Model Checking
Lecture #10: CTL Model Checking

[Baier & Katoen, Chapter 6.4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#11 1/44

N
Topic

The CTL model-checking problem:
Given:
P A finite transition system TS
» CTL state-formula ¢

Decide whether TSE &, and if TS # ® provide a counterexample1

cTL counterexamples are outside the scope of this course.

Joost-Pieter Katoen Lecture#11 3/44

Overview

@ CTL Semantics

@ Existential Normal Form

© Basic CTL Model-Checking Algorithm
@ Model Checking EU and 30

© Complexity Considerations

@ Summary

Joost-Pieter Katoen Lecture#11 2/44

N
CTL Syntax

Definition: Syntax Computation Tree Logic

» CTL state-formulas with a € AP obey the grammar:
® = true | a | P A Dy | - | Jp | Yo
» and ¢ is a path-formula formed by the grammar:
o = O® ‘ o, U b,

vO3QO a and 3(VOa) U b are CTL formulas.

Intuition

» s E Vo if all paths starting in s fulfill ¢

Joost-Pieter Katoen Lecture#11

|
Intuitive CTL Semantics

o1 UD,) o V(e Ud,) o
A0 0 Yoo .O‘
Joost-Pieter Katoen Lecture#11 5/44

CTL Semantics

Overview

@ CTL Semantics

Joost-Pieter Katoen Lecture#11 7/44

I e
Intuitive CTL Semantics

VOob 30

0w '. vOw i
Joost-Pieter Katoen Lecture#11 6/44

CTL Semantics

Define a satisfaction relation for CTL-formulas over AP for a given
transition system TS without terminal states.
Two parts:

P Interpretation of state-formulas over states of TS

P Interpretation of path-formulas over paths of TS

Joost-Pieter Katoen Lecture#11 8/44

CTL Semantics (1) CTL Semantics (2)

TS, s E ® if and only if state-formula ® holds in state s of transition
system TS. As TS is known from the context we simply write s F ®.

Definition: satisfaction relation for CTL path-formulas

Definition: Satisfaction relation for CTL state-formulas Given path 7 and CTL path-formula ¢, the satisfaction relation F where
7 E ¢ if and only if path 7 satisfies ¢ is defined as follows:

The satisfaction relation E is defined for CTL state-formulas by:

TEQ® iff 7[1]E &

skFa iff ae€L(s)

SE = iff not (s k ®) TEOUV iff (3j20.7[j]F WV and (VO <i<j. n[i]F ®))
sEO AV iff (sF®)and(sF V) where 7r[i] denotes the state s; in the path m = s5s15,.. ..

sEdp iff there exists m € Paths(s). mF ¢

sEVyp iff for all w € Paths(s). mE ¢

where the semantics of CTL path-formulas is defined on the next slide.

Joost-Pieter Katoen Lecture#11 9/44 Joost-Pieter Katoen Lecture#11 10/44

CTL Semantics Existential Normal Form

Transition System Semantics Overview

» For CTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat{®) = {s€S|skFd} @ Existential Normal Form

P TS satisfies CTL-formula @ iff ® holds in all its initial states:

TSE® ifandonlyif Vsyel.spE®

» Point of attention: TS & is not equivalent to TS F =
because of several initial states, e.g., sp E 30 and s ¥ 30

Joost-Pieter Katoen Lecture#11 11/44 Joost-Pieter Katoen Lecture#11 12/44

Existential Normal Form

Definition: existential normal form
A CTL formula is in existential normal form (ENF) if it is of the form:

® = true ‘ 3 ‘ ®; A D, | b | 30 ¢ ‘ 3(d, Udy) | 300

Only existentially quantified temporal modalities O, U and O.

|
For each CTL formula, there exists an equivalent CTL formula in ENF.

