisimulation quotient space S/~

IT := 1l pp;
while there exists a splitter for IT do
choose a splitter C for IT;

I := Refine(11, C); (* Refine(T1, C') is strictly finer than TI *)
od
return II
Robert A. Paige (11999) Robert E. Tarjan (1948 -)
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Which Splitter to Take? Advanced Selection Strategy

» Not necessary to refine with respect to all blocks C € M4

How to determine a splitter for partition ;.17
= Consider only the “smaller” subblocks of a previous refinement

1. Simple strategy: o(|S|-M)
use any block of ; as splitter candidate » Step i: refine C'into C; = C'n Pre(D) and G, = C'\ Pre(D)
2. Advanced strategy: O(log |S|-M) » Step i+1: use the smallest C € { C;, G, } as splitter

P let C be such that |C| < |C'|/2, thus |C|=<|C'\ C|

use only “smaller” blocks of I1; as splitter candidates . )
Y ! P » combine the refinement steps with respect to C and C' \ C

and apply “a ternary” refinement

» Refine(N, C,C'\ C) = Refine( Refine(T, C), C'\ C ) where |C| = |C"\ C|
the decomposed blocks are stable with respect to C and C'\ C
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Bisimulation Quotienting

The Ternary Refinement Operator
Let: Refine(l, C, C'\ C) = Ugen Refine(B, C, C'\ C)

where Refine(B, C,C'\ C) = {Bi, By, B3} \ {@} with:

Bi = BnPre(C)nPre(C'\ C) toboth Cand C\ C'
B, = (Bn Pre(C))\ Pre(C"\ C) only to C
B; = (BnPre(C'\C))\ Pre(C) onlytoC'\C

= blocks B, By, Bz are stable with respect to C and C'\ C

block B
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Bisimulation Quotienting

Complexity

The bisimulation quotient of finite transition system TS can be computed
in O(N-log M) where N and M are the number of states and transitions in
TS respectively.

|
Checking bisimilarity is PTIME-complete.

Reduction from the direct circuit value problem. Outside the scope of this
lecture. O
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Quotienting Algorithm

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

I i=:{.S };
IT := Refine(Ilyp, S);

(* loop invariant: II is coarser than S/~ and finer than IT4p and II,, *)
(* and IT is stable with respect to any block in IT,; *)

repeat
choose block C’ € 1,4 \ IT and block C' € IT with C' C C' and |C| < C,;Il;
I1 := Refine(I1, C, C" \ C);
o := Tloa \ {C,} B {C,C»” \C}‘

until IT = Hald

return II
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Simulation Pre-Order

Overview

@ Simulation Pre-Order
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Simulation Relation

Definition: simulation relation

Relation SR € S x S is a simulation relation on TS if for any (s;, s) € R:
» L(s1) = L(sp), and
> if s; € Post(s;) then (s, s5) € R for some s, € Post(s,).

State s, simulates s;, written s; <5 s, if (51, 5) € PR for some simulation
relation R on TS.

TS: = TS, iff Vs €.35 € h.s; 25075, S-
|

<75 is a preorder and the coarsest simulation for TS.
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Abstraction Function

Definition: abstraction function
f:S - Sis an abstraction function if f(s) = f(s') = L(s) = L(s').

S are “concrete” states and S are “abstract” states, mostly |S| < |S|
Abstraction functions are useful for:

» data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
P predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
P localization reduction: program variables are visible or invisible

f : all variables — visible variables
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Simulation Pre-Order

Visually
1 I
55 = 5 1 = 5
R can be completed to R R
S S5 = S
but not necessarily:
I
S1 S1 — 5
R can be completed to R R
s = s s - 5
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Abstract Transition System

Definition: abstract transition system

For TS = (S, Act, =, I, AP, L) and abstraction function f : S = S let:

TS; = (S, Act, >, Is, AP, L¢),  the abstraction of TS under f
where
» > is defined by:

> I ={f(s)|s€l}and L¢(f(s)) = L(s).

|
The relation R = {(s, f(s)) | s € S} is a simulation for (TS, TS¢).

