
Model Checking
Lecture #15: Bisimulation Quotienting
[Baier & Katoen, Chapter 7.2–7.6]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#15 1/52

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 2/52

State Spaces Can Be Gigantic

A model of the Hubble telescope
Joost-Pieter Katoen Lecture#15 3/52

Treating Gigantic Models?

▶ Use compact data structures

▶ Make models smaller prior to (or: during) model checking

▶ Try to make them even smaller

▶ If possible, try to obtain the smallest possible model

▶ While preserving the properties of interest

▶ Do this all algorithmically and possibly fast

Joost-Pieter Katoen Lecture#15 4/52

Abstraction

Joost-Pieter Katoen Lecture#15 5/52

Abstraction

Reduce (a huge) TS to (a small) T̂S prior or during model checking
Relevant issues:

▶ What is the formal relationship between TS and T̂S?

▶ Can T̂S be obtained algorithmically and efficiently?

▶ Which logical fragment (of LTL, CTL, CTL∗) is preserved?

▶ And in what sense?
▶ “strong” preservation: positive and negative results carry over
▶ “weak” preservation: only positive results carry over
▶ “match”: logic equivalence coincides with formal relation

Joost-Pieter Katoen Lecture#15 6/52

Bisimulation Equivalence

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 7/52

Bisimulation Equivalence

Bisimulation

Definition: bisimulation relation
Let TSi = (Si ,Acti ,→i , Ii ,AP, Li), i=1, 2, be transition systems. The
symmetric relation R ⊆ (S1 × S2 ∪ S2 × S1) is a bisimulation for (TS1,TS2)
whenever:

1. for all initial states s1 ∈ I1. (s1, s2) ∈ R for some s2 ∈ I2
2. for all states (s1, s2) ∈ R it holds:

2.1 L1(s1) = L2(s2), and

2.2 s ′1 ∈ Post(s1) implies (s ′1, s ′2) ∈ R for some s ′2 ∈ Post(s2).

Joost-Pieter Katoen Lecture#15 8/52

Bisimulation Equivalence

Visually

s1 −→ s ′1 s1 −→ s ′1
R can be completed to R R

s2 s2 −→ s ′2

and by symmetry

s1 s1 −→ s ′1
R can be completed to R R

s2 −→ s ′2 s2 −→ s ′2

Joost-Pieter Katoen Lecture#15 9/52

Bisimulation Equivalence

Bisimulation Equivalence

Definition: bisimulation equivalence
TS1 and TS2 are bisimulation equivalent (short: bisimilar), denoted
TS1 ∼ TS2, if there exists a bisimulation for (TS1,TS2). That is:

∼ = ⋃ { R ∣ R is a bisimulation on (TS1,TS2) }.

Bisimilarity (∼) is an equivalence relation.

Joost-Pieter Katoen Lecture#15 10/52

Quotient Transition System

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 11/52

Quotient Transition System

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation R ⊆ S × S is a bisimulation on TS (with state space S)
if for any (s1, s2) ∈ R:
1. L(s1) = L(s2)
2. s ′1 ∈ Post(s1) then (s ′1, s ′2) ∈ R for some s ′2 ∈ Post(s2).

The states s1 and s2 are bisimilar, denoted s1 ∼TS s2, if (s1, s2) ∈ R for
some bisimulation R for TS.

s1 ∼TS s2 if and only if TSs1 ∼ TSs2 where TSsi denotes the transition
system TS in which si is the only initial state.

Joost-Pieter Katoen Lecture#15 12/52

Quotient Transition System

Coarsest Bisimulation

The relation ∼TS is a bisimulation, an equivalence, and the coarsest
bisimulation for TS.

Proof.

Joost-Pieter Katoen Lecture#15 13/52

Quotient Transition System

Quotient Transition System

Definition: quotient transition system
For TS = (S,Act,→, I,AP, L) and bisimulation ∼TS ⊆ S × S on TS, let the
quotient transition system

TS/∼TS = (S ′, { τ },→′, I ′,AP, L′), the quotient of TS under ∼TS

where
▶ S ′ = S/∼TS = { [s]∼ ∣ s ∈ S } with [s]∼ = { s ′ ∈ S ∣ s ∼TS s

′ }

▶ →
′ is defined by: s α−−→ s ′

[s]∼ τ−−→
′ [s ′]∼

▶ I ′ = { [s]∼ ∣ s ∈ I }
▶ L′([s]∼) = L(s).