Universally quantified temporal modalities can be transformed as follows:

VO o = —-EIO -o
V(q) U W) —-EI(—&I! U (—|¢ A —1\”)) A —30-¥

Joost-Pieter Katoen Lecture#11 13/44

Basic CTL Model-Checking Algorithm

Basic ldea

» How to check whether TS satisfies CTL formula W7

P convert the formula W into the equivalent ® in ENF
» compute recursively the set Sat(®)={se€ S|sk d}
» TSE o if and only if each initial state of TS belongs to Sat(®)

» Recursive bottom-up computation of Sat(P):
P consider the parse tree of ®
P start to compute Sat(a;), for all leafs in the parse tree
P then go one level up in the tree and determine Sat(-) for these nodes
e.g., Sat{W; AW,) = Sat{ W,) n Sat(V,)
—— -~ -

node at level / node at node at
level i+1 level i+1

» then go one level up and determine Sat(-) of these nodes
» andsoon...... until the root is treated, i.e., Sat(®) is computed

» Check whether I € Sat(®).

Joost-Pieter Katoen Lecture#11 15/44

Basic CTL Model-Checking Algorithm
Overview

© Basic CTL Model-Checking Algorithm

Joost-Pieter Katoen Lecture#11 14/44

Basic Algorithm
o= 3d0a v3I(bU-c) ~ aVa

N N\ —
0%} >,

syntax tree for ®

compute Sat(a), Sat(b), Sat(c)
Sat(®y) = ... = Sat(a;)
Sat(—c) = S\ Sat(c)

Sat(P,) = ... = Sat(ay)

replace ®; with a;
replace ®, with a»

Sat(®) = Sat(a;) U Sat(a,)

processed in
bottom-up fashion

Joost-Pieter Katoen Lecture#11 16/44

Basic Algorithm

Sat(true) = S
Sat(la) = {seS|ael(s)}
Sat(-®) = S\ Sat(®)
Sat(d A V) = Sat(®) n Sat(V)
Sat(3OP) = {s€ S| Post(s) n Sat(d) + @}
Sat(30®P) =
Sat(3(PUWV)) =

Treatment of 30 and 3($ U V): via a fixed-point computation

Joost-Pieter Katoen Lecture#11 17/44

Model Checking EU and 3L

Characterization of Sat for EU
Expansion law:

FPUV) = W v (& A FOI(PUV))
In fact, 3(® U V) is the smallest solution of this recursive equation
|

Sat(3(® U V)) is the smallest subset T of S, such that:

(1) Sat(Ww) € T and (2) (s € Sat(®) and Post(s)n T +@) = se T.

That is, T = Sat(3(® U V)) is the smallest fixed point of the (higher-order)
function Q :2° - 2° given by:

Q(T) = Sat(V) n {s € Sat(®) | Post(s) n T + @}

Joost-Pieter Katoen Lecture#11 19/44

Model Checking EU and 3L

Overview

@ Model Checking EU and 30

Joost-Pieter Katoen Lecture#11 18/44

Proof

Joost-Pieter Katoen Lecture#11 20/44

Characterization of Sat for 30

Expansion law:
JOo = ¢ A 30O 3O

In fact, 300D is the largest solution of this recursive equation

|
Sat(30d) is the largest subset V of S, such that:

(1) V ¢ Sat(®) and (2) s € V implies Post(s)n V # @.

That is, V = Sat(30®) is the largest fixed point of the (higher-order)
function Q:2° - 2° given by:

Q(V) = {se Sat(d) | Post(s) n V+a}

Joost-Pieter Katoen Lecture#11 21/44

Universally Quantified Formulas

> Sa(VO ®) = {s €S| Post(s) € Sat(d) }

P Sat(VO®) equals the largest set T of states such that:

T c {se Sat{®) | Post(s) € T}

P Sat(V(® U W)) is the smallest set T of states such that:

Sat(V) U {s € Sat(d) | Post(s)c T} ¢ T

Joost-Pieter Katoen Lecture#11 23/44

Model Checking EU and 3L

Example
V = {5y} satisfies the condition
Cc
S1 V c {seSat(®)| Post(s) n V+a}
but V ¢ Sat(30a) = { 59, 51 }

Model Checking EU and 3L

Model Checking EU

|
Sat(3(d U V)) is the smallest subset T of S, such that:

(1) Sat(Ww) € T and (2) (s € Sat(®) and Post(s)n T +#@) = se T.

