Model Checking Lecture #15: Bisimulation Quotienting [Baier & Katoen, Chapter 7.2–7.6]

Joost-Pieter Katoen

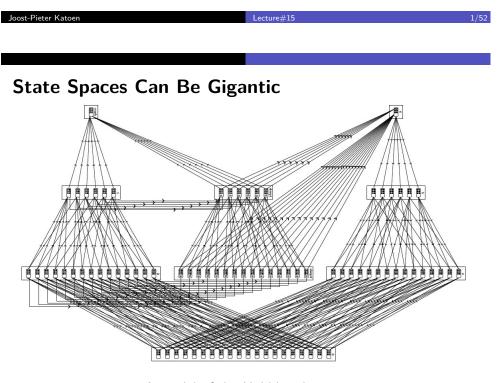
Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Joost-Pieter Katoen

Bisimulation Equivalence
 Quotient Transition System
 Bisimulation Quotienting
 Simulation Pre-Order
 Checking Simulation Pre-order



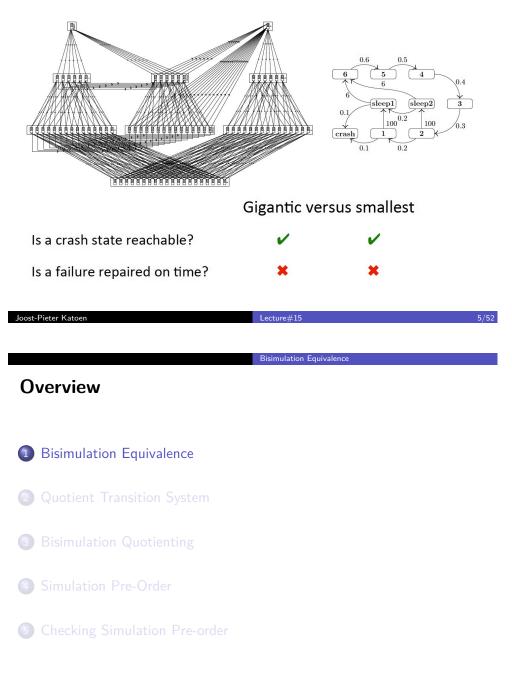
A model of the Hubble telescope

Lecture#15

Treating Gigantic Models?

- Use compact data structures
- Make models smaller prior to (or: during) model checking
- ▶ Try to make them even smaller
- If possible, try to obtain the smallest possible model
- While preserving the properties of interest
- Do this all algorithmically and possibly fast

Abstraction



Abstraction

Reduce (a huge) TS to (a small) \widehat{TS} prior or during model checking Relevant issues:

- What is the formal relationship between TS and \widehat{TS} ?
- Can \widehat{TS} be obtained algorithmically and efficiently?
- ▶ Which logical fragment (of LTL, CTL, CTL^{*}) is preserved?

And in what sense?

- "strong" preservation: positive and negative results carry over
- "weak" preservation: only positive results carry over
- "match": logic equivalence coincides with formal relation

Joost-Pieter Katoen

Lecture#15

Bisimulation Equivalence

6/52

Bisimulation

Definition: bisimulation relation

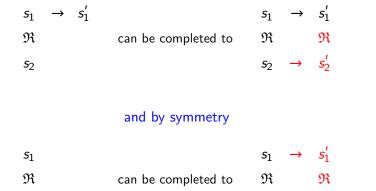
Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i), i=1, 2$, be transition systems. The symmetric relation $\mathfrak{R} \subseteq (S_1 \times S_2 \cup S_2 \times S_1)$ is a bisimulation for (TS_1, TS_2) whenever:

- 1. for all initial states $s_1 \in I_1$. $(s_1, s_2) \in \mathfrak{R}$ for some $s_2 \in I_2$
- 2. for all states $(s_1, s_2) \in \mathfrak{R}$ it holds:

2.1 $L_1(s_1) = L_2(s_2)$, and

2.2 $s'_1 \in Post(s_1)$ implies $(s'_1, s'_2) \in \mathfrak{R}$ for some $s'_2 \in Post(s_2)$.

