
Introduction

Model Checking
Lecture #1: Introduction, Background, Course Organisation

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Model Checking 1/59

Introduction

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 2/59

Introduction The Relevance of Software Reliability

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 3/59

Introduction The Relevance of Software Reliability

Software Reliability: Therac-25

▶ Radiation machine for cancer patients

▶ At least 6 cases of overdosis (≈ factor
100) in 1985–1987

▶ Three cancer patients died

▶ Source: Design error in the control
software: race condition

▶ Software written in assembly language

Joost-Pieter Katoen Model Checking 4/59

Introduction The Relevance of Software Reliability

Software Reliability: Ariane 5 Flight 501

▶ Crash of European Ariane 5-missile in 1996

▶ Source: conversion from a 64-bit floating point to
16-bit signed integer

▶ Efficiency considerations had led to disabling of
the software handler (in Ada)

▶ Overflow conditions crashed both primary and
backup computers

▶ Costs: more than 500 million US$, 8 billion US$
development costs

Joost-Pieter Katoen Model Checking 5/59

Introduction The Relevance of Software Reliability

Hardware Reliability: Pentium FDIV

Pentium µprocessor

▶ FDIV = floating point division unit

▶ Byte: 1 in 9 billion floating point divides
with random parameters would produce
inaccurate results

▶ Loss: ≈ 500 million US$a + serious image
loss of Intel

▶ Source: flawless realisation of floating-point
division

aall flawed processors were replaced

Joost-Pieter Katoen Model Checking 6/59

Introduction The Relevance of Software Reliability

The Quest for Software Correctness

“It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.”
Speech@50-years CWI Amsterdam

Henk Barendregt

Joost-Pieter Katoen Model Checking 7/59

Introduction The Relevance of Software Reliability

The Importance of Software Correctness

▶ Rapid increase of software in different applications
▶ embedded systems
▶ communication protocols
▶ transportation systems

⇒ reliability increasingly depends on software!

▶ Defects can be fatal and extremely costly1
▶ products subject to mass-production
▶ safety-critical systems

Software reliability is one of the grand challenges
of the German Society of Computer Science.

1See https://raygun.com/blog/costly-software-errors-history/
Joost-Pieter Katoen Model Checking 8/59

https://raygun.com/blog/costly-software-errors-history/

Introduction Formal Verification

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 9/59

Introduction Formal Verification

Bug Hunting: the Sooner, the Better

Joost-Pieter Katoen Model Checking 10/59

Introduction Formal Verification

Formal Methods

Formal methods are:
▶ “applied mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:
▶ obtaining an early integration of verification in the design process
▶ providing more effective verification techniques (higher coverage)
▶ reducing the verification time

Usage of formal methods:
▶ Highly recommended for safety-critical software by FAA, NASA, ...
▶ Required by ISO for autonomous vehicles at ASIL2 Level D

2Automotive Safety Integrity Level
Joost-Pieter Katoen Model Checking 11/59

Introduction Formal Verification

Formal Methods for Verifying Property ϕ
Deductive methods: provide a formal proof that ϕ holds
▶ tool: theorem prover (Isabelle/HOL, Coq, ...)
▶ applicable if: system has form of a mathematical theory
▶ pros: general applicable, high user involvement, hard guarantees

Model checking: systematic check on ϕ in all states
▶ tool: model checker (Spin, NuSMV, UppAal, ...)
▶ applicable if: system generates (finite) behavioural model
▶ pros: highly (fully) automatable, hard guarantees

Model-based testing: test for ϕ by program execution
▶ applicable if: system defines an executable model
▶ tool: text generation and execution (JTorX, RT-Tester, ...)
▶ pros: useful for finding bugs, not their absence

Joost-Pieter Katoen Model Checking 12/59

Introduction Formal Verification

Milestones in Formal Verification
▶ Mathematical program correctness (Turing, 1949)

▶ Syntax-based technique for sequential programs (Hoare, 1968)
▶ for a given input, does a program generate the correct output?
▶ based on compositional proof rules expressed in predicate logic

▶ Syntax-based technique for concurrent programs (Pnueli, 1977)
▶ handles properties referring to states during the computation
▶ based on proof rules expressed in temporal logic

▶ Automated verification of concurrent programs (Clarke & Emerson 1981
Queille & Sifakis 1982)

▶ model-based instead of proof-rule based approach
▶ does the concurrent program satisfy a given (logical) property?

