
Model Checking
Lecture #12+#13: Branching Time Versus Linear Time

[Baier & Katoen, Chapter 6.3, 7.1+7.2]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#12+#13 1/45

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 2/45

Topic

Joost-Pieter Katoen Lecture#12+#13 3/45

Linear Versus Branching Time

Joost-Pieter Katoen Lecture#12+#13 4/45

Expressiveness

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 5/45

Expressiveness

LTL and CTL are Incomparable

▶ Some LTL-formulas cannot be expressed in CTL, e.g.,
▶ ◇□ a
▶ ◇ (a ∧ ◯ a)

There does not exist an equivalent CTL formula

▶ Some CTL-formulas cannot be expressed in LTL, e.g.,
▶ ∀◇∀□a
▶ ∀◇ (a ∧ ∀◯ a), and
▶ ∀□∃◇ a

There does not exist an equivalent LTL formula

Joost-Pieter Katoen Lecture#12+#13 6/45

Expressiveness

Relating LTL, CTL, and CTL∗

Joost-Pieter Katoen Lecture#12+#13 7/45

Complexity Considerations

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 8/45

Complexity Considerations

CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete
CTL model checking is PTIME-complete.

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!
LTL-formulae can be exponentially shorter than their CTL-equivalent

Joost-Pieter Katoen Lecture#12+#13 9/45

Complexity Considerations

CTL Versus LTL
If Φ is equivalent to some LTL-formula ϕ then:

Φ ≡ ϕ where ϕ is obtained by removing all path quantifiers from Φ.
In particular, ∣ϕ∣ ≤ ∣Φ∣.

If P ≠ NP, then there is a sequence ϕn, n ≥ 0 of LTL formulas such that:
▶ ∣ϕn∣ is polynomial in n
▶ ϕn has an equivalent CTL formula
▶ no CTL formula of polynomial length is equivalent to ϕn

Proof.
ϕn = the absence of a Hamiltonian path in a digraph on n vertices

Joost-Pieter Katoen Lecture#12+#13 10/45

Complexity Considerations

LTL Encoding the Hamiltonian Path Problem

Joost-Pieter Katoen Lecture#12+#13 11/45

Complexity Considerations

CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to ϕn.
Then: as CTL model-checking is ∈ P,

the Hamiltonian path problem ∈ P, and P = NP.

Joost-Pieter Katoen Lecture#12+#13 12/45

Complexity Considerations

Satisfiability Problem

The LTL satisfiability problem is PSPACE-complete.

The LTL satisfiability problem is equally hard as
the LTL model checking problem.

▶ The CTL satisfiability problem is EXPTIME-complete.
▶ The CTL∗ satisfiability problem is 2EXPTIME-complete.

The CTL satisfiability problem is harder than
the CTL model checking problem.

This also applies to CTL∗ (and many more logics)

Joost-Pieter Katoen Lecture#12+#13 13/45

Trace and Bisimulation Equivalence

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 14/45

Trace and Bisimulation Equivalence

Trace Equivalence

Definition: trace equivalence
Transition systems TS and TS′ (both over AP) are trace equivalent iff they
exhibit the same traces:

TS ≡trace TS′ if and only if Traces(TS) = Traces(TS′).

Examples

Joost-Pieter Katoen Lecture#12+#13 15/45

Trace and Bisimulation Equivalence

Trace Equivalence and LT Properties

TS ≡trace TS′ if and only if TS and TS′ satisfy the same LT properties:

TS ≡trace TS′ if and only if (∀E ⊆ (2AP)ω. TS ⊧ E iff TS′ ⊧ E) .

Joost-Pieter Katoen Lecture#12+#13 16/45

Trace and Bisimulation Equivalence

Logical Equivalence

Definition: logical equivalence
For transition systems TS and TS′ (both over AP):
▶ TS ≡LTL TS′ iff (∀ϕ ∈ LTL. TS ⊧ ϕ iff TS′ ⊧ ϕ)
▶ TS ≡CTL TS′ iff (∀Φ ∈ CTL. TS ⊧ Φ iff TS′ ⊧ Φ)

In a similar way, ≡L can be defined for logic L (such as CTL∗ etc.).