 $s_2 \rightarrow s'_2$



Bisimulation Equivalence

 $s_2 \rightarrow s'_2$

Bisimulation Equivalence

Definition: bisimulation equivalence

 TS_1 and TS_2 are bisimulation equivalent (short: bisimilar), denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2) . That is:

~ = $\bigcup \{ \mathfrak{R} \mid \mathfrak{R} \text{ is a bisimulation on } (TS_1, TS_2) \}.$

Bisimilarity (~) is an equivalence relation.

Joost-Pieter Katoen Lecture#15	9/52 Joost-Pieter Katoen Lecture#15 10/5
Quotient Transition System	Quotient Transition System Bisimulation on States
1 Bisimulation Equivalence	Definition: bisimulation/bisimilarity on states
 Quotient Transition System 	Symmetric relation $\mathfrak{R} \subseteq S \times S$ is a bisimulation on <i>TS</i> (with state space <i>S</i>) if for any $(s_1, s_2) \in \mathfrak{R}$: 1. $L(s_1) = L(s_2)$
3 Bisimulation Quotienting	2. $s'_1 \in Post(s_1)$ then $(s'_1, s'_2) \in \mathfrak{R}$ for some $s'_2 \in Post(s_2)$. The states s_1 and s_2 are bisimilar, denoted $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathfrak{R}$ for
Simulation Pre-Order	some bisimulation \mathfrak{R} for TS .
5 Checking Simulation Pre-order	$s_1 \sim_{TS} s_2$ if and only if $TS_{s_1} \sim TS_{s_2}$ where TS_{s_i} denotes the transition system TS in which s_i is the only initial state.

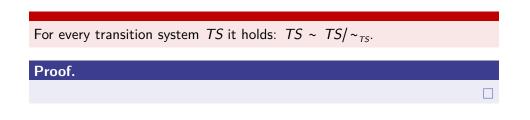
Quotient Transition System

Coarsest Bisimulation

The relation \sim_{TS} is a bisimulation, an equivalence, and the coarsest bisimulation for *TS*.

Proof.		
Joost-Pieter Katoen	Lecture#15	13/52
	Quotient Transition System	

Property



Quotient Transition System

Definition: quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS, let the quotient transition system

$$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L'),$$
 the quotient of TS under \sim_{TS}

where

$$S' = S/\sim_{\tau S} = \{[s]_{\sim} \mid s \in S\} \text{ with } [s]_{\sim} = \{s' \in S \mid s \sim_{\tau S} s'\}$$

$$\rightarrow' \text{ is defined by:} \qquad \frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$$

$$I' = \{[s]_{\sim} \mid s \in I\}$$

$$L'([s]_{\sim}) = L(s).$$

Joost-Pieter Katoen	Lecture#15	14/52
	Quotient Transition System	
- ·		

Example

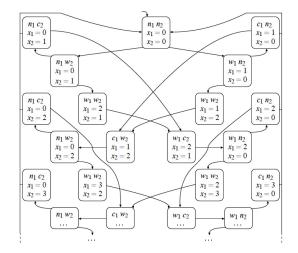
(Simplified) Lamport's Bakery Algorithm

Thread	d 1:	Thread	2:
	while true {		while true {
n_1 :	$x_1 := x_2 + 1;$	<i>n</i> ₂ :	$x_2 := x_1 + 1;$
w_1 :	wait until($x_2 = 0 x_1 < x_2$) {	<i>w</i> ₂ :	wait until($x_1 = 0 x_2 < x_1$) {
c_1 :	critical section}	<i>c</i> ₂ :	critical section}
	$x_1 := 0;$		<i>x</i> ₂ := 0;
	}		}

