Model Checking

Lecture #12+#13: Branching Time Versus Linear Time
[Baier & Katoen, Chapter 6.3, 7.1+7.2]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#124#13 1/45

Topic

transition system

T = (S, Act,—, S, AP, L)

abstraction from actions

state graph
+ labeling

N

projection | branching-time view

state sequences A states & branches

4 s

traces computation tree

linear-time view

Joost-Pieter Katoen Lecture#124#13 3/45

Overview

© Expressiveness
@ Complexity Considerations
© Trace and Bisimulation Equivalence

@ CTL™ Model Checking

© Summary

Joost-Pieter Katoen Lecture#124#13 2/45

Linear Versus Branching Time

‘ linear time ‘ branching time
: path based state based
behavior :
traces computation tree
temporal LTL CTL
logic path formulas state formulas
model PSPACE-complete PTIME
checking| O(size(T) - exp(|¢|)) | O(size(T) - |®])
ol trace inclusion simulation
. trace equivalence bisimulation
relation
PSPACE-complete PTIME
Joost-Pieter Katoen Lecture#124#13 4/45



Expressiveness Expressiveness

Overview LTL and CTL are Incomparable

o Expressiveness » Some LTL-formulas cannot be expressed in CTL, e.g.,
> o0a
> o(anOa)

There does not exist an equivalent CTL formula

» Some CTL-formulas cannot be expressed in LTL, e.g.,
> vovOa
> VO (aAVOa), and
> vO3¢ a

There does not exist an equivalent LTL formula

Joost-Pieter Katoen Lecture#124#13 5/45 Joost-Pieter Katoen Lecture#124#13 6/45
- * .
Relating LTL, CTL, and CTL Overview

g )
vods v voagp  CTLY

© Complexity Considerations

— ~
LTL |
v O CTL

OD;« "
voOa V'::'Of”” VO30 b

_ ' /)

Joost-Pieter Katoen Lecture#124#13 7/45 Joost-Pieter Katoen Lecture#124#13 8/45



CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete
CTL model checking is PTIME-complete.

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!

LTL-formulae can be exponentially shorter than their CTL-equivalent

Joost-Pieter Katoen Lecture#124#13 9/45

LTL Encoding the Hamiltonian Path Problem

Joost-Pieter Katoen Lecture#124#13 11/45

CTL Versus LTL
If ® is equivalent to some LTL-formula ¢ then:

® = p where @ is obtained by removing all path quantifiers from .
In particular, || < |®].

|
If P # NP, then there is a sequence ¢, n = 0 of LTL formulas such that:

» |pnl is polynomial in n
» ¢, has an equivalent CTL formula

» no CTL formula of polynomial length is equivalent to ¢,

@, = the absence of a Hamiltonian path in a digraph on n vertices OJ

Joost-Pieter Katoen Lecture#12+4#13 10/45

CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to ¢,,.
Then: as CTL model-checking is € P,
the Hamiltonian path problem € P, and P = NP.

Joost-Pieter Katoen Lecture#124#13 12/45



Complexity Considerations

Satisfiability Problem

|
The LTL satisfiability problem is PSPACE-complete.

The LTL satisfiability problem is equally hard as
the LTL model checking problem.

|
» The CTL satisfiability problem is EXPTIME-complete.
» The CTL" satisfiability problem is 2EXPTIME-complete.

The CTL satisfiability problem is harder than
the CTL model checking problem.
This also applies to CTL® (and many more logics)

Joost-Pieter Katoen Lecture#124#13 13/45

Trace and Bisimulation Equivalence

Trace Equivalence

Definition: trace equivalence

Transition systems TS and TS (both over AP) are trace equivalent iff they
exhibit the same traces:

TS =Ztrace TS if and only if  Traces(TS) = Traces(TS).

Joost-Pieter Katoen Lecture#124#13 15/45

Trace and Bisimulation Equivalence

Overview

© Trace and Bisimulation Equivalence

Joost-Pieter Katoen Lecture#124#13 14/45

Trace Equivalence and LT Properties

|
TS =trace TS if and only if TS and TS satisfy the same LT properties:

TS =Zgace TS if and only if (VE ¢ (2*)". TSEEiff TSk E).

Joost-Pieter Katoen Lecture#124#13 16/45



Logical Equivalence

Definition: logical equivalence

For transition systems TS and TS (both over AP):
> TS =7 TS iff (Vo elTL TSk o iff TS ko)
> TS =cy TS iff (Vo e CTL. TSE & iff TS F &)

In a similar way, =; can be defined for logic L (such as CTL" etc.).

|
TS Zprace TS if and onlyif TS =11 TS

Joost-Pieter Katoen Lecture#124#13 17/45

Trace and Bisimulation Equivalence

Visually
1 I
55 = 5 s = 5
R can be completed to R R
) S Sé
and by symmetry
1
s s1 705
R can be completed to R R
S - s 5 = 5
Joost-Pieter Katoen Lecture#124#13 19/45

Bisimulation

Definition: bisimulation relation

Let TS; = (S;, Act;, =;, I;, AP, L;), i=1,2, be transition systems. The
symmetric relation R € S; X S, is a bisimulation for (TS, TS,) whenever:

1. for all initial states s; € /1. (s1, 5p) € R for some s, €
2. for all states (s1, sp) € R it holds:

2.1 Li(s1) = Ly(sp), and

2.2 s; € Post(s;) implies (s;,s3) € R for some s, € Post(s,).

