Model Checking Lecture #10: CTL Model Checking [Baier & Katoen, Chapter 6.4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

 Joost-Pieter Katoen
 Lecture#11

 Topic

 The CTL model-checking problem: Given:

 A finite transition system TS

CTL state-formula Φ

Decide whether $TS \models \Phi$, and if $TS \not\models \Phi$ provide a counterexample¹

Lecture#11

3/44

1/44

CTL Syntax

Joost-Pieter Katoen

Definition: Syntax Computation Tree Logic

▶ CTL state-formulas with $a \in AP$ obey the grammar:

 $\Phi ::= true \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \exists \varphi \left| \forall \varphi \right|$

 \blacktriangleright and φ is a path-formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2.$$

Examples

 $\forall \Box \exists \bigcirc a \text{ and } \exists (\forall \Box a) \cup b \text{ are CTL formulas.}$

Intuition

▶ $s \models \forall \varphi$ if all paths starting in *s* fulfill φ

loost-Pieter Katoen

¹CTL counterexamples are outside the scope of this course.

Intuitive CTL Semantics

6 Summary

Intuitive CTL Semantics

Joost-Pieter Katoen	Lecture#11	6/44
	_	
	CTL Semantics	

CTL Semantics

Define a satisfaction relation for CTL-formulas over AP for a given transition system TS without terminal states.

Two parts:

- ▶ Interpretation of state-formulas over states of *TS*
- Interpretation of path-formulas over paths of TS

CTL Semantics

CTL Semantics (1)

Notation

TS, $s \models \Phi$ if and only if state-formula Φ holds in state s of transition system *TS*. As *TS* is known from the context we simply write $s \models \Phi$.

Definition: Satisfaction relation for CTL state-formulas

The satisfaction relation \models is defined for CTL state-formulas by:

$s \models a$	iff	$a \in L(s)$
$s \models \neg \Phi$	iff	not $(s \models \Phi)$
$s \models \Phi \land \Psi$	iff	$(s \models \Phi)$ and $(s \models \Psi)$
$s \models \exists \varphi$	iff	there exists $\pi \in Paths(s)$. $\pi \models \varphi$
$s \models \forall \varphi$	iff	for all $\pi \in Paths(s)$. $\pi \models \varphi$

where the semantics of CTL path-formulas is defined on the next slide.

Joost-Pieter Katoen

Transition System Semantics

For CTL-state-formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

Lecture#11

CTL Semantics

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

Point of attention: TS ∉ Φ is not equivalent to TS ⊨ ¬Φ because of several initial states, e.g., s₀ ⊨ ∃□Φ and s'₀ ∉ ∃□Φ

CTL Semantics (2)

Definition: satisfaction relation for CTL path-formulas

Given path π and CTL path-formula φ , the satisfaction relation \models where $\pi \models \varphi$ if and only if path π satisfies φ is defined as follows:

 $\pi \models \bigcirc \Phi \quad \text{iff } \pi[1] \models \Phi$ $\pi \models \Phi \cup \Psi \quad \text{iff } (\exists j \ge 0, \pi[j] \models \Psi \text{ and } (\forall 0 \le i < j, \pi[i] \models \Phi))$

where $\pi[i]$ denotes the state s_i in the path $\pi = s_0 s_1 s_2 \dots$

Joost-Pieter Katoen

Existential Normal Form

10/44

Overview

CTL Semantics

- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking EU and ∃□
- **5** Complexity Considerations
- 6 Summary

9/44

Existential Normal Form

Existential Normal Form

Definition: existential normal form
A CTL formula is in existential normal form (ENF) if it is of the form:
$\Phi ::= true \left a \right \Phi_1 \land \Phi_2 \left \neg \Phi \right \exists \bigcirc \Phi \left \exists (\Phi_1 \cup \Phi_2) \right \exists \Box \Phi$
Only existentially quantified temporal modalities \bigcirc , U and \Box .
For each CTL formula, there exists an equivalent CTL formula in ENF.
Proof.
Universally quantified temporal modalities can be transformed as follows:
$\forall \bigcirc \Phi \equiv \neg \exists \bigcirc \neg \Phi$
$\forall (\Phi \cup \Psi) \equiv \neg \exists (\neg \Psi \cup (\neg \Phi \land \neg \Psi)) \land \neg \exists \Box \neg \Psi$
Joost-Pieter Katoen Lecture#11 13
Basic CTL Model-Checking Algorithm

