
Model Checking
Lecture #10: CTL Model Checking

[Baier & Katoen, Chapter 6.4]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#11 1/44

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 2/44

Topic

The CTL model-checking problem:
Given:

▶ A finite transition system TS

▶ CTL state-formula Φ

Decide whether TS ⊧ Φ, and if TS /⊧ Φ provide a counterexample1

1CTL counterexamples are outside the scope of this course.
Joost-Pieter Katoen Lecture#11 3/44

CTL Syntax
Definition: Syntax Computation Tree Logic

▶ CTL state-formulas with a ∈ AP obey the grammar:

Φ ∶∶= true
»»»»»» a

»»»»»» Φ1 ∧ Φ2
»»»»»» ¬Φ

»»»»»» ∃ϕ
»»»»»» ∀ϕ

▶ and ϕ is a path-formula formed by the grammar:

ϕ ∶∶= ◯Φ
»»»»»» Φ1 UΦ2.

Examples
∀□∃◯ a and ∃(∀□a)U b are CTL formulas.

Intuition
▶ s ⊧ ∀ϕ if all paths starting in s fulfill ϕ
▶ s ⊧ ∃ϕ if some path starting in s fulfill ϕ

Joost-Pieter Katoen Lecture#11 4/44

Intuitive CTL Semantics

Joost-Pieter Katoen Lecture#11 5/44

Intuitive CTL Semantics

Joost-Pieter Katoen Lecture#11 6/44

CTL Semantics

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 7/44

CTL Semantics

CTL Semantics

Define a satisfaction relation for CTL-formulas over AP for a given
transition system TS without terminal states.

Two parts:

▶ Interpretation of state-formulas over states of TS

▶ Interpretation of path-formulas over paths of TS

Joost-Pieter Katoen Lecture#11 8/44

CTL Semantics

CTL Semantics (1)
Notation
TS, s ⊧ Φ if and only if state-formula Φ holds in state s of transition
system TS. As TS is known from the context we simply write s ⊧ Φ.

Definition: Satisfaction relation for CTL state-formulas
The satisfaction relation ⊧ is defined for CTL state-formulas by:

s ⊧ a iff a ∈ L(s)
s ⊧ ¬Φ iff not (s ⊧ Φ)
s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)
s ⊧ ∃ϕ iff there exists π ∈ Paths(s). π ⊧ ϕ
s ⊧ ∀ϕ iff for all π ∈ Paths(s). π ⊧ ϕ

where the semantics of CTL path-formulas is defined on the next slide.

Joost-Pieter Katoen Lecture#11 9/44

CTL Semantics

CTL Semantics (2)

Definition: satisfaction relation for CTL path-formulas
Given path π and CTL path-formula ϕ, the satisfaction relation ⊧ where
π ⊧ ϕ if and only if path π satisfies ϕ is defined as follows:

π ⊧◯Φ iff π[1] ⊧ Φ
π ⊧ ΦUΨ iff (∃ j ≥ 0. π[j] ⊧ Ψ and (∀ 0 ≤ i < j . π[i] ⊧ Φ))

where π[i] denotes the state si in the path π = s0 s1 s2

Joost-Pieter Katoen Lecture#11 10/44

CTL Semantics

Transition System Semantics

▶ For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S ∣ s ⊧ Φ }

▶ TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS ⊧ Φ if and only if ∀s0 ∈ I. s0 ⊧ Φ

▶ Point of attention: TS /⊧ Φ is not equivalent to TS ⊧ ¬Φ
because of several initial states, e.g., s0 ⊧ ∃□Φ and s ′0 /⊧ ∃□Φ

Joost-Pieter Katoen Lecture#11 11/44

Existential Normal Form

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 12/44

Existential Normal Form

Existential Normal Form

Definition: existential normal form
A CTL formula is in existential normal form (ENF) if it is of the form:

Φ ∶∶= true
»»»»»» a

»»»»»» Φ1 ∧ Φ2
»»»»»» ¬Φ

»»»»»» ∃◯Φ
»»»»»» ∃(Φ1 UΦ2)

»»»»»» ∃□Φ

Only existentially quantified temporal modalities ◯ , U and □ .