This algorithm can be applied to arbitrarily many processes

Joost-Pieter Katoen	Lecture#15	17/52
	<i>"</i>	,

Bakery Algorithm Transition System



Infinite state space due to possible unbounded increase of counters

Example Bakery Algorithm Run

thread P_1	thread P ₂	<i>x</i> ₁	x ₂	effect
<i>n</i> ₁	<i>n</i> ₂	0	0	P_1 requests access to critical section
w ₁	<i>n</i> ₂	1	0	P_2 requests access to critical section
w ₁	<i>w</i> ₂	1	2	P_1 enters the critical section
<i>c</i> ₁	<i>W</i> ₂	1	2	P_1 leaves the critical section
<i>n</i> ₁	<i>W</i> ₂	0	2	P_1 requests access to critical section
w_1	<i>w</i> ₂	3	2	P_2 enters the critical section
w_1	<i>c</i> ₂	3	2	P_2 leaves the critical section
w_1	<i>n</i> ₂	3	0	P_2 requests access to critical section
<i>w</i> ₁	<i>w</i> ₂	3	4	P_2 enters the critical section
•••				

Counters may grow unboundedly large.

Quotient Transition System

Bisimulation Relation

Let function f map a reachable state of TS_{Bak} onto a state in TS_{Bak}^{abs} Let $s = \langle \ell_1, \ell_2, x_1 = b_1, x_2 = b_2 \rangle \in TS_{Bak}$ with $\ell_i \in \{n_i, w_i, c_i\}$ and $b_i \in \mathbb{N}$ Then:

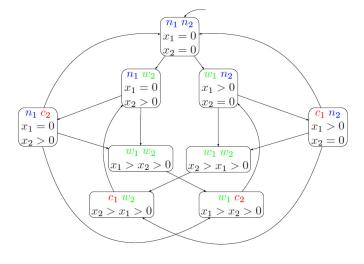
$$f(s) = \begin{cases} \langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, x_2 > x_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathfrak{R} = \{(s, f(s)) \mid s \in S\}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$ for any subset of $AP = \{noncrit_i, wait_i, crit_i \mid i = 1, 2\}$.

Lecture#15

Quotient Transition System

Quotient of Bakery Algorithm



$$TS_{Bak}^{abs} = TS_{Bak} / \sim \text{for } AP = \{ noncrit_i, wait_i, crit_i \mid i = 1, 2 \}$$

Joost-Pieter Katoen	Lecture#15	21/52
	Bisimulation Quotienting	
Partitions A partition $\Pi = \{B_1, \dots, B_k\}$ B_i is non-empty; B_i is call $B_i \cap B_j = \emptyset$ for all i, j with $B_1 \cup \dots \cup B_k = S$	} of <i>S</i> satisfies: ed a block	

- $\begin{array}{l} \blacktriangleright \quad C \subseteq S \text{ is a super-block of partition } \Pi \text{ of } S \text{ if} \\ C \quad = \quad B_{i_1} \cup \ldots \cup B_{i_m} \quad \text{ for } B_{i_j} \in \Pi \text{ for } 0 < j \leq m \end{array}$
- Partition Π (of *S*) is finer than partition Π' (of *S*) if:

 $\forall B \in \Pi. \ (\exists B' \in \Pi'. B \subseteq B')$

- each block of Π' equals the union of a set of blocks in Π
- **•** Π is strictly finer than Π' if it is finer than Π' and $\Pi \neq \Pi'$

23/5

- 2 Quotient Transition System
- 3 Bisimulation Quotienting
- ④ Simulation Pre-Order

Joost-Pieter Katoen

5 Checking Simulation Pre-order

Partitions and Equivalences

- ▶ \Re is an equivalence on $S \Rightarrow S/\Re$ is a partition of S
- ▶ Partition $\Pi = \{ B_1, ..., B_k \}$ of S induces the equivalence relation

 $\mathfrak{R}_{\Pi} = \{ (s, t) \mid \exists B_i \in \Pi. s \in B_i \land t \in B_i \}$

Bisimulation Quotienting

where it holds: $S/\Re_{\Pi} = \Pi$.

There is a one-to-one relationship between partitions and equivalences.