Basic Idea

- How to check whether TS satisfies CTL formula Ψ ?
 - \blacktriangleright convert the formula Ψ into the equivalent Φ in ENF
 - compute recursively the set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$
 - TS $\models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive bottom-up computation of $Sat(\Phi)$:
 - \blacktriangleright consider the parse tree of Φ
 - **•** start to compute $Sat(a_i)$, for all leafs in the parse tree
 - **•** then go one level up in the tree and determine $Sat(\cdot)$ for these nodes

e.g.,:
$$Sat(\underbrace{\Psi_1 \land \Psi_2}_{\text{node at level }i}) = Sat(\underbrace{\Psi_1}_{\text{node at level }i+1}) \cap Sat(\underbrace{\Psi_2}_{\text{node at level }i+1})$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- ▶ and so on..... until the root is treated, i.e., $Sat(\Phi)$ is computed
- ▶ Check whether $I \subseteq Sat(\Phi)$.

Overview

CTL Semantics
 Existential Normal Form
 Basic CTL Model-Checking Algorithm
 Model Checking EU and ED
 Complexity Considerations
 Summary

Joost-Pieter Katoen

Lecti

14/44

Basic CTL Model-Checking Algorithm

Basic Algorithm

$$\Phi = \underbrace{\exists \bigcirc a}_{\Phi_1} \lor \underbrace{\exists (b \cup \neg c)}_{\Phi_2} \implies a_1 \lor a_2$$
syntax tree for Φ

$$a_1 = \underbrace{\exists \bigcirc}_{\Phi_1} a_2$$

$$a_1 = \underbrace{\exists \bigcirc}_{\Phi_1} a_2$$

$$a_1 = \underbrace{\exists \bigcirc}_{\Phi_2} a_2$$

$$a_2 = \underbrace{d_1 \otimes d_2 \otimes d_2$$

Basic Algorithm

<i>Sat</i> (true)	=	5
Sat(a)	=	$\{s \in S \mid a \in L(s)\}$
Sat(¬Φ)	=	$S \setminus Sat(\Phi)$
$Sat(\Phi \land \Psi)$	=	$Sat(\Phi) \cap Sat(\Psi)$
$Sat(\exists \bigcirc \Phi)$	=	$\{s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset\}$
Sat(∃□Φ)	=	
$Sat(\exists (\Phi \cup \Psi))$	=	

Treatment of $\exists \Box \Phi$ and $\exists (\Phi \cup \Psi)$: via a fixed-point computation

Joost-Pieter Katoen	Lecture#11	17/44
	Model Checking EU and $\exists \square$	
Characteriz Expansion law:	ation of Sat for EU	
	$\exists (\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi))$	
$\ln f_{0} \to -\pi/(\frac{1}{2})$	<i>J</i>) is the smallest solution of this recursive equation	

 $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S, such that:

(1)
$$Sat(\Psi) \subseteq T$$
 and (2) $(s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset) \Rightarrow s \in T$.