Joost-Pieter Katoen Model Checking 13/59

Introduction Model Checking in a Nutshell

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 14/59

Introduction Model Checking in a Nutshell

Model Checking Overview

Joost-Pieter Katoen Model Checking 15/59

Introduction Model Checking in a Nutshell

Paris Kanellakis Theory and Practice Award 1998

Randal
Bryant

Edmund
Clarke

E. Allen
Emerson

Ken
McMillan

For their invention of "symbolic model checking,"
a method of formally checking system designs,

which is widely used in the computer hardware industry
and starts to show significant promise also in

software verification and other areas.

Some other winners: Rivest et al., Paige and Tarjan, Buchberger, . . .

Joost-Pieter Katoen Model Checking 16/59

Introduction Model Checking in a Nutshell

Gödel Prize 2000

Moshe Vardi Pierre Wolper

“For work on model checking with finite automata."

Some other winners: Shor, Sénizergues, Agrawal et al., . . .

Joost-Pieter Katoen Model Checking 17/59

Introduction Model Checking in a Nutshell

ACM System Software Award 2001

Gerard J. Holzmann SPIN book

SPIN is a popular open-source software tool, used by
thousands of people worldwide, that can be used for the

formal verification of distributed software systems.

Some other winners: TeX, Postscript, UNIX, TCP/IP, Java, Smalltalk

Joost-Pieter Katoen Model Checking 18/59

Introduction Model Checking in a Nutshell

ACM Turing Award 2007

Edmund Clarke E. Allen Emerson Joseph Sifakis

“For their role in developing Model-Checking into a
highly effective verification technology,

widely adopted in the hardware and software industries."

Some other winners: Dijkstra, Cook, Hoare, Rabin and Scott

Joost-Pieter Katoen Model Checking 19/59

Introduction Model Checking in a Nutshell

Model Checking Overview

Joost-Pieter Katoen Model Checking 20/59

Introduction Model Checking in a Nutshell

What is Model Checking?

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,

systematically checks whether this property holds
for (a given state in) that model.

Joost-Pieter Katoen Model Checking 21/59

Introduction Model Checking in a Nutshell

What are Models?

Joost-Pieter Katoen Model Checking 22/59

Introduction Model Checking in a Nutshell

What are Models?

Transition systems
▶ States labelled with basic propositions
▶ Transition relation between states
▶ Action-labelled transitions to facilitate composition

Expressivity
▶ Programs are transition systems
▶ Multi-threaded programs are transition systems
▶ Hardware circuits are transition systems
▶ Petri nets are transition systems
▶

Joost-Pieter Katoen Model Checking 23/59

Introduction Model Checking in a Nutshell

What are Properties?

Example properties:
▶ Can the system reach a deadlock situation?
▶ Can two processes ever be simultaneously in a critical section?
▶ On termination, does a program provide the correct output?
▶ Can the system be reset in every possible system state?

Temporal logic:
▶ Propositional logic
▶ Modal operators such as □ “always” and ◇ “eventually”
▶ Interpreted over infinite state sequences (linear)
▶ Or over infinite trees of states (branching)

Joost-Pieter Katoen Model Checking 24/59

Introduction Model Checking in a Nutshell

The Model Checking Problem

Let M be a model, i.e., a finite transition system.
Let ϕ be a formula in temporal logic, i.e., the specification.
Aim: Find all initial states s in M such that M, s ⊧ ϕ.

Joost-Pieter Katoen Model Checking 25/59

Introduction Model Checking in a Nutshell

Example: NASA’s Deep Space-1 Spacecraft

Model checking has been
applied to several modules of
this spacecraft

launched in October 1998

Joost-Pieter Katoen Model Checking 26/59

Introduction Model Checking in a Nutshell

A Program Snippet

process Inc = while true do if x < 200 then x ∶= x + 1 od

process Dec = while true do if x > 0 then x ∶= x − 1 od

process Reset = while true do if x = 200 then x ∶= 0 od

is x always between (and including) 0 and 200?

Joost-Pieter Katoen Model Checking 27/59

Introduction Model Checking in a Nutshell

Modelling in NanoPromela

Joost-Pieter Katoen Model Checking 28/59

Introduction Model Checking in a Nutshell

How to Check?

Joost-Pieter Katoen Model Checking 29/59

Introduction Model Checking in a Nutshell

A Counterexample

Joost-Pieter Katoen Model Checking 30/59

Introduction Model Checking in a Nutshell

Breaking the Error

Joost-Pieter Katoen Model Checking 31/59

Introduction Model Checking in a Nutshell

The Model Checking Process

▶ Modeling phase
▶ model the system under consideration
▶ as a first sanity check, perform some simulations
▶ formalise the property to be checked

▶ Execution phase
▶ run the model checker to check the validity of the property in the model

▶ Analysis phase
▶ property satisfied? → check next property (if any)
▶ property violated? →

1. analyse generated counterexample by simulation
2. refine the model, design, or property . . . and repeat the entire procedure

▶ out of memory? → try to reduce the model and try again

Joost-Pieter Katoen Model Checking 32/59

Introduction Model Checking in a Nutshell

The Pros of Model Checking

▶ widely applicable (hardware, software, communication protocols, ...)