» This suggests to compute Sat(3(P U V)) iteratively:
To = Sat(V) and Tjyp = T; U {s€ Sat(d) | Post(s)n T; # @}

P T; = states that can reach a W-state in at most /i steps via ¢ states

» By induction it follows:

TocTHiS...€T;c T & ... € Sat(I(PUV))

» As TS is finite, we have Ty,1 = Ty = Sat(3(® U V)) for some k.

Joost-Pieter Katoen Lecture#11 24/44

Model Checking EU in Pictures

Joost-Pieter Katoen Lecture#11 25/44

Algorithm

T := Sat(®;) «—|collects all states s |= (P4 U)
E := Sat($,) <—| set of states still to be expanded‘

WHILE E 75 @ DO
select a state s’ € E and remove s’ from E
FOR ALL s € Pre(s’) DO

IF s € Sat(®;) \ T THEN add s to T and E FI

0D
0D

return T

Compute Sat(3® U V) by a linear-time enumerative backward search

Joost-Pieter Katoen Lecture#11 27/44

Model Checking EU and 3L

Example
{r} Do O
{pyasr} {p}
{q} {p,7}
{a.r} {p,q} i

(®)

&

(©)

Computing 3¢ ((p=r) A (p # q))

Joost-Pieter Katoen Lecture#11 26/44

Model Checking EU and 3L

Model Checking 3O

|
Sat(30®) is the largest subset V of S, such that:

(1) V € Sat(®) and (2) s € V implies Post(s)n V # @.

» This suggests to compute Sat(30OP) iteratively:
Vo = Sat(®) and Vi = {s€ T;| Post(s) n V; + @}

P V; = states that have some ®-path of at least / transitions

» By induction it follows:
Vo2Vi2...2 VjQ Vj+12 ... 2 Sat(30O9)

» As TS is finite, we have V1 = V| = Sat{30®) for some k.

Joost-Pieter Katoen Lecture#11 28/44

Model Checking EU and 3L

Algorithm
T := Sat(®) «| organizes the candidates for s |= 30

E:=5\T « set of states to be expanded
WHILE E # @ DO
pick a state s’ € E and remove s’ from E

FOR ALL s € Pre(s") DO
IF s€ T and| Post(s)N T = @ | THEN

remove s from T and add s to E

FI
oD — .
return T naive implementation:

quadratic time complexity

Compute Sat(3O®P) by an enumerative backward search

Lecture#11 29/44

Joost-Pieter Katoen

Model Checking EU and 3L

Linear-Time Algorithm Using Counters

T := Sat(®); E:=S\T
FOR ALL s € Sat(®) DO cls] := |Post(s)| 0D

loop invariant: ¢[s] = |Post(s)N(TUE)| forse T
WHILE E # @ DO
pick a state s’ € E and remove s’ from E
FOR ALL s € Pre(s’) DO
IF se€ T THEN
c[s] :=c[s] -1

IF c[s] =0 THEN
remove s from T and add s to E FI

FI
0D
Compute Sat(30P) by a linear-time enumerative backward search

Joost-Pieter Katoen Lecture#11

31/44

Model Checking EU and 3L

Linear-Time Algorithm
T := Sat(®) | organizes the candidates for s | 30¢

E:=S\T « setof states to be expanded
WHILE E # @ DO
pick a state s’ € E and remove s’ from E

FOR ALL s € Pre(s’) DO
IF s€ T and| Post(s)N(TUE) =@ | THEN

remove s from T and add s to E

FI
0D linear time implementation:
return T uses counters cl[s] for
|Post(s) N (T UE)|