By checking all conditions of a simulation relation. Straightforward. ]
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Example
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Simulation Pre-Order

Overview

bisimulation equivalence

751 ~ TSo \

simulation equivalence trace equivalence

T51 =~ TSg Traces(TSy) = Traces(TSg)

finite trace equivalence

Tracesﬁn( 751) = Tracesﬁn( TSo)

simulation order trace inclusion

751 < T59 Traces(TSy) C Traces(TSs)

finite trace inclusion /

Tracesﬁn( 751) C Tracesﬁn( TSy)
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Simulation Equivalence

Definition: simulation equivalence

Transition systems TS; and TS, are simulation equivalent, denoted
TSl = T52 if T51 =< T52 and T52 =< T51

|
1. Bisimilarity implies simulation equivalence; not the converse.
2. Simulation equivalence implies trace equivalence; not the converse.

3. For AP-deterministic’ transition systems, simulation, bisimulation and
trace equivalence coincide.

2TS is AP-deterministic if all initial states are labelled differently, and this also
applies to all direct successors of any state in TS.
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Logical Characterisation

» Negation of formulas is problematic as <5 is not symmetric
» Let L be a fragment of CTL* which is closed under negation

» And assume L weakly matches <., that is:
S1 <75 5o iff  for all state formulae ® of L: s F® — 51 F O.

P Let 5; <45 55. Then, for any state formula ¢ of L:
SIEP = s -0 = s Ead = s5EO.

P Hence, s, <5 51 which requires <5 to be symmetric. Contradiction.
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Simulation Pre-Order

Universal Fragment of CTL"

Definition: universal fragment of CTL"

VCTL" state-formulas are formed according to:
® u= true | false | 5 | - | O, A Dy | O, v b, | Wi

where a € AP and ¢ is a path-formula. YCTL" path-formulas are formed
according to:

p u= O ‘ O | 1A @2 | P1V 2 | ¢1U @2 | ¢1 R
where ® is a state-formula, and ¢, 1 and ¢, are path-formulas.

VCTL does not contain (general) negation and no existential path
quantifier
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Simulation Pre-Order

Simulation and CTL

Theorem: Simulation equivalence, CTL and and CTL"

Let TS be a finitely branching3 transition system and s, s’ states in TS.
The following statements are equivalent:

1. s 25§

2. for any VCTL*-formula ®: s' E & implies s E ®

3. for any VCTL-formula ®: s’ E & implies s E &

4. for any YCTL\y, r-formula ®: s' F & implies s F ®

Along similar lines as the proof for the corresponding theorem for
bisimilarity and CTL*, CTL and CTL -equivalence. ]

301 - .
This means that every state has only finitely many direct successors.
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Simulation Pre-Order

Universal CTL" Contains LTL

For every LTL formula there exists an equivalent YCTL® formula.
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Checking Simulation Pre-order

Overview

© Checking Simulation Pre-order
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Checking Simulation Pre-order Checking Simulation Pre-order

Algorithm Skeleton Algorithm
Input: finite transition system TS over AP with state space S for all 5, € S do
Output: simulation order <75 Sim(s1) := {s2 € S| L(s1) = L(s2) }; (* initialization *)
od

R :={(s1,52) | L(s1) = L(s2) };
while 3(s1, s2) € S x Sim(s1).3s| € Post(s1) with Post(s2) N Sim(s}) = @ do

while R is not a simulation do choose such a pair of states (s1, sa); (* s1 A71s 52%)
let (s1,s2) € R such that s; — s] and Vs),. sy — s, implies (s}, s5) € R; Sim(s1) := Sim(s1) \ {s2 };
RI:R\{(Sl,Sg)}; od
od (* Sim(s) = Simts(s) for any s *)
return R return { (s1, s2) | s2 € Sim(s1) }

The number of iterations is bounded above by |S|?, since:
Simgp(s) = {s"| (s,s') € |}, the upward closure of s under R

SXxS5 2Ry 2R 2 R 2... 2 Ry, =< ; ; ; _ G
0 F¥ M % 2 % # 7 TS @ 2 Simyy(s) 2 Simg,(s) 2...2 Simg, (s) = Sim<,(s)
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Time complexity Next Lecture

|
The time complexity of computing <15 is O(M-N2).

Proof.
In the worst case, there are N iterations as their are N° pairs of states. Th u rSd ay Decem ber 19, ]-O 30

For each pair of states in the worst case all transitions have to be
examined. O

The best known algorithm4 has complexity O(I\/I-N). It removes several pairs in
each iteration at a time and uses efficient data structures for the sets Simg(s).

4 . .
Due to Henzinger, Henzinger and Kopke.
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