Joost-Pieter Katoen Lecture#12+4#13 18/45

Example

Joost-Pieter Katoen Lecture#124#13 20/45



Trace and Bisimulation Equivalence

Bisimulation on Paths

Whenever we have

Sh et
R
to

this can be completed to
S9 — S — S > S3 O Sp......
R W W W A
th > B = th o t3 o tg......

Proof.

By induction on index i of state s;.

Joost-Pieter Katoen

Lecture#12+#13 21/45

Trace and Bisimulation Equivalence

Bisimilarity And Trace Equivalence

1. TSl 2 T52 |mp|IeS TS]_ =trace TSQ

2. For AP-deterministic’ TS;, TSy: TS; ~ TS, iff TS, =trace TSo.

Proof

1. Follows from the fact that bisimulation carries over to infinite paths

2. Left as exercise. U

e
|

TS; ~ TS, implies TS; =171 TS,. The converse also holds for
AP-deterministic transition systems

Transition system TS is AP-deterministic whenever it has at most one initial state
and |Post(s) n {s'e S| L(s)=A} <1
Joost-Pieter Katoen

Lecture#12+#13 23/45

Trace and Bisimulation Equivalence

Bisimulation Equivalence

Definition: bisimulation equivalence

TS; and TS, are bisimulation equivalent (short: bisimilar), denoted
TS, ~ TS,, if there exists a bisimulation for (TS, TS,). That is:

~ = { %’ | R is a bisimulation on (TS;, TS,) }.

Bisimilarity (~) is an equivalence relation.

P (Reflexivity). The identity relation is a bisimulation for (TS, TS).

» (Symmetry). If R is a bisimulation for (TS, TS), then R~

1. - .
is a bisimulation
for (TS, T9).

P (Transitivity). If 93, is a bisimulation for (TS, TS;) and R, 3 a
bisimulation for (TS,, TS3), then PR, 3 0 Ry, is a bisimulation for (TS, TS3)1

Trace and Bisimulation Equivalence

Distinguishing Bisimilarity And Trace Equivalence

Joost-Pieter Katoen

Lecture#124#13 24/45



Trace and Bisimulation Equivalence

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation R € S x S is a bisimulation on TS (with state space S)
if for any (s1, s) € A:

1. L(s1) = L(s2)
2. 51 € Post(s;) then (s, s5) € R for some sy € Post(s,).

The states s; and s, are bisimilar, denoted s; ~75 sy, if (1, 52) € R for
some bisimulation R for TS.

s1 ~rs 2 ifandonly if TS, ~ TS, where TS denotes the transition
system TS in which s; is the only initial state.

Joost-Pieter Katoen Lecture#124#13 25/45

Trace and Bisimulation Equivalence

Proof (1)

Joost-Pieter Katoen Lecture#124#13 27/45

Trace and Bisimulation Equivalence

Bisimilarity And CTL

Theorem: Bisimilarity, CTL and CTL"

Let TS be a finitely branching2 transition system and s, s’ states in TS.
The following statements are equivalent:

1. s~ S
2. sand s are CTL-equivalent, i.e., s =c1 s

3. sand s’ are CTL"-equivalent, i.e., s =c7* s

This is proven in three steps: =c; € ~ S =cpir S =c7p. The

last step is trivial, since CTL* is more expressive than CTL. ]

*This means that every state has only finitely many direct successors. This theorem
does not hold for arbitrary infinite-state transition systems.

Joost-Pieter Katoen Lecture#124#13 26/45

Trace and Bisimulation Equivalence

Proof (2)

Joost-Pieter Katoen Lecture#124#13 28/45



Example

Joost-Pieter Katoen Lecture#124#13 29/45

Trace and Bisimulation Equivalence

|
For any transition systems TS and TS (over AP):

TS ~ TSI iff TS =CTL TSJ iff TS =CTL* TS'

Joost-Pieter Katoen Lecture#12+4#13 31/45

Infinite-Branching

Joost-Pieter Katoen Lecture#124#13 30/45

Trace and Bisimulation Equivalence

Definition: CTL

CTL state-formulas with a € AP obey the grammar:

® = true ‘ a ‘ ¢1/\¢2| -0 | 100 | VO

No until-modalities, so no O and no ¢

|
1. CTL™ is strictly less expressive than CTL (and than CTL").
2. CTL™ equivalence coincides with CTL (and CTL") equivalence.

