Model Checking Lecture #12+#13: Branching Time Versus Linear Time [Baier & Katoen, Chapter 6.3, 7.1+7.2]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

Joost-Pieter Katoen

Joost-Pieter Katoen

1/45

Topic

Linear Versus Branching Time

	linear time	branching time	
behavior	path based traces	state based computation tree	
temporal logic	LTL path formulas	CTL state formulas	
model checking	$\mathcal{O}(\textit{size}(T) \cdot \exp(\varphi))$	PTIME <i>O</i> (<i>size</i> (<i>T</i>) · Φ)	
impl. relation	trace inclusion trace equivalence PSPACE-complete	simulation bisimulation PTIME	

Overview	LTL and CTL are Incomparable
1 Expressiveness	Some LTL-formulas cannot be expressed in CTL, e.g.,
	$ \diamond \Box a \diamond (a \land \bigcirc a) $
2 Complexity Considerations	There does not exist an equivalent CTL formula
3) Trace and Bisimulation Equivalence	Some CTL-formulas cannot be expressed in LTL, e.g.,
4 CTL* Model Checking	$\forall \Diamond \forall \Box a$ $\forall \Diamond (a \land \forall \bigcirc a), and$
	There does not exist an equivalent LTL formula

Relating LTL, CTL, and CTL^*

Expressiveness

Overv		xity Considerations
1 Expr		
2 Com	plexity Considerations	
3 Trac	e and Bisimulation Equivalence	
4 CTL	* Model Checking	
5 Sum	mary	

CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete CTL model checking is PTIME-complete.

Complexity Consideration

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!

LTL-formulae can be exponentially shorter than their CTL-equivalent

Complexity Considerations

LTL Encoding the Hamiltonian Path Problem

CTL Versus LTL

If Φ is equivalent to some LTL-formula φ then:

$$\begin{split} \Phi \equiv \varphi \text{ where } \varphi \text{ is obtained by removing all path quantifiers from } \Phi. \\ & \text{In particular, } |\varphi| \ \leq \ |\Phi|. \end{split}$$

If P \neq NP, then there is a sequence φ_n , $n \ge 0$ of LTL formulas such that:

- \triangleright $|\varphi_n|$ is polynomial in *n*
- $\blacktriangleright \varphi_n$ has an equivalent CTL formula
- ▶ no CTL formula of polynomial length is equivalent to φ_n

Proof.

 φ_n = the absence of a Hamiltonian path in a digraph on *n* vertices

Joost-Pieter Katoen

Complexity Considerations

Lecture#12+#13

CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to φ_n . Then: as CTL model-checking is $\in P$, the Hamiltonian path problem $\in P$, and P = NP.

Joost-Pieter Katoen

Complexity Considerations

Satisfiability Problem

The LTL satisfiability problem is PSPACE-complete.

The LTL satisfiability problem is equally hard as the LTL model checking problem.

- ▶ The CTL satisfiability problem is EXPTIME-complete.
- ▶ The CTL^{*} satisfiability problem is 2EXPTIME-complete.

The CTL satisfiability problem is harder than the CTL model checking problem. This also applies to CTL^{*} (and many more logics)

Joost-Pieter Katoen	Lecture#12+#13	13/45
	Trace and Bisimulation Equivalence	
Trace Equivalence		

	Trace and Bisimulation Equivalence	
Joost-Pieter Katoen	Lecture#12+#13	
5 Summary		
4 CTL* Model Checking		
3 Trace and Bisimulation Equ	uivalence	
2 Complexity Considerations		
Expressiveness		

Trace Equivalence and LT Properties

 $TS \equiv_{trace} TS' \text{ if and only if } TS \text{ and } TS' \text{ satisfy the same LT properties:}$ $TS \equiv_{trace} TS' \text{ if and only if } \left(\forall E \subseteq \left(2^{AP}\right)^{\omega}. TS \models E \text{ iff } TS' \models E \right).$

Definition: trace equivalence

Transition systems TS and TS' (both over AP) are trace equivalent iff they exhibit the same traces:

$$TS \equiv_{trace} TS'$$
 if and only if $Traces(TS) = Traces(TS')$.

Examples

Overview

Trace and Bisimulation Equivalence

Logical Equivalence

For transition systems TS and TS' (both over AP):

- ► $TS \equiv_{LTL} TS'$ iff $(\forall \varphi \in LTL. TS \models \varphi \text{ iff } TS' \models \varphi)$
- ► $TS \equiv_{CTL} TS'$ iff $(\forall \Phi \in CTL, TS \models \Phi \text{ iff } TS' \models \Phi)$

In a similar way, \equiv_L can be defined for logic L (such as CTL^{*} etc.).

can be completed to

and by symmetry

can be completed to

 $TS \equiv_{trace} TS'$ if and only if $TS \equiv_{LTL} TS'$

 $\rightarrow s_1'$

 $\rightarrow s'_2$

 $\frac{s_1}{\Re}$

s2

51 Я

s2

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems. The symmetric relation $\Re \subseteq S_1 \times S_2$ is a bisimulation for (TS_1, TS_2) whenever:

- 1. for all initial states $s_1 \in I_1$. $(s_1, s_2) \in \mathfrak{R}$ for some $s_2 \in I_2$
- 2. for all states $(s_1, s_2) \in \mathfrak{R}$ it holds:
 - 2.1 $L_1(s_1) = L_2(s_2)$, and
 - 2.2 $s'_1 \in Post(s_1)$ implies $(s'_1, s'_2) \in \mathfrak{R}$ for some $s'_2 \in Post(s_2)$.