Joost-Pieter Katoen Lecture#15 14/52

Quotient Transition System

Property

For every transition system TS it holds: TS ∼ TS/∼TS.

Proof.

Joost-Pieter Katoen Lecture#15 15/52

Quotient Transition System

Example

Joost-Pieter Katoen Lecture#15 16/52

Quotient Transition System

(Simplified) Lamport’s Bakery Algorithm

Thread 1:
.

while true {
.

n1 ∶ x1 ∶= x2 + 1;
w1 ∶ wait until(x2 = 0 ∣∣x1 < x2) {
c1 ∶ . . . critical section . . .}

x1 ∶= 0;
.

}

Thread 2:
.

while true {
.

n2 ∶ x2 ∶= x1 + 1;
w2 ∶ wait until(x1 = 0 ∣∣ x2 < x1) {
c2 ∶ . . . critical section . . .}

x2 ∶= 0;
.

}

This algorithm can be applied to arbitrarily many processes

Joost-Pieter Katoen Lecture#15 17/52

Quotient Transition System

Example Bakery Algorithm Run

thread P1 thread P2 x1 x2 effect
n1 n2 0 0 P1 requests access to critical section
w1 n2 1 0 P2 requests access to critical section
w1 w2 1 2 P1 enters the critical section
c1 w2 1 2 P1 leaves the critical section
n1 w2 0 2 P1 requests access to critical section
w1 w2 3 2 P2 enters the critical section
w1 c2 3 2 P2 leaves the critical section
w1 n2 3 0 P2 requests access to critical section
w1 w2 3 4 P2 enters the critical section
.

Counters may grow unboundedly large.

Joost-Pieter Katoen Lecture#15 18/52

Quotient Transition System

Bakery Algorithm Transition System

Infinite state space due to possible unbounded increase of counters

Joost-Pieter Katoen Lecture#15 19/52

Quotient Transition System

Bisimulation Relation
Let function f map a reachable state of TSBak onto a state in TSabs

Bak

Let s = ⟨`1, `2, x1 = b1, x2 = b2⟩ ∈ TSBak with `i ∈ { ni ,wi , ci } and bi ∈ N

Then:

f (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨`1, `2, x1 = 0, x2 = 0⟩ if b1 = b2 = 0
⟨`1, `2, x1 = 0, x2 > 0⟩ if b1 = 0 and b2 > 0
⟨`1, `2, x1 > 0, x2 = 0⟩ if b1 > 0 and b2 = 0
⟨`1, `2, x1 > x2 > 0⟩ if b1 > b2 > 0
⟨`1, `2, x2 > x1 > 0⟩ if b2 > b1 > 0

It follows: R = { (s, f (s)) ∣ s ∈ S } is a bisimulation for (TSBak ,TSabs
Bak) for

any subset of AP = { noncriti ,waiti , criti ∣ i = 1, 2 }.

Joost-Pieter Katoen Lecture#15 20/52

Quotient Transition System

Quotient of Bakery Algorithm

TSabs
Bak = TSBak/ ∼ for AP = { noncriti ,waiti , criti ∣ i = 1, 2 }

Joost-Pieter Katoen Lecture#15 21/52

Bisimulation Quotienting

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 22/52

Bisimulation Quotienting

Partitions
▶ A partition Π = {B1, . . . ,Bk } of S satisfies:

▶ Bi is non-empty; Bi is called a block
▶ Bi ∩ Bj = ∅ for all i , j with i ≠ j
▶ B1 ∪ . . . ∪ Bk = S

▶ C ⊆ S is a super-block of partition Π of S if
C = Bi1 ∪ . . . ∪ Bim for Bij ∈ Π for 0 < j ≤ m

▶ Partition Π (of S) is finer than partition Π′ (of S) if:

∀B ∈ Π. (∃B ′
∈ Π′

. B ⊆ B ′)

▶ each block of Π′ equals the union of a set of blocks in Π

▶ Π is strictly finer than Π′ if it is finer than Π′ and Π ≠ Π′

Joost-Pieter Katoen Lecture#15 23/52

Bisimulation Quotienting

Partitions and Equivalences

▶ R is an equivalence on S ⇒ S/R is a partition of S

▶ Partition Π = {B1, . . . ,Bk } of S induces the equivalence relation

RΠ = { (s, t) ∣ ∃Bi ∈ Π. s ∈ Bi ∧ t ∈ Bi }

where it holds: S/RΠ = Π.