TS ≡trace TS′ if and only if TS ≡LTL TS′

Joost-Pieter Katoen Lecture#12+#13 17/45

Trace and Bisimulation Equivalence

Bisimulation

Definition: bisimulation relation
Let TSi = (Si ,Acti ,→i , Ii ,AP, Li), i=1, 2, be transition systems. The
symmetric relation R ⊆ S1 × S2 is a bisimulation for (TS1,TS2) whenever:

1. for all initial states s1 ∈ I1. (s1, s2) ∈ R for some s2 ∈ I2
2. for all states (s1, s2) ∈ R it holds:

2.1 L1(s1) = L2(s2), and

2.2 s ′1 ∈ Post(s1) implies (s ′1, s ′2) ∈ R for some s ′2 ∈ Post(s2).

Joost-Pieter Katoen Lecture#12+#13 18/45

Trace and Bisimulation Equivalence

Visually

s1 −→ s ′1 s1 −→ s ′1
R can be completed to R R

s2 s2 −→ s ′2

and by symmetry

s1 s1 −→ s ′1
R can be completed to R R

s2 −→ s ′2 s2 −→ s ′2

Joost-Pieter Katoen Lecture#12+#13 19/45

Trace and Bisimulation Equivalence

Example

Joost-Pieter Katoen Lecture#12+#13 20/45

Trace and Bisimulation Equivalence

Bisimulation on Paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R

t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R

t0 −→ t1 −→ t2 −→ t3 −→ t4

Proof.
By induction on index i of state si .

Joost-Pieter Katoen Lecture#12+#13 21/45

Trace and Bisimulation Equivalence

Bisimulation Equivalence
Definition: bisimulation equivalence
TS1 and TS2 are bisimulation equivalent (short: bisimilar), denoted
TS1 ∼ TS2, if there exists a bisimulation for (TS1,TS2). That is:

∼ = { R ∣ R is a bisimulation on (TS1,TS2) }.

Bisimilarity (∼) is an equivalence relation.

Proof.

▶ (Reflexivity). The identity relation is a bisimulation for (TS,TS).
▶ (Symmetry). If R is a bisimulation for (TS,TS′), then R

−1 is a bisimulation
for (TS′,TS).

▶ (Transitivity). If R1,2 is a bisimulation for (TS1,TS2) and R2,3 a
bisimulation for (TS2,TS3), then R2,3 ◦R1,2 is a bisimulation for (TS1,TS3).

Joost-Pieter Katoen Lecture#12+#13 22/45

Trace and Bisimulation Equivalence

Bisimilarity And Trace Equivalence

1. TS1 ∼ TS2 implies TS1 ≡trace TS2.
2. For AP-deterministic1 TS1,TS2: TS1 ∼ TS2 iff TS1 ≡trace TS2.

Proof.

1. Follows from the fact that bisimulation carries over to infinite paths.
2. Left as exercise.

TS1 ∼ TS2 implies TS1 ≡LTL TS2. The converse also holds for
AP-deterministic transition systems

1Transition system TS is AP-deterministic whenever it has at most one initial state
and ∣Post(s) ∩ { s ′ ∈ S ∣ L(s ′) = A }∣ ≤ 1.

Joost-Pieter Katoen Lecture#12+#13 23/45

Trace and Bisimulation Equivalence

Distinguishing Bisimilarity And Trace Equivalence

Joost-Pieter Katoen Lecture#12+#13 24/45

Trace and Bisimulation Equivalence

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation R ⊆ S × S is a bisimulation on TS (with state space S)
if for any (s1, s2) ∈ R:
1. L(s1) = L(s2)
2. s ′1 ∈ Post(s1) then (s ′1, s ′2) ∈ R for some s ′2 ∈ Post(s2).