Example

Joost-Pieter Katoen

Joost-Pieter Katoen

Visually

Trace and Bisimulation Equivalence

 $s_1 \rightarrow s'_1$

 $s_2 \rightarrow s'_2$

 $s_1 \rightarrow s'_1$

 $s_2 \rightarrow s'_2$

R

R

R

R

Trace and Bisimulation Equivalence

Bisimulation on Paths

¹Transition system *TS* is *AP*-deterministic whenever it has at most one initial state and $|Post(s) \cap \{s' \in S \mid L(s') = A\}| \le 1$.

Lecture#12+#13

Bisimulation Equivalence Definition: bisimulation equivalence TS₁ and TS₂ are bisimulation equivalent (short: bisimilar), denoted TS₁ ~ TS₂, if there exists a bisimulation for (TS₁, TS₂). That is: ~ = { ℜ | ℜ is a bisimulation on (TS₁, TS₂) }. Bisimilarity (~) is an equivalence relation. Proof. (Reflexivity). The identity relation is a bisimulation for (TS, TS). (Symmetry). If ℜ is a bisimulation for (TS, TS'), then ℜ⁻¹ is a bisimulation for (TS', TS). (Transitivity) If ℜ is a bisimulation for (TS, TS') and ℜ = a

► (Transitivity). If ℜ_{1,2} is a bisimulation for (*TS*₁, *TS*₂) and ℜ_{2,3} a bisimulation for (*TS*₂, *TS*₃), then ℜ_{2,3} ∘ ℜ_{1,2} is a bisimulation for (*TS*₁, *TS*₃).
Joost-Pieter Kateen
Lecture#12+#13
22/4

Trace and Bisimulation Equivalence

Distinguishing Bisimilarity And Trace Equivalence

Trace and Bisimulation Equivalenc

Trace and Bisimulation Equivalence

Bisimulation on States

Definition: bisimulation/bisimilarity on states

Symmetric relation $\mathfrak{R} \subseteq S \times S$ is a bisimulation on *TS* (with state space *S*) if for any $(s_1, s_2) \in \mathfrak{R}$:

- 1. $L(s_1) = L(s_2)$
- 2. $s'_1 \in Post(s_1)$ then $(s'_1, s'_2) \in \mathfrak{R}$ for some $s'_2 \in Post(s_2)$.

The states s_1 and s_2 are bisimilar, denoted $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \Re$ for some bisimulation \Re for *TS*.

 $s_1 \sim_{TS} s_2$ if and only if $TS_{s_1} \sim TS_{s_2}$ where TS_{s_i} denotes the transition system TS in which s_i is the only initial state.

Joost-Pieter Katoen	Lecture#12+#13
	Trace and Bisimulation Equivalence
Proof (1)	

Theorem: Bisimilarity, CTL and CTL*

Let TS be a finitely branching² transition system and s, s' states in TS. The following statements are equivalent:

- 1. $s \sim_{TS} s'$
- 2. s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$
- 3. s and s' are CTL^* -equivalent, i.e., $s \equiv_{CTL^*} s'$.

Proof.

This is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$. The last step is trivial, since CTL^* is more expressive than CTL.

 2 This means that every state has only finitely many direct successors. This theorem does not hold for arbitrary infinite-state transition systems.

Joost-Pieter Katoen

Trace and Bisimulation Equivalence

Lecture#12+#13

Proof (2)

25/45

Example

Infinite-Branching

Joost-Pieter KatoenLecture#12+#1329/45Trace and Bisimulation EquivalenceFor any transition systems TS and TS' (over AP):TS ~ TS' iff $TS \equiv_{CTL} TS'$ iff $TS \equiv_{CTL}^* TS'$.

loost-Pieter Katoen Lecture#12+#13	30/45		
Trace and Bisimulation Equivalence			
Definition: CTL ⁻			
CTL^{-} state-formulas with $a \in AP$ obey the grammar:			
$\Phi ::= true \left a \right \Phi_1 \land \Phi_2 \left \neg \Phi \right \exists \bigcirc \Phi \left \forall \bigcirc \Phi \right $			

No until-modalities, so no \square and no \diamondsuit

- 1. CTL⁻ is strictly less expressive than CTL (and than CTL^{*}).
- 2. CTL⁻ equivalence coincides with CTL (and CTL^{*}) equivalence.

Proof.