There is a one-to-one relationship between partitions and equivalences.

Joost-Pieter Katoen Lecture#15 24/52

Bisimulation Quotienting

Partition Refinement
from now on, we assume that TS is finite

▶ Iteratively compute a partition of S

▶ Initially: Π0 equals ΠAP = { (s, t) ∈ S × S ∣ L(s) = L(t) }

▶ Repeat until no change: Πi+1 ∶= Refine(Πi)
loop invariant: Πi is coarser than S/∼ and finer than {S }

▶ Return Πi
▶ termination is ensured:

S × S ⊇ RΠ0 ⊋ RΠ1 ⊋ RΠ2 ⊋ . . . ⊋ RΠi = ∼TS

▶ time complexity: maximally ∣ S ∣ iterations needed
Joost-Pieter Katoen Lecture#15 25/52

Bisimulation Quotienting

Theorem

S/∼ is the coarsest partition Π of S such that:
1. Π is finer than the initial partition ΠAP, and
2. for all B,C ∈ Π it holds1:

B ∩ Pre(C) = ∅ or B ⊆ Pre(C).

Proof.

1In fact, this also holds for all B ∈ Π and all super-blocks C of Π.
Joost-Pieter Katoen Lecture#15 26/52

Bisimulation Quotienting

Refinement Operator
▶ Let: Refine(Π,C) = ⋃B∈Π Refine(B,C) for C a super-block of Π

where

▶ Refine(B,C) = {B ∩ Pre(C), B \ Pre(C)} \ {∅}

▶ Basic properties:
▶ for Π finer than ΠAP and coarser than S/∼:

Refine(Π,C) is finer than Π and Refine(Π,C) is coarser than S/∼

▶ Π is strictly coarser than S/∼ if and only if there exists a splitter for Π
Joost-Pieter Katoen Lecture#15 27/52

Bisimulation Quotienting

Splitters

▶ Let Π be a partition of S and C a super-block of Π

▶ C is a splitter of Π if for some B ∈ Π:

B ∩ Pre(C) ≠ ∅ and B \ Pre(C) ≠ ∅

▶ Block B is stable wrt. C if

B ∩ Pre(C) = ∅ and B \ Pre(C) = ∅

▶ Π is stable w.r.t. C if every B ∈ Π is stable wrt. C

Joost-Pieter Katoen Lecture#15 28/52

Bisimulation Quotienting

Algorithm Skeleton

Joost-Pieter Katoen Lecture#15 29/52

Bisimulation Quotienting

Splitter Selection

Scott Smolka (1954 –) Paris Kanellakis (1953 – †1995)

Robert A. Paige (†1999) Robert E. Tarjan (1948 –)

Joost-Pieter Katoen Lecture#15 30/52

Bisimulation Quotienting

Which Splitter to Take?

How to determine a splitter for partition Πi+1?

1. Simple strategy: O(∣S∣⋅M)
use any block of Πi as splitter candidate

2. Advanced strategy: O(log ∣S∣⋅M)
use only “smaller” blocks of Πi as splitter candidates

and apply “a ternary” refinement

Joost-Pieter Katoen Lecture#15 31/52

Bisimulation Quotienting

Advanced Selection Strategy

▶ Not necessary to refine with respect to all blocks C ∈ Πold

⇒ Consider only the “smaller” subblocks of a previous refinement

▶ Step i : refine C ′ into C1 = C ′ ∩ Pre(D) and C2 = C ′ \ Pre(D)

▶ Step i+1: use the smallest C ∈ {C1,C2 } as splitter
▶ let C be such that ∣C ∣ ≤ ∣C ′∣/2, thus ∣C ∣ ≤ ∣C ′ \ C ∣
▶ combine the refinement steps with respect to C and C ′ \ C

▶ Refine(Π,C ,C ′ \ C) = Refine(Refine(Π,C), C ′ \ C) where ∣C ∣ ≤ ∣C ′ \ C ∣
the decomposed blocks are stable with respect to C and C ′ \ C

Joost-Pieter Katoen Lecture#15 32/52

Bisimulation Quotienting

The Ternary Refinement Operator
Let: Refine(Π,C ,C ′ \ C) = ⋃B∈Π Refine(B,C ,C ′ \ C)

where Refine(B,C ,C ′ \ C) = {B1,B2,B3 } \ {∅ } with:
B1 = B ∩ Pre(C) ∩ Pre(C ′ \ C) to both C and C \ C ′