That is, $T = Sat(\exists (\Phi \cup \Psi))$ is the smallest fixed point of the (higher-order) function $\Omega : 2^S \to 2^S$ given by:

$$\Omega(T) = Sat(\Psi) \cap \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}$$

Lecture#11

Overview

- 1 CTL Semantics
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking EU and $\exists \Box$
- **5** Complexity Considerations
- 6 Summary

Joost-Pieter Katoen Lecture#11 18/44 Model Checking EU and 3

Proof

Model Checking EU and 3

Characterization of Sat for $\exists \Box$

Expansion law:

 $\Phi \Box E \bigcirc E \land \Phi \equiv \Phi \Box E$

In fact, $\exists \Box \Phi$ is the largest solution of this recursive equation

 $Sat(\exists \Box \Phi)$ is the largest subset V of S, such that:

```
(1) V \subseteq Sat(\Phi) and (2) s \in V implies Post(s) \cap V \neq \emptyset.
```

That is, $V = Sat(\exists \Box \Phi)$ is the largest fixed point of the (higher-order) function $\Omega : 2^S \to 2^S$ given by:

 $\Omega(V) = \{ s \in Sat(\Phi) \mid Post(s) \cap V \neq \emptyset \}$

Joost-Pieter Katoen	Lecture#11	21/44
	Model Checking EU and ∃	
Universally Quantified For	mulas	
	manas	
► $Sat(\forall \bigcirc \Phi) = \{s \in S \mid Post(s)\}$	$\subseteq Sat(\Phi)$	
► $Sat(\forall \Box \Phi)$ equals the largest set	T of states such that:	
$T \subseteq \{s \in Sa$	$at(\Phi) \mid Post(s) \subseteq T \}$	
► $Sat(\forall(\Phi \cup \Psi))$ is the smallest set	t <i>T</i> of states such that:	
$Sat(\Psi) \cup \{s \in Sat$	$f(\Phi) \mid Post(s) \subseteq T \} \subseteq T$	

Example

Joost-Pieter Katoer

V = { s_0 } satisfies the condition

$$V \subseteq \{ s \in Sat(\Phi) \mid Post(s) \cap V \neq \emptyset \}$$

but
$$V \subset Sat(\exists \Box a) = \{ s_0, s_1 \}$$

Lecture#11

Model Checking EU and 3

Model Checking EU

 $Sat(\exists (\phi \cup \psi))$ is the smallest subset T of S, such that:

(1) $Sat(\Psi) \subseteq T$ and (2) $(s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset) \Rightarrow s \in T$.

This suggests to compute $Sat(\exists (\phi \cup \psi))$ iteratively:

 $T_0 = Sat(\Psi)$ and $T_{i+1} = T_i \cup \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \emptyset\}$

- \blacktriangleright T_i = states that can reach a Ψ -state in at most *i* steps via Φ states
- ▶ By induction it follows:

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots \subseteq Sat(\exists (\Phi \cup \Psi))$$

Lecture#11

As *TS* is finite, we have $T_{k+1} = T_k = Sat(\exists (\Phi \cup \Psi))$ for some *k*.

Joost-Pieter Katoen

Model Checking EU and $\exists \Box$

Model Checking EU in Pictures

Example

Joost-Piet	ter Katoen Lectu	re#11	25/44
	Mode	el Checking EU and 3	
Alg	orithm		
г			
	$T := Sat(\Phi_2) \longleftarrow \text{ collects all s}$	states $s \models \exists (\Phi_1 \cup \Phi_2)$	
	$E := Sat(\Phi_2) \longleftarrow \text{ set of states}$	s still to be expanded	
	WHILE $E \neq \emptyset$ DO select a state $s' \in E$ and represented a state $s' \in F$ and represented a state $s' \in Fre(s')$ DO IF $s \in Sat(\Phi_1) \setminus T$ THEN OD OD		
	T		

return T

Compute $Sat(\exists \Phi \cup \Psi)$ by a linear-time enumerative backward search

oost-Pieter Ka	toen	Lecture#11	26/44
Mode	I Checking ∃□	Model Checking EU and ∃⊔	
Sat(∃⊡	Φ) is the largest subset V o (1) $V ⊆ Sat(Φ)$ and (2)	of <i>S</i> , such that: $s \in V$ implies <i>Post</i> (<i>s</i>) $\cap V \neq \emptyset$.	
► Th	is suggests to compute $Sat(V_0 = Sat(\Phi))$ and V_{i-1}	$(\exists \Box \Phi) \text{ iteratively:} _{+1} = \{ s \in T_i \mid Post(s) \cap V_i \neq \emptyset \}$	
	= states that have some Φ induction it follows:	-path of at least <i>i</i> transitions	

- $V_0 \supseteq V_1 \supseteq \ldots \supseteq V_j \supseteq V_{j+1} \supseteq \ldots \supseteq Sat(\exists \Box \Phi)$
- As *TS* is finite, we have $V_{k+1} = V_k = Sat(\exists \Box \Phi)$ for some *k*.