Bisimulation Quotienting

Partition Refinement

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- ▶ Initially: Π_0 equals $\Pi_{AP} = \{(s, t) \in S \times S \mid L(s) = L(t)\}$
- Repeat until no change: Π_{i+1} := Refine(Π_i) loop invariant: Π_i is coarser than S/~ and finer than {S}
- \blacktriangleright Return Π_i
 - termination is ensured:

 $S \times S \supseteq \mathfrak{R}_{\Pi_0} \supseteq \mathfrak{R}_{\Pi_1} \supseteq \mathfrak{R}_{\Pi_2} \supseteq \cdots \supseteq \mathfrak{R}_{\Pi_i} = \sim_{TS}$

Lecture#15

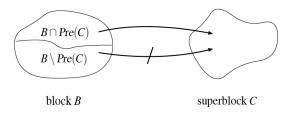
Bisimulation Quotienting

time complexity: maximally | S | iterations needed

Joost-Pieter Katoen

Refinement Operator

- Let: $Refine(\Pi, C) = \bigcup_{B \in \Pi} Refine(B, C)$ for C a super-block of Π where
- $\blacktriangleright Refine(B, C) = \{B \cap Pre(C), B \setminus Pre(C)\} \setminus \{\emptyset\}$



- Basic properties:
 - for Π finer than Π_{AP} and coarser than S/\sim :

Refine(Π , C) is finer than Π and Refine(Π , C) is coarser than S/~

 \blacktriangleright Π is strictly coarser than S/\sim if and only if there exists a splitter for Π

27/5

Theorem

- S/\sim is the coarsest partition Π of S such that:
- **1**. Π is finer than the initial partition Π_{AP} , and
- 2. for all $B, C \in \Pi$ it holds¹:

 $B \cap Pre(C) = \emptyset \text{ or } B \subseteq Pre(C).$

Proof.

¹In fact, this also holds for all $B \in \Pi$ and all super-blocks C of Π . Joost-Pieter Katoen Lecture#15

Splitters

- Let Π be a partition of S and C a super-block of Π
- ► *C* is a splitter of Π if for some $B \in \Pi$:

 $B \cap Pre(C) \neq \emptyset$ and $B \setminus Pre(C) \neq \emptyset$

Bisimulation Quotienting

Block *B* is stable wrt. *C* if

 $B \cap Pre(C) = \emptyset$ and $B \setminus Pre(C) = \emptyset$

▶ Π is stable w.r.t. *C* if every $B \in \Pi$ is stable wrt. *C*

26/5

Bisimulation Quotien

Algorithm Skeleton

Input: finite transition system TS over AP with state space S Output: bisimulation quotient space S/\sim

 $\Pi := \Pi_{AP};$ while there exists a splitter for Π do choose a splitter C for $\Pi;$ $\Pi := Refine(\Pi, C);$ (* $Refine(\Pi, C)$ is strictly finer than Π *) od return Π

Bisimulation Quotientin

Joost-Pieter Katoen Lecture#15 29/5 Bisimulation Quotienting

Which Splitter to Take?

How to determine a splitter for partition Π_{i+1} ?

1. Simple strategy:

use any block of Π_i as splitter candidate

2. Advanced strategy:

 $O(\log |S| \cdot M)$

use only "smaller" blocks of Π_i as splitter candidates and apply "a ternary" refinement

Splitter Selection

Scott Smolka (1954 –)

Robert E. Tarjan (1948 –)

Bisimulation Quotienting

Lecture#15

Advanced Selection Strategy

- Not necessary to refine with respect to all blocks $C \in \Pi_{old}$
- \Rightarrow Consider only the "smaller" subblocks of a previous refinement
- Step *i*: refine C' into $C_1 = C' \cap Pre(D)$ and $C_2 = C' \setminus Pre(D)$
- Step *i*+1: use the *smallest* $C \in \{C_1, C_2\}$ as splitter
 - ▶ let C be such that $|C| \leq |C'|/2$, thus $|C| \leq |C' \setminus C|$
 - \blacktriangleright combine the refinement steps with respect to C and C' \backslash C
- ► Refine(Π , C, $C' \setminus C$) = Refine($Refine(\Pi, C)$, $C' \setminus C$) where $|C| \le |C' \setminus C|$ the decomposed blocks are stable with respect to C and $C' \setminus C$