B2 = (B ∩ Pre(C)) \ Pre(C ′ \ C) only to C
B3 = (B ∩ Pre(C ′ \ C)) \ Pre(C) only to C ′ \ C

⇒ blocks B1,B2,B3 are stable with respect to C and C ′ \ C

Joost-Pieter Katoen Lecture#15 33/52

Bisimulation Quotienting

Quotienting Algorithm

Joost-Pieter Katoen Lecture#15 34/52

Bisimulation Quotienting

Complexity

The bisimulation quotient of finite transition system TS can be computed
in O(N ⋅ logM) where N and M are the number of states and transitions in
TS respectively.

Checking bisimilarity is PTIME-complete.

Proof.
Reduction from the direct circuit value problem. Outside the scope of this
lecture.

Joost-Pieter Katoen Lecture#15 35/52

Simulation Pre-Order

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 36/52

Simulation Pre-Order

Simulation Relation

Definition: simulation relation
Relation R ⊆ S × S is a simulation relation on TS if for any (s1, s2) ∈ R:
▶ L(s1) = L(s2), and
▶ if s ′1 ∈ Post(s1) then (s ′1, s ′2) ∈ R for some s ′2 ∈ Post(s2).

State s2 simulates s1, written s1 ⪯TS s2 if (s1, s2) ∈ R for some simulation
relation R on TS.
TS1 ⪯ TS2 iff ∀s1 ∈ I1.∃s2 ∈ I2. s1 ⪯TS1⊕TS2 s2.

⪯TS is a preorder and the coarsest simulation for TS.

Joost-Pieter Katoen Lecture#15 37/52

Simulation Pre-Order

Visually

s1 −→ s ′1 s1 −→ s ′1
R can be completed to R R

s2 s2 −→ s ′2

but not necessarily:

s1 s1 −→ s ′1
R can be completed to R R

s2 −→ s ′2 s2 −→ s ′2

Joost-Pieter Katoen Lecture#15 38/52

Simulation Pre-Order

Abstraction Function
Definition: abstraction function
f ∶ S → Ŝ is an abstraction function if f (s) = f (s ′) ⇒ L(s) = L(s ′).

S are “concrete” states and Ŝ are “abstract” states, mostly ∣Ŝ∣ << ∣S∣
Abstraction functions are useful for:

▶ data abstraction: abstract from values of program or control variables

f ∶ concrete data domain → abstract data domain

▶ predicate abstraction: use predicates over the program variables

f ∶ state → valuations of the predicates

▶ localization reduction: program variables are visible or invisible

f ∶ all variables → visible variables

Joost-Pieter Katoen Lecture#15 39/52

Simulation Pre-Order

Abstract Transition System
Definition: abstract transition system
For TS = (S,Act,→, I,AP, L) and abstraction function f ∶ S → Ŝ let:

TSf = (Ŝ,Act,→f , If ,AP, Lf), the abstraction of TS under f

where
▶ →f is defined by: s α−−→ s ′

f (s) α−−→f f (s ′)
▶ If = { f (s) ∣ s ∈ I } and Lf (f (s)) = L(s).

The relation R = { (s, f (s)) ∣ s ∈ S } is a simulation for (TS,TSf).

Proof.
By checking all conditions of a simulation relation. Straightforward.

Joost-Pieter Katoen Lecture#15 40/52

Simulation Pre-Order

Example

Joost-Pieter Katoen Lecture#15 41/52

Simulation Pre-Order

Simulation Equivalence

Definition: simulation equivalence
Transition systems TS1 and TS2 are simulation equivalent, denoted
TS1 ≃ TS2 if TS1 ⪯ TS2 and TS2 ⪯ TS1.

1. Bisimilarity implies simulation equivalence; not the converse.
2. Simulation equivalence implies trace equivalence; not the converse.
3. For AP-deterministic2 transition systems, simulation, bisimulation and

trace equivalence coincide.

2TS is AP-deterministic if all initial states are labelled differently, and this also
applies to all direct successors of any state in TS.