The states s1 and s2 are bisimilar, denoted s1 ∼TS s2, if (s1, s2) ∈ R for
some bisimulation R for TS.

s1 ∼TS s2 if and only if TSs1 ∼ TSs2 where TSsi denotes the transition
system TS in which si is the only initial state.

Joost-Pieter Katoen Lecture#12+#13 25/45

Trace and Bisimulation Equivalence

Bisimilarity And CTL

Theorem: Bisimilarity, CTL and CTL∗

Let TS be a finitely branching2 transition system and s, s ′ states in TS.
The following statements are equivalent:
1. s ∼TS s ′

2. s and s ′ are CTL-equivalent, i.e., s ≡CTL s ′

3. s and s ′ are CTL∗-equivalent, i.e., s ≡CTL∗ s ′.

Proof.
This is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL. The
last step is trivial, since CTL∗ is more expressive than CTL.

2This means that every state has only finitely many direct successors. This theorem
does not hold for arbitrary infinite-state transition systems.

Joost-Pieter Katoen Lecture#12+#13 26/45

Trace and Bisimulation Equivalence

Proof (1)

Joost-Pieter Katoen Lecture#12+#13 27/45

Trace and Bisimulation Equivalence

Proof (2)

Joost-Pieter Katoen Lecture#12+#13 28/45

Trace and Bisimulation Equivalence

Example

Joost-Pieter Katoen Lecture#12+#13 29/45

Trace and Bisimulation Equivalence

Infinite-Branching

Joost-Pieter Katoen Lecture#12+#13 30/45

Trace and Bisimulation Equivalence

For any transition systems TS and TS′ (over AP):

TS ∼ TS′ iff TS ≡CTL TS′ iff TS ≡CTL∗ TS′.

Joost-Pieter Katoen Lecture#12+#13 31/45

Trace and Bisimulation Equivalence

Definition: CTL−

CTL− state-formulas with a ∈ AP obey the grammar:

Φ ∶∶= true
»»»»»» a

»»»»»» Φ1 ∧ Φ2
»»»»»» ¬Φ

»»»»»» ∃◯Φ
»»»»»» ∀◯Φ

No until-modalities, so no □ and no ◇

1. CTL− is strictly less expressive than CTL (and than CTL∗).
2. CTL− equivalence coincides with CTL (and CTL∗) equivalence.

Proof.
Follows from the fact that in the proof of equivalence of ∼, ≡CTL and ≡CTL∗ only
CTL−-formulas are used. In particular, no until-modalities are used.

Joost-Pieter Katoen Lecture#12+#13 32/45

Trace and Bisimulation Equivalence

The Importance of These Results

▶ CTL−-, CTL- and CTL∗-equivalence coincide
▶ despite the fact that these logics have different expressivity

▶ Bisimilar transition systems preserve the same CTL∗ formulas
▶ and thus the same LTL formulas (and LT properties)

▶ Non-bisimilarity can be shown by a single CTL− formula Φ
▶ TS1 ⊧ Φ and TS2 /⊧ Φ implies TS1 /∼ TS2

▶ One does not even need to use an until-modality

Joost-Pieter Katoen Lecture#12+#13 33/45

Trace and Bisimulation Equivalence

On Complexity

The decision problem whether two finite transition systems are trace
equivalent is PSPACE-complete.

Proof.
Reduction from language equivalence of finite-state automata.

The decision problem whether two finite transition systems are bisimilar is
PTIME-complete.

Proof.
A polynomial-time algorithm will be dealt with in an upcoming lecture.
PTIME-hardness is outside the scope of this lecture.