28/

Algorithm

Compute $Sat(\exists \Box \Phi)$ by a linear-time enumerative backward search

Example

30/44

32/44

An Alternative SCC-Based Algorithm

An SCC-based algorithm for determining $Sat(\exists \Box \Phi)$:

- 1. Eliminate all states $s \notin Sat(\Phi)$:
 - ▶ determine $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi), \rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S'$, and L'(s) = L(s) for $s \in S'$
 - Why? all removed states refute $\exists \Box \Phi$ and thus can be safely removed
- 2. Determine all non-trivial strongly connected components in $TS[\Phi]$
 - non-trivial SCC = maximal, connected sub-graph with > 0 transition
 - \Rightarrow any state in such SCC satisfies $\exists \Box \Phi$
- 3. $s \models \exists \Box \Phi$ is equivalent to "an SCC in $TS[\Phi]$ is reachable from s"
 - this search can be done in a backward manner in linear time

Example

Determining $Sat(\exists \Box q)$ using the SCC-based algorithm

Lecture#11

Complexity Considerations

Time Complexity

Complexity of CTL Model-Checking Problem

The CTL model-checking problem can be solved in $O(|\Phi| \cdot |TS|)$.

Proof.

- 1. The parse tree of Φ has size $O(|\Phi|)$
- 2. The time complexity at a node of the parse tree is in O(|TS|)
- 3. This holds in particular for computing $Sat(\exists U)$ and $Sat(\exists \Box ...)$
- 4. The entire time complexity is thus in $O(|\Phi| \cdot |TS|)$

Joost-Pieter Katoen	Lecture#11	37/44

Complexity Considerations

CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete CTL model checking is PTIME-complete.

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!

LTL-formulae can be exponentially shorter than their CTL-equivalent

The CTL model-checking problem is PTIME-complete.

Proof.		
Joost-Pieter Katoen	Lecture#11	38/44

CTL Versus LTL

If Φ is equivalent to some LTL-formula φ then:

 $\Phi \equiv \varphi$ where φ is obtained by removing all path quantifiers from Φ . In particular, $|\varphi| \leq |\Phi|$.

Complexity Considerations

If P \neq NP, then there is a sequence φ_n , $n \ge 0$ of LTL formulas such that:

- \triangleright $|\varphi_n|$ is polynomial in *n*
- $\triangleright \varphi_n$ has an equivalent CTL formula
- **b** no CTL formula of polynomial length is equivalent to φ_n

Proof.

Take φ_n = the absence of a Hamiltonian path in a digraph on n vertices

Lecture#1

Complexity Considerations

LTL Encoding the Hamiltonian Path Problem

CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to φ_n . Then: as CTL model-checking is $\in P$, the Hamiltonian path problem $\in P$, and P = NP.

Lecture#11	41/44 Joost-Pieter Katoen Lecture#11
Summary	Summary
	Summary
	► CTL model checking determines $Sat(\Phi)$ by
m	Sat($\exists (\Phi \cup \Psi))$ is approximated from below
king Algorithm	Ψ-states
DE b	$\blacktriangleright \exists \Box \Phi$ is approximated from above by a ba
	The CTL model-checking algorithm is lin
	The CTL model-checking problem is PTI

es $Sat(\Phi)$ by a recursive descent over Φ from below by a backward search from

- ove by a backward search from Φ -states
- ithm is linear in the size of TS and Φ
- lem is PTIME-complete