Joost-Pieter Katoen Lecture#15 42/52

Simulation Pre-Order

Overview

Joost-Pieter Katoen Lecture#15 43/52

Simulation Pre-Order

Logical Characterisation

▶ Negation of formulas is problematic as ⪯TS is not symmetric

▶ Let L be a fragment of CTL∗ which is closed under negation

▶ And assume L weakly matches ⪯TS, that is:
s1 ⪯TS s2 iff for all state formulae Φ of L: s2 ⊧ Φ ⟹ s1 ⊧ Φ.

▶ Let s1 ⪯TS s2. Then, for any state formula Φ of L:
s1 ⊧ Φ ⟹ s1 /⊧ ¬Φ ⟹ s2 /⊧ ¬Φ ⟹ s2 ⊧ Φ.

▶ Hence, s2 ⪯TS s1 which requires ⪯TS to be symmetric. Contradiction.

Joost-Pieter Katoen Lecture#15 44/52

Simulation Pre-Order

Universal Fragment of CTL∗

Definition: universal fragment of CTL∗

∀CTL∗ state-formulas are formed according to:

Φ ∶∶= true
»»»»»» false

»»»»»» a
»»»»»» ¬a

»»»»»» Φ1 ∧ Φ2
»»»»»» Φ1 ∨ Φ2

»»»»»» ∀ϕ

where a ∈ AP and ϕ is a path-formula. ∀CTL∗ path-formulas are formed
according to:

ϕ ∶∶= Φ
»»»»»» ◯ϕ

»»»»»» ϕ1 ∧ ϕ2
»»»»»» ϕ1 ∨ ϕ2

»»»»»» ϕ1 Uϕ2
»»»»»» ϕ1 Rϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas.

∀CTL does not contain (general) negation and no existential path
quantifier

Joost-Pieter Katoen Lecture#15 45/52

Simulation Pre-Order

Universal CTL∗ Contains LTL

For every LTL formula there exists an equivalent ∀CTL∗ formula.

Joost-Pieter Katoen Lecture#15 46/52

Simulation Pre-Order

Simulation and CTL

Theorem: Simulation equivalence, CTL and and CTL∗

Let TS be a finitely branching3 transition system and s, s ′ states in TS.
The following statements are equivalent:
1. s ⪯TS s ′

2. for any ∀CTL∗-formula Φ: s ′ ⊧ Φ implies s ⊧ Φ
3. for any ∀CTL-formula Φ: s ′ ⊧ Φ implies s ⊧ Φ
4. for any ∀CTL\U, R-formula Φ: s ′ ⊧ Φ implies s ⊧ Φ

Proof.
Along similar lines as the proof for the corresponding theorem for
bisimilarity and CTL∗, CTL and CTL−-equivalence.

3This means that every state has only finitely many direct successors.
Joost-Pieter Katoen Lecture#15 47/52

Checking Simulation Pre-order

Overview

1 Bisimulation Equivalence

2 Quotient Transition System

3 Bisimulation Quotienting

4 Simulation Pre-Order

5 Checking Simulation Pre-order

Joost-Pieter Katoen Lecture#15 48/52

Checking Simulation Pre-order

Algorithm Skeleton

The number of iterations is bounded above by ∣S∣2, since:

S × S ⊇ R0 ⫌ R1 ⫌ R2 ⫌ . . . ⫌ Rn = ⪯TS

Joost-Pieter Katoen Lecture#15 49/52

Checking Simulation Pre-order

Algorithm

SimR(s) = { s ′ ∣ (s, s ′) ∈ R }, the upward closure of s under R
∅ ⊇ SimR0(s) ⊇ SimR1(s) ⊇ . . . ⊇ SimRn (s) = Sim⪯TS(s)

Joost-Pieter Katoen Lecture#15 50/52

Checking Simulation Pre-order

Time complexity

The time complexity of computing ≺TS is O(M ⋅N2).

Proof.
In the worst case, there are N2 iterations as their are N2 pairs of states.
For each pair of states in the worst case all transitions have to be
examined.

The best known algorithm4 has complexity O(M ⋅N). It removes several pairs in
each iteration at a time and uses efficient data structures for the sets SimR(s).

4Due to Henzinger, Henzinger and Kopke.
Joost-Pieter Katoen Lecture#15 51/52

Checking Simulation Pre-order

Next Lecture

Thursday December 19, 10:30

Joost-Pieter Katoen Lecture#15 52/52

	Bisimulation Equivalence
	Quotient Transition System
	Bisimulation Quotienting
	Simulation Pre-Order
	Checking Simulation Pre-order