Paris Kanellakis (1953 – †1995)

 $O(|S| \cdot M)$

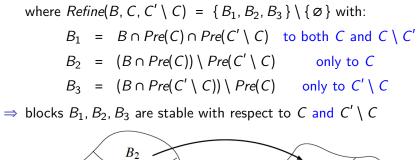
Joost-Pieter Katoen

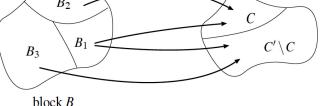
30/52

Bisimulation Quotienting

The Ternary Refinement Operator

Let: Refine(Π , C, C' \ C) = $\bigcup_{B \in \Pi}$ Refine(B, C, C' \ C)





Joost-Pieter Katoen	Lecture#15
	Bisimulation Quotienting
Complexity	
Complexity	

The bisimulation quotient of finite transition system TS can be computed in $O(N \cdot \log M)$ where N and M are the number of states and transitions in TS respectively.

Checking bisimilarity is PTIME-complete.

Proof.

Reduction from the direct circuit value problem. Outside the scope of this lecture. $\hfill \square$

Quotienting Algorithm

Input: finite transition system TS with state space S Output: bisimulation quotient space S/\sim

```
\Pi_{old} := \{ S \}; \\ \Pi := \operatorname{Refine}(\Pi_{AP}, S);
```

(* loop invariant: Π is coarser than $S/\!\sim$ and finer than Π_{AP} and Π_{old} , *) (* and Π is stable with respect to any block in Π_{old} *)

repeat

choose block $C' \in \Pi_{old} \setminus \Pi$ and block $C \in \Pi$ with $C \subseteq C'$ and $|C| \leq \frac{|C'|}{2}$; $\Pi := Refine(\Pi, C, C' \setminus C)$; $\Pi_{old} := \Pi_{old} \setminus \{C'\} \cup \{C, C' \setminus C\}$; until $\Pi = \Pi_{old}$ return Π

Joost-Pieter Katoen	Lecture#15	34/52
Overview	Simulation Pre-Order	
Bisimulation Equivalence		
2 Quotient Transition System		
Bisimulation Quotienting		
Simulation Pre-Order		
5 Checking Simulation Pre-order		

Simulation Pre-Order

Simulation Relation

Definition: simulation relation

Relation $\mathfrak{R} \subseteq S \times S$ is a simulation relation on *TS* if for any $(s_1, s_2) \in \mathfrak{R}$:

- \blacktriangleright *L*(*s*₁) = *L*(*s*₂), and
- ▶ if $s'_1 \in Post(s_1)$ then $(s'_1, s'_2) \in \Re$ for some $s'_2 \in Post(s_2)$.

State s_2 simulates s_1 , written $s_1 \leq_{TS} s_2$ if $(s_1, s_2) \in \Re$ for some simulation relation \Re on *TS*.

 $TS_1 \leq TS_2$ iff $\forall s_1 \in l_1, \exists s_2 \in l_2, s_1 \leq_{TS_1 \oplus TS_2} s_2$.

 \leq_{TS} is a preorder and the coarsest simulation for *TS*.

Joost-Pieter Katoen	Lecture#15

Simulation Pre-Order

Abstraction Function

Definition: abstraction function

 $f: S \to \hat{S}$ is an abstraction function if $f(s) = f(s') \Rightarrow L(s) = L(s')$.

S are "concrete" states and \hat{S} are "abstract" states, mostly $|\hat{S}| < |S|$ Abstraction functions are useful for:

data abstraction: abstract from values of program or control variables

f: concrete data domain \rightarrow abstract data domain

predicate abstraction: use predicates over the program variables

f : state \rightarrow valuations of the predicates

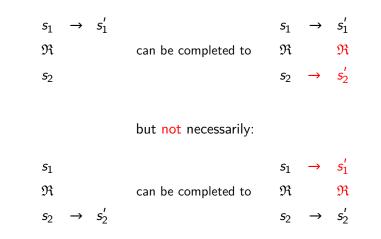
Iocalization reduction: program variables are visible or invisible

f : all variables \rightarrow visible variables

Lecture#15

39/5

Visually



Joost-Pieter Katoen

Simulation Pre-Order

Lecture#15

Abstract Transition System

Definition: abstract transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \hat{S}$ let:

 $TS_f = (\hat{S}, Act, \rightarrow_f, I_f, AP, L_f),$ the abstraction of TS under f

where

→_f is defined by:

$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{\alpha} f(s')}$$
↓ $I_f = \{ f(s) \mid s \in I \}$ and $L_f(f(s)) = L(s)$.