Proof.

Follows from the fact that in the proof of equivalence of ~, =c7; and =7+ only
CTL -formulas are used. In particular, no until-modalities are used. L]

Joost-Pieter Katoen Lecture#124#13 32/45



The Importance of These Results On Complexity

|
The decision problem whether two finite transition systems are trace
equivalent is PSPACE-complete.

Reduction from language equivalence of finite-state automata. O

» CTL -, CTL- and CTL"-equivalence coincide
P despite the fact that these logics have different expressivity

» Bisimilar transition systems preserve the same CTL* formulas
» and thus the same LTL formulas (and LT properties)

P Non-bisimilarity can be sh-own- by a single CTL  formula & The decision problem whether two finite transition systems are bisimilar is
» TS, E® and TS, ¥ ® implies TS; £ TS, PTIME-complete.
» One does not even need to use an until-modality Proof.
A polynomial-time algorithm will be dealt with in an upcoming lecture.
PTIME-hardness is outside the scope of this lecture. ]
Joost-Pieter Katoen Lecture#124#13 33/45 Joost-Pieter Katoen Lecture#12+4#13 34/45
- *
Overview Syntax of CTL

Definition: Syntax CTL"

» CTL" state-formulas with a € AP obey the grammar:
$ = true l a l P A Dy | - | Jp
» and ¢ is a CTL" path-formula formed by the grammar:
p u= O ‘ P1 A P2 l = ‘ O | ¢1U o
@ CTL™ Model Checking

where ® is a CTL" state-formula, and ¢, ¢; and @5 are
path-formulas.

in CTL*: V¢ = —=3-¢. This does not hold in CTL.

Joost-Pieter Katoen Lecture#124#13 35/45 Joost-Pieter Katoen Lecture#124#13 36/45



CTL™ Model Checking

Example

5 & 17 {a} 17
* 3
T = 300a

T E=3030a note: Sat(IQa)={ ®,0 }
hence: ®@®®.. . = O30a

30302 # 3002

computation tree:

Joost-Pieter Katoen Lecture#124#13 37/45

CTL" Model Checking

[Emerson & Lei, 1985]

» Adopt a recursive descent over the parse tree of ® (as for CTL)

P Replace maximal proper state sub-formula W by new proposition ay
P adjust labeling such that ay € L(s) if and only if s € Sat{V)

» In the end, this yields an LTL formula

» Most interesting case: formulas of the form Jp

S FCTL* Ekp iff ) #CTL* V—mp iff S I}éLTL "
%’—J %_I

CTL* semantics LTL semantics

Satcr«(3p) = S\ Satir(-p) = S\{s€S|skr ¢}

Joost-Pieter Katoen Lecture#124#13 39/45

Embedding LTL

For LTL formula ¢ and TS without terminal states (both over AP) and for
each s € S:

s E o if and only if s E Vop

LTL semantics CTL" semantics

In particular:

TS I:LTL 2 if and onIy if TS ':CTL* V(p

Joost-Pieter Katoen Lecture#124#13 38/45

Example

Joost-Pieter Katoen Lecture#124#13 40/45



Complexity Overview

The CTL* model-checking algorithm for finite transition system TS and
CTL*-formula ¢ has a time complexity in O(| TS| - 2|¢|).

Proof.
The recursive descent is linear in |®|. The most expensive procedure for a node,
i.e., sub-formula W = Jp of ®, in the parse tree is in O(|T5|-2|W|). O]

The CTL* model-checking problem is PSPACE-complete.

© Summary
Proof.
Outside the scope of this lecture series. Ol
Joost-Pieter Katoen Lecture#124#13 41/45 Joost-Pieter Katoen Lecture#124#13 42/45
Summary
Summary: Equivalences Complexity Overview
= , ] [ cTL ] LTL [ cTrm ]
[ finite equivalence w.r.t. ]
trace equivalence LTL safet;// properties model checking PTIME PSPACE PSPACE
algorithmic complexity | |TS| - |®| | TS| - exp(|]) | TS| - exp(|®])
[trace equivalence] >[ LTL equivalence ]

A satisfiability EXPTIME PSPACE 2EXPTIME
bisimulation CTL equivalence equivalence bisimilarity | trace equivalence bisimilarity
equivalence CTL* equivalence

N~ equivalence checking PTIME PSPACE PTIME
for finitely
branching TS All theoretical complexity indications are complete.
Lecture#12+#13 44/45

Joost-Pieter Katoen Lecture#124#13 43/45 Joost-Pieter Katoen



Next Lecture

Thursday December 5, 10:30

Lecture#12+#13



	Expressiveness
	Complexity Considerations
	Trace and Bisimulation Equivalence
	CTL* Model Checking
	Summary