For each CTL formula, there exists an equivalent CTL formula in ENF.

Proof.
Universally quantified temporal modalities can be transformed as follows:

∀◯Φ ≡ ¬∃◯¬Φ
∀(ΦUΨ) ≡ ¬∃(¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬∃□¬Ψ

Joost-Pieter Katoen Lecture#11 13/44

Basic CTL Model-Checking Algorithm

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 14/44

Basic CTL Model-Checking Algorithm

Basic Idea
▶ How to check whether TS satisfies CTL formula Ψ?

▶ convert the formula Ψ into the equivalent Φ in ENF
▶ compute recursively the set Sat(Φ) = { s ∈ S ∣ s ⊧ Φ }
▶ TS ⊧ Φ if and only if each initial state of TS belongs to Sat(Φ)

▶ Recursive bottom-up computation of Sat(Φ):
▶ consider the parse tree of Φ
▶ start to compute Sat(ai), for all leafs in the parse tree
▶ then go one level up in the tree and determine Sat(⋅) for these nodes

e.g.,: Sat(Ψ1 ∧ Ψ2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
node at level i

) = Sat(Ψ1ÍÒÑÒÏ
node at
level i+1

) ∩ Sat(Ψ2ÍÒÑÒÏ
node at
level i+1

)

▶ then go one level up and determine Sat(⋅) of these nodes
▶ and so on....... until the root is treated, i.e., Sat(Φ) is computed

▶ Check whether I ⊆ Sat(Φ).
Joost-Pieter Katoen Lecture#11 15/44

Basic CTL Model-Checking Algorithm

Basic Algorithm

Joost-Pieter Katoen Lecture#11 16/44

Basic CTL Model-Checking Algorithm

Basic Algorithm

Sat(true) = S
Sat(a) = { s ∈ S ∣ a ∈ L(s) }

Sat(¬Φ) = S \ Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(∃◯Φ) = { s ∈ S ∣ Post(s) ∩ Sat(Φ) ≠ ∅ }
Sat(∃□Φ) =

Sat(∃(ΦUΨ)) =

Treatment of ∃□Φ and ∃(ΦUΨ): via a fixed-point computation

Joost-Pieter Katoen Lecture#11 17/44

Model Checking EU and ∃□

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 18/44

Model Checking EU and ∃□

Characterization of Sat for EU
Expansion law:

∃(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∃◯∃(ΦUΨ))

In fact, ∃(ΦUΨ) is the smallest solution of this recursive equation

Sat(∃(ΦUΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T ≠ ∅) ⇒ s ∈ T .

That is, T = Sat(∃(ΦUΨ)) is the smallest fixed point of the (higher-order)
function Ω ∶ 2S

→ 2S given by:

Ω(T) = Sat(Ψ) ∩ { s ∈ Sat(Φ) ∣ Post(s) ∩ T ≠ ∅ }

Joost-Pieter Katoen Lecture#11 19/44

Model Checking EU and ∃□

Proof

Joost-Pieter Katoen Lecture#11 20/44

Model Checking EU and ∃□

Characterization of Sat for ∃□
Expansion law:

∃□Φ ≡ Φ ∧ ∃◯∃□Φ

In fact, ∃□Φ is the largest solution of this recursive equation

Sat(∃□Φ) is the largest subset V of S, such that:

(1) V ⊆ Sat(Φ) and (2) s ∈ V implies Post(s) ∩ V /= ∅.

That is, V = Sat(∃□Φ) is the largest fixed point of the (higher-order)
function Ω ∶ 2S

→ 2S given by:

Ω(V) = { s ∈ Sat(Φ) ∣ Post(s) ∩ V ≠ ∅ }

Joost-Pieter Katoen Lecture#11 21/44

Model Checking EU and ∃□

Example

V = { s0 } satisfies the condition

V ⊆ { s ∈ Sat(Φ) ∣ Post(s) ∩ V ≠ ∅ }

but V ⊂ Sat(∃□a) = { s0, s1 }

Joost-Pieter Katoen Lecture#11 22/44

Model Checking EU and ∃□

Universally Quantified Formulas

▶ Sat(∀◯Φ) = { s ∈ S ∣ Post(s) ⊆ Sat(Φ) }

▶ Sat(∀□Φ) equals the largest set T of states such that:

T ⊆ { s ∈ Sat(Φ) ∣ Post(s) ⊆ T }

▶ Sat(∀(ΦUΨ)) is the smallest set T of states such that:

Sat(Ψ) ∪ { s ∈ Sat(Φ) ∣ Post(s) ⊆ T } ⊆ T

Joost-Pieter Katoen Lecture#11 23/44

Model Checking EU and ∃□

Model Checking EU

Sat(∃(ΦUΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T ≠ ∅) ⇒ s ∈ T .

▶ This suggests to compute Sat(∃(ΦUΨ)) iteratively:
T0 = Sat(Ψ) and Ti+1 = Ti ∪ { s ∈ Sat(Φ) ∣ Post(s) ∩ Ti /= ∅ }

▶ Ti = states that can reach a Ψ-state in at most i steps via Φ states

▶ By induction it follows:

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . . ⊆ Sat(∃(ΦUΨ))

▶ As TS is finite, we have Tk+1 = Tk = Sat(∃(ΦUΨ)) for some k.
Joost-Pieter Katoen Lecture#11 24/44

Model Checking EU and ∃□

Model Checking EU in Pictures

Joost-Pieter Katoen Lecture#11 25/44

Model Checking EU and ∃□

Example

Computing ∃◇ ((p=r) ∧ (p ≠ q))

Joost-Pieter Katoen Lecture#11 26/44

Model Checking EU and ∃□

Algorithm

Compute Sat(∃ΦUΨ) by a linear-time enumerative backward search

Joost-Pieter Katoen Lecture#11 27/44

Model Checking EU and ∃□

Model Checking ∃□

Sat(∃□Φ) is the largest subset V of S, such that:

(1) V ⊆ Sat(Φ) and (2) s ∈ V implies Post(s) ∩ V /= ∅.

▶ This suggests to compute Sat(∃□Φ) iteratively:
V0 = Sat(Φ) and Vi+1 = { s ∈ Ti ∣ Post(s) ∩ Vi ≠ ∅ }

▶ Vi = states that have some Φ-path of at least i transitions

▶ By induction it follows:

V0 ⊇ V1 ⊇ . . . ⊇ Vj ⊇ Vj+1 ⊇ . . . ⊇ Sat(∃□Φ)

▶ As TS is finite, we have Vk+1 = Vk = Sat(∃□Φ) for some k.
Joost-Pieter Katoen Lecture#11 28/44

Model Checking EU and ∃□

Algorithm

Compute Sat(∃□Φ) by an enumerative backward search
Joost-Pieter Katoen Lecture#11 29/44

Model Checking EU and ∃□

Linear-Time Algorithm

Compute Sat(∃□Φ) by a linear-time enumerative backward search
Joost-Pieter Katoen Lecture#11 30/44

Model Checking EU and ∃□

Linear-Time Algorithm Using Counters

Compute Sat(∃□Φ) by a linear-time enumerative backward search
Joost-Pieter Katoen Lecture#11 31/44

Model Checking EU and ∃□

Example

Computing Sat(∃□blue) searchJoost-Pieter Katoen Lecture#11 32/44

Model Checking EU and ∃□

An Alternative SCC-Based Algorithm

An SCC-based algorithm for determining Sat(∃□Φ):
1. Eliminate all states s /∈ Sat(Φ):

▶ determine TS[Φ] = (S ′,Act,→′, I ′,AP, L′) with
S ′
= Sat(Φ), →′

= → ∩ (S ′ × Act × S ′), I ′ = I ∩ S ′, and L′(s) = L(s) for
s ∈ S ′

▶ Why? all removed states refute ∃□Φ and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[Φ]
▶ non-trivial SCC = maximal, connected sub-graph with > 0 transition
⇒ any state in such SCC satisfies ∃□Φ

3. s ⊧ ∃□Φ is equivalent to “an SCC in TS[Φ] is reachable from s”
▶ this search can be done in a backward manner in linear time