The relation $\mathfrak{R} = \{(s, f(s)) \mid s \in S\}$ is a simulation for (TS, TS_f) .

Proof.

By checking all conditions of a simulation relation. Straightforward.

Lecture#15

Example

Simulation Equivalence

Definition: simulation equivalence

Transition systems TS_1 and TS_2 are simulation equivalent, denoted $TS_1 \simeq TS_2$ if $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$.

- 1. Bisimilarity implies simulation equivalence; not the converse.
- 2. Simulation equivalence implies trace equivalence; not the converse.
- **3**. For *AP*-deterministic² transition systems, simulation, bisimulation and trace equivalence coincide.

 ^{2}TS is AP-deterministic if all initial states are labelled differently, and this also applies to all direct successors of any state in TS.

Joost-Pieter Katoen

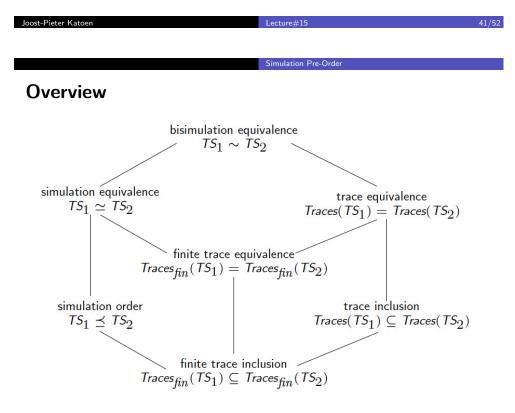
Simulation Pre-Order

Lecture#15

Logical Characterisation

- ▶ Negation of formulas is problematic as \leq_{TS} is not symmetric
- ▶ Let **L** be a fragment of CTL^{*} which is closed under negation
- ► And assume **L** weakly matches \leq_{TS} , that is: $s_1 \leq_{TS} s_2$ iff for all state formulae Φ of **L**: $s_2 \models \Phi \implies s_1 \models \Phi$.
- ► Let $s_1 \leq_{\tau s} s_2$. Then, for any state formula Φ of **L**: $s_1 \models \Phi \implies s_1 \notin \neg \Phi \implies s_2 \notin \neg \Phi \implies s_2 \models \Phi$.
- ▶ Hence, $s_2 \leq_{TS} s_1$ which requires \leq_{TS} to be symmetric. Contradiction.

Lecture#15



42/52

Simulation Pre-Order

Universal Fragment of CTL*

Definition: universal fragment of CTL*

 $\forall CTL^*$ state-formulas are formed according to:

$$\Phi ::= true | false | a | \neg a | \Phi_1 \land \Phi_2 | \Phi_1 \lor \Phi_2 | \forall \varphi$$

where $a \in AP$ and φ is a path-formula. $\forall CTL^*$ path-formulas are formed according to:

$$\varphi ::= \Phi \left| \bigcirc \varphi \right| \quad \varphi_1 \land \varphi_2 \left| \varphi_1 \lor \varphi_2 \right| \varphi_1 \lor \varphi_2 \left| \varphi_1 \lor \varphi_2 \right| \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas.