Compute Sat(30P) by a linear-time enumerative backward search
Lecture#11

Joost-Pieter Katoen

Model Checking EU and 3L

Example

Lecture#11
—y o

Joost-Pieter Katoen

30/44

An Alternative SCC-Based Algorithm

An SCC-based algorithm for determining Sat(30):
1. Eliminate all states s ¢ Sat(®):
P determine T ®] = (S', Act,~>', I', AP, L") with
S'=Sat(®), > ' = > n(S'xActx S'), I'=1n S, and L'(s) = L(s) for
seS
» Why? all removed states refute 300 and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[®]

» non-trivial SCC = maximal, connected sub-graph with > 0 transition
= any state in such SCC satisfies 300

3. s F 30 is equivalent to “an SCC in TS[®] is reachable from s”

P this search can be done in a backward manner in linear time

Joost-Pieter Katoen Lecture#11 33/44

CTL Model-Checking Algorithm

Sat(true) S
Sat(a) = {seS|ael(s)}
Sat(~®) = S\ Sat(d)

Sat(® A V) = Sat(d) n Sat(V)
Sat(3OP) = {se S| Post(s) n Sat(®) + 2}
Sat(30P) = (), V where

VO = Sat(CD)
Viu1={s€T;| Postls) n V, + @}

Sat(APUW)) = (U, Tn where

TO = Sat(\U)
Toi1 =T, U {s€Sat(®) | Post(s)n T, + @}

Joost-Pieter Katoen Lecture#11 35/44

Model Checking EU and 3L

Example
{77} -
{P,q,T} {p}
{a} {p,7}
{ar} T {p.a}
(a) (b) TS[q]
4‘
(c) scc ()

Determining Sat(30q) using the SCC-based algorithm

Joost-Pieter Katoen Lecture#11 34/44

Complexity Considerations

Overview

© Complexity Considerations

Joost-Pieter Katoen Lecture#11 36/44

Time Complexity

|
The CTL model-checking problem can be solved in O(|®| - |TS|).

Proof.
1. The parse tree of ® has size O(|®|)
2. The time complexity at a node of the parse tree is in O(| TS|)
3. This holds in particular for computing Sat(3U) and Sat(30...)
4. The entire time complexity is thus in O(|®| - | TS|)

Joost-Pieter Katoen Lecture#11 37/44

CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete
CTL model checking is PTIME-complete.

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!

LTL-formulae can be exponentially shorter than their CTL-equivalent

Joost-Pieter Katoen Lecture#11 39/44

Complexity of CTL Model-Checking Problem

|
The CTL model-checking problem is PTIME-complete.

[]

Joost-Pieter Katoen Lecture#11 38/44

CTL Versus LTL

If ® is equivalent to some LTL-formula ¢ then:

® = p where @ is obtained by removing all path quantifiers from .
In particular, |p]| < |®|.

|
If P # NP, then there is a sequence ¢, n = 0 of LTL formulas such that:

» |©,| is polynomial in n
» ©, has an equivalent CTL formula
» no CTL formula of polynomial length is equivalent to ¢,

Take ¢, = the absence of a Hamiltonian path in a digraph on n
vertices [

Joost-Pieter Katoen Lecture#11 40/44

LTL Encoding the Hamiltonian Path Problem CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to ¢,,.
Then: as CTL model-checking is € P,
the Hamiltonian path problem € P, and P = NP.

Joost-Pieter Katoen Lecture#11 41/44 Joost-Pieter Katoen Lecture#11 42/44
Overview Summary

» CTL model checking determines Sat(®) by a recursive descent over ®

P Sat{3(d U V)) is approximated from below by a backward search from
W-states

» 30O is approximated from above by a backward search from ®-states
» The CTL model-checking algorithm is linear in the size of TS and ®

© Summary » The CTL model-checking problem is PTIME-complete

Joost-Pieter Katoen Lecture#11 43/44 Joost-Pieter Katoen Lecture#11 44/44

	CTL Semantics
	Existential Normal Form
	Basic CTL Model-Checking Algorithm
	Model Checking EU and
	Complexity Considerations
	Summary