Follows from the fact that in the proof of equivalence of \sim , \equiv_{CTL} and \equiv_{CTL^*} only CTL⁻-formulas are used. In particular, no until-modalities are used.

31/4

Joost-Pieter Katoen

Trace and Bisimulation Equivalenc

The Importance of These Results

- ► CTL⁻-, CTL- and CTL^{*}-equivalence coincide
 - despite the fact that these logics have different expressivity
- Bisimilar transition systems preserve the same CTL* formulas
 and thus the same LTL formulas (and LT properties)
- \blacktriangleright Non-bisimilarity can be shown by a single CTL⁻ formula Φ
 - ► $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\models TS_2$
- One does not even need to use an until-modality

Joost-Pieter Katoen	Lecture#12+#13
	CTL^* Model Checking
Overview	
 Expressiveness 	
2 Complexity Considerations	
Trace and Bisimulation Equivation	
4 CTL* Model Checking	
Commence of the second se	
5 Summary	

On Complexity

The decision problem whether two finite transition systems are trace equivalent is PSPACE-complete.

Proof.

Reduction from language equivalence of finite-state automata.

The decision problem whether two finite transition systems are bisimilar is PTIME-complete.

Proof.

A polynomial-time algorithm will be dealt with in an upcoming lecture. PTIME-hardness is outside the scope of this lecture.

Joost-Pieter Katoen

Lecture#12+#13

34/45

CTL* Model Checking

Syntax of CTL^*

Definition: Syntax CTL^{*}

▶ CTL^* state-formulas with $a \in AP$ obey the grammar:

$$\Phi ::= true \left| a \right| \Phi_1 \wedge \Phi_2 \left| \neg \Phi \right| \exists \varphi$$

> and φ is a CTL^{*} path-formula formed by the grammar:

$$\varphi ::= \Phi \left| \begin{array}{c} \varphi_1 \land \varphi_2 \end{array} \right| \left| \begin{array}{c} \neg \varphi \end{array} \right| \left| \begin{array}{c} \bigcirc \varphi \end{array} \right| \left| \begin{array}{c} \varphi_1 \lor \varphi_2 \end{array}$$

where Φ is a CTL^{*} state-formula, and φ , φ_1 and φ_2 are path-formulas.

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL.

35/45

Example

- ▶ In the end, this yields an LTL formula
- **b** Most interesting case: formulas of the form $\exists \varphi$

 $s \models_{CTL^*} \exists \varphi \text{ iff } \underbrace{s \notin_{CTL^*} \forall \neg \varphi}_{CTL^* \text{ semantics}} \text{ iff } \underbrace{s \notin_{LTL} \neg \varphi}_{LTL \text{ semantics}}$

Lecture#12+#13

$$Sat_{CTL*}(\exists \varphi) = S \setminus Sat_{LTL}(\neg \varphi) = S \setminus \{s \in S \mid s \models_{LTL} \neg \varphi\}$$

Embedding LTL

For LTL formula φ and TS without terminal states (both over AP) and for each $s \in S$:

 $\underbrace{s \models \varphi}_{\text{LTL semantics}} \quad \text{if and only if} \quad \underbrace{s \models \forall \varphi}_{\text{CTL}^* \text{ semantics}}$

In particular:

 $TS \models_{LTL} \varphi$ if and only if $TS \models_{CTL*} \forall \varphi$

Joost-Pieter Katoen

CTL* Model Checking

Example

Joost-Pieter Katoen

CTL* Model Checking

Complexity

The CTL^{*} model-checking algorithm for finite transition system *TS* and CTL^{*}-formula Φ has a time complexity in $O(|TS| \cdot 2^{|\Phi|})$.

Proof.

The recursive descent is linear in $|\Phi|$. The most expensive procedure for a node, i.e., sub-formula $\Psi = \exists \varphi$ of Φ , in the parse tree is in $O(|TS| \cdot 2^{|\Psi|})$.

The CTL [*] model-checking problem is PSPACE-complete.			
Proof.			
Outside the scope of this lecture series.			
Joost-Pieter Katoen	Lecture#12+#13	41/45	

Summary

Summary: Equivalences

- 1 Expressiveness
- 2 Complexity Considerations
- **③** Trace and Bisimulation Equivalence
- CTL* Model Checking
- 5 Summary

Joost-Pieter Katoen

Lecture#1

Summary

42/45

Complexity Overview

	CTL	LTL	CTL*
model checking	PTIME	PSPACE	PSPACE
algorithmic complexity	<i>TS</i> · Φ	$ \mathit{TS} \cdot \exp(arphi)$	$ TS \cdot \exp(\Phi)$
satisfiability	EXPTIME	PSPACE	2EXPTIME
equivalence equivalence checking	bisimilarity PTIME	trace equivalence PSPACE	bisimilarity PTIME

All theoretical complexity indications are complete.

Next Lecture

Thursday December 5, 10:30

Joost-Pieter Katoen

Lecture#12+#13

45/45