Joost-Pieter Katoen Lecture#12+#13 34/45

CTL∗ Model Checking

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 35/45

CTL∗ Model Checking

Syntax of CTL∗

Definition: Syntax CTL∗

▶ CTL∗ state-formulas with a ∈ AP obey the grammar:

Φ ∶∶= true
»»»»»» a

»»»»»» Φ1 ∧ Φ2
»»»»»» ¬Φ

»»»»»» ∃ϕ

▶ and ϕ is a CTL∗ path-formula formed by the grammar:

ϕ ∶∶= Φ
»»»»»» ϕ1 ∧ ϕ2

»»»»»» ¬ϕ
»»»»»» ◯ϕ

»»»»»» ϕ1 Uϕ2

where Φ is a CTL∗ state-formula, and ϕ, ϕ1 and ϕ2 are
path-formulas.

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL.

Joost-Pieter Katoen Lecture#12+#13 36/45

CTL∗ Model Checking

Example

Joost-Pieter Katoen Lecture#12+#13 37/45

CTL∗ Model Checking

Embedding LTL

For LTL formula ϕ and TS without terminal states (both over AP) and for
each s ∈ S:

s ⊧ ϕ
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

LTL semantics

if and only if s ⊧ ∀ϕ
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

CTL∗ semantics

In particular:

TS ⊧LTL ϕ if and only if TS ⊧CTL∗ ∀ϕ

Joost-Pieter Katoen Lecture#12+#13 38/45

CTL∗ Model Checking

CTL∗ Model Checking
[Emerson & Lei, 1985]

▶ Adopt a recursive descent over the parse tree of Φ (as for CTL)

▶ Replace maximal proper state sub-formula Ψ by new proposition aΨ
▶ adjust labeling such that aΨ ∈ L(s) if and only if s ∈ Sat(Ψ)

▶ In the end, this yields an LTL formula

▶ Most interesting case: formulas of the form ∃ϕ

s ⊧CTL∗ ∃ϕ iff s /⊧CTL∗ ∀¬ϕ
ÍÒÒÒÑÒÒÒ Ï
CTL∗ semantics

iff s /⊧LTL ¬ϕ
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
LTL semantics

SatCTL∗(∃ϕ) = S \ SatLTL(¬ϕ) = S \ { s ∈ S ∣ s ⊧LTL ¬ϕ }
Joost-Pieter Katoen Lecture#12+#13 39/45

CTL∗ Model Checking

Example

Joost-Pieter Katoen Lecture#12+#13 40/45

CTL∗ Model Checking

Complexity

The CTL∗ model-checking algorithm for finite transition system TS and
CTL∗-formula Φ has a time complexity in O(∣TS∣ ⋅ 2∣Φ∣).

Proof.
The recursive descent is linear in ∣Φ∣. The most expensive procedure for a node,
i.e., sub-formula Ψ = ∃ϕ of Φ, in the parse tree is in O(∣TS∣⋅2∣Ψ∣).

The CTL∗ model-checking problem is PSPACE-complete.

Proof.
Outside the scope of this lecture series.

Joost-Pieter Katoen Lecture#12+#13 41/45

Summary

Overview

1 Expressiveness

2 Complexity Considerations

3 Trace and Bisimulation Equivalence

4 CTL∗ Model Checking

5 Summary

Joost-Pieter Katoen Lecture#12+#13 42/45

Summary

Summary: Equivalences

Joost-Pieter Katoen Lecture#12+#13 43/45

Summary

Complexity Overview

CTL LTL CTL∗

model checking PTIME PSPACE PSPACE

algorithmic complexity ∣TS∣ ⋅ ∣Φ∣ ∣TS∣ ⋅ exp(∣ϕ∣) ∣TS∣ ⋅ exp(∣Φ∣)

satisfiability EXPTIME PSPACE 2EXPTIME

equivalence bisimilarity trace equivalence bisimilarity

equivalence checking PTIME PSPACE PTIME

All theoretical complexity indications are complete.

Joost-Pieter Katoen Lecture#12+#13 44/45

Summary

Next Lecture

Thursday December 5, 10:30

Joost-Pieter Katoen Lecture#12+#13 45/45

	Expressiveness
	Complexity Considerations
	Trace and Bisimulation Equivalence
	CTL* Model Checking
	Summary