Joost-Pieter Katoen Lecture#11 33/44

Model Checking EU and ∃□

Example

Determining Sat(∃□q) using the SCC-based algorithm

Joost-Pieter Katoen Lecture#11 34/44

Model Checking EU and ∃□

CTL Model-Checking Algorithm

Sat(true) = S
Sat(a) = { s ∈ S ∣ a ∈ L(s) }

Sat(¬Φ) = S \ Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(∃◯Φ) = { s ∈ S ∣ Post(s) ∩ Sat(Φ) ≠ ∅ }
Sat(∃□Φ) = ⋂n≥0 Vn where

V0 = Sat(Φ)
Vn+1 = { s ∈ Ti ∣ Post(s) ∩ Vn ≠ ∅ }

Sat(∃(ΦUΨ)) = ⋃n≥0 Tn where
T0 = Sat(Ψ)
Tn+1 = Tn ∪ { s ∈ Sat(Φ) ∣ Post(s) ∩ Tn ≠ ∅ }

Joost-Pieter Katoen Lecture#11 35/44

Complexity Considerations

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 36/44

Complexity Considerations

Time Complexity

The CTL model-checking problem can be solved in O(∣Φ∣ ⋅ ∣TS∣).

Proof.

1. The parse tree of Φ has size O(∣Φ∣)
2. The time complexity at a node of the parse tree is in O(∣TS∣)
3. This holds in particular for computing Sat(∃U) and Sat(∃□ . . .)
4. The entire time complexity is thus in O(∣Φ∣ ⋅ ∣TS∣)

Joost-Pieter Katoen Lecture#11 37/44

Complexity Considerations

Complexity of CTL Model-Checking Problem

The CTL model-checking problem is PTIME-complete.

Proof.

Joost-Pieter Katoen Lecture#11 38/44

Complexity Considerations

CTL vs. LTL Model Checking

LTL model checking is PSPACE-complete
CTL model checking is PTIME-complete.

Take a property that can be expressed in both LTL and CTL

Is CTL model checking more efficient? No!
LTL-formulae can be exponentially shorter than their CTL-equivalent

Joost-Pieter Katoen Lecture#11 39/44

Complexity Considerations

CTL Versus LTL
If Φ is equivalent to some LTL-formula ϕ then:

Φ ≡ ϕ where ϕ is obtained by removing all path quantifiers from Φ.
In particular, ∣ϕ∣ ≤ ∣Φ∣.

If P ≠ NP, then there is a sequence ϕn, n ≥ 0 of LTL formulas such that:
▶ ∣ϕn∣ is polynomial in n
▶ ϕn has an equivalent CTL formula
▶ no CTL formula of polynomial length is equivalent to ϕn

Proof.
Take ϕn = the absence of a Hamiltonian path in a digraph on n
vertices

Joost-Pieter Katoen Lecture#11 40/44

Complexity Considerations

LTL Encoding the Hamiltonian Path Problem

Joost-Pieter Katoen Lecture#11 41/44

Complexity Considerations

CTL Encoding the Hamiltonian Path Problem

All n! possibilities need to be explicitly enumerated

Suppose there is a CTL-formula of polynomial length equivalent to ϕn.
Then: as CTL model-checking is ∈ P,

the Hamiltonian path problem ∈ P, and P = NP.

Joost-Pieter Katoen Lecture#11 42/44

Summary

Overview

1 CTL Semantics

2 Existential Normal Form

3 Basic CTL Model-Checking Algorithm

4 Model Checking EU and ∃□

5 Complexity Considerations

6 Summary

Joost-Pieter Katoen Lecture#11 43/44

Summary

Summary

▶ CTL model checking determines Sat(Φ) by a recursive descent over Φ

▶ Sat(∃(ΦUΨ)) is approximated from below by a backward search from
Ψ-states

▶ ∃□Φ is approximated from above by a backward search from Φ-states

▶ The CTL model-checking algorithm is linear in the size of TS and Φ

▶ The CTL model-checking problem is PTIME-complete

Joost-Pieter Katoen Lecture#11 44/44

	CTL Semantics
	Existential Normal Form
	Basic CTL Model-Checking Algorithm
	Model Checking EU and
	Complexity Considerations
	Summary