$\label{eq:ctl} \ensuremath{\forall \text{CTL}}\xspace \text{ does not contain (general) negation and no existential path} \\ \ensuremath{\text{quantifier}}\xspace$

Joost-Pieter Katoen	Lecture#15	45/52
	Simulation Pre-Order	
Simulation and CTL		
Theorem: Simulation equiva	lence, CTL and and CTL*	
Let <i>TS</i> be a finitely branching ³ The following statements are eq 1. $s \leq_{TS} s'$	transition system and <i>s</i> , <i>s</i> ' states in <i>TS</i> quivalent:	5.
2. for any $\forall CTL^*$ -formula Φ :	$s' \models \Phi$ implies $s \models \Phi$	
3. for any $\forall CTL$ -formula Φ : $s' \models \Phi$ implies $s \models \Phi$		
4. for any ∀CTL\ _{U, R} -formula	$a \Phi: s' \models \Phi \text{ implies } s \models \Phi$	
Proof.		
Along similar lines as the proof bisimilarity and CTL [*] , CTL and	for the corresponding theorem for d CTL [–] -equivalence.	

³This means that every state has only finitely many direct successors.

Lecture#15

Universal CTL^{*} Contains LTL

For every LTL formula there exists an equivalent $\forall CTL^*$ formula.

Joost-Pieter Katoen	Lecture#15	46/52
Overview	Checking Simulation Pre-order	
1 Bisimulation Equivalence		
Quotient Transition System		
Bisimulation Quotienting		
Simulation Pre-Order		
5 Checking Simulation Pre-order		

Checking Simulation Pre-orde

Algorithm Skeleton

Input: finite transition system *TS* over *AP* with state space *S Output:* simulation order \preceq_{TS}

 $\mathcal{R} := \{ (s_1, s_2) \mid L(s_1) = L(s_2) \};$

while \mathcal{R} is not a simulation do let $(s_1, s_2) \in \mathcal{R}$ such that $s_1 \to s'_1$ and $\forall s'_2. s_2 \to s'_2$ implies $(s'_1, s'_2) \notin \mathcal{R}$; $\mathcal{R} := \mathcal{R} \setminus \{ (s_1, s_2) \}$; od return \mathcal{R}

The number of iterations is bounded above by $|S|^2$, since:

$$S \times S \supseteq \mathfrak{R}_0 \supseteq \mathfrak{R}_1 \supseteq \mathfrak{R}_2 \supseteq \dots \supseteq \mathfrak{R}_n = \preceq_{\tau s}$$

Joost-Pieter Katoen	Lecture#15	49/52
	Checking Simulation Pre-order	
Time complexity		
	$(1000)^2$	

The time complexity of computing \prec_{TS} is $O(M \cdot N^2)$.

Proof.

In the worst case, there are N^2 iterations as their are N^2 pairs of states. For each pair of states in the worst case all transitions have to be examined.

The best known algorithm⁴ has complexity $O(M \cdot N)$. It removes several pairs in each iteration at a time and uses efficient data structures for the sets $Sim_{\mathfrak{R}}(s)$.

Algorithm

for all $s_1 \in S$ do $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \};$ od	(* initialization *)
while $\exists (s_1, s_2) \in S \times Sim(s_1)$. $\exists s'_1 \in Post(s_1)$ choose such a pair of states (s_1, s_2) ; $Sim(s_1) := Sim(s_1) \setminus \{s_2\}$;) with $Post(s_2) \cap Sim(s'_1) = \emptyset$ do (* $s_1 \not\preceq_{TS} s_2$ *)
od $return \{ (s_1, s_2) \mid s_2 \in \mathit{Sim}(s_1) \}$	(* $Sim(s) = Sim_{TS}(s)$ for any s *)

 $Sim_{\mathfrak{R}}(s) = \{ s' \mid (s, s') \in \mathfrak{R} \}, \text{ the upward closure of } s \text{ under } \mathfrak{R}$ $\emptyset \supseteq Sim_{\mathfrak{R}_0}(s) \supseteq Sim_{\mathfrak{R}_1}(s) \supseteq \ldots \supseteq Sim_{\mathfrak{R}_n}(s) = Sim_{\leq_{TS}}(s)$

Lecture#15

Joost-Pieter Katoen

Checking Simulation Pre-order

Next Lecture

Thursday December 19, 10:30

⁴Due to Henzinger, Henzinger and Kopke.