▶ potential “push-button” technology (software-tools)
Uppaal, SPIN, NuSMV, CBMC, Java Pathfinder, Storm, . . .

▶ increased usage in hardware and software industry
Siemens, Amazon, FaceBook, Intel, Cadence, Ford, ESA, . . .

▶ provides a counterexample if property is refuted
model checking is an extremely effective bug-hunting technique

▶ sound mathematical foundations
logic, automata, data structures and algorithms, complexity

▶ unlike testing, not biased to the most probable scenarios

Joost-Pieter Katoen Model Checking 33/59

Introduction Model Checking in a Nutshell

The Cons of Model Checking

▶ main focus on control-intensive applications (less data-oriented)
▶ model checking is only as “good” as the system model
▶ the state-space explosion problem
▶ mostly not possible to check generalisations

Nevertheless:

Model checking is a very effective technique
to expose potential design errors

Joost-Pieter Katoen Model Checking 34/59

Introduction Model Checking in a Nutshell

State Spaces Can Be Gigantic

A model of the Hubble telescope
Joost-Pieter Katoen Model Checking 35/59

Introduction Model Checking in a Nutshell

Treating Gigantic Models?

▶ Use compact data structures

▶ Make models smaller prior to (or: during) model checking

▶ Try to make them even smaller

▶ If possible, try to obtain the smallest possible model

▶ While preserving the properties of interest

▶ Do this all algorithmically and possibly fast

Joost-Pieter Katoen Model Checking 36/59

Introduction Model Checking in a Nutshell

Abstraction

Joost-Pieter Katoen Model Checking 37/59

Introduction Striking Model-Checking Examples

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 38/59

Introduction Striking Model-Checking Examples

Striking Model-Checking Examples
▶ Security: Needham-Schroeder encryption protocol

▶ error that remained undiscovered for 17 years unrevealed

▶ Transportation systems
▶ train model containing 10476 states

▶ Model checkers for C, Java and C++
▶ used (and developed) by Microsoft, Digital, NASA
▶ successful application area: device drivers

▶ Dutch storm surge barrier in Nieuwe Waterweg

▶ Software in the space missiles
▶ NASA’s Mars Curiosity Rover, Deep Space-1, Galileo
▶ LARS group@Jet Propulsion Lab

Joost-Pieter Katoen Model Checking 39/59

Introduction Striking Model-Checking Examples

Storm Surge Barrier Maeslantkering

Joost-Pieter Katoen Model Checking 40/59

Introduction Striking Model-Checking Examples

Storm Surge Barrier Maeslantkering

Joost-Pieter Katoen Model Checking 41/59

Introduction Striking Model-Checking Examples

Storm Surge Barrier Maeslantkering

[Kars, Formal Methods in the Design of a Storm Surge Barrier Control System, 1996]

Joost-Pieter Katoen Model Checking 42/59

Introduction Striking Model-Checking Examples

Checking Device Drivers

▶ 85% of system crashes of Windows XP caused by bugs in third-party
kernel-level device drivers (2003)

▶ Main reason: complexity of the Windows drivers API

▶ SLAM model checker: automatically checks device drivers for certain
correctness properties with respect to the Windows device drivers API

▶ Nowadays core of Static Driver Verifier (SDV), a tool-set for drivers
developers

Joost-Pieter Katoen Model Checking 43/59

Introduction Striking Model-Checking Examples

How to Model Check Device Drivers?

▶ Abstract C programs into Boolean programs
▶ Apply iterative abstraction-refinement scheme (CEGAR, see below)
▶ Key: recursive procedure calls (push-down automata)
▶ Symbolic model checking (binary decision diagrams)
▶ Points-to analysis + temporal safety properties (monitor)

Joost-Pieter Katoen Model Checking 44/59

Introduction Striking Model-Checking Examples

Checking Device Drivers

During development of Windows 7, 270 real bugs found
in 140 device drivers (of ≤ 30,000 lines of code) with SLAM

[Ball et al., A decade of software model checking with SLAM, 2011]

Joost-Pieter Katoen Model Checking 45/59

Introduction Striking Model-Checking Examples

Spacecraft := Flying Software

NASA Study Flight Software Complexity (2009)

Joost-Pieter Katoen Model Checking 46/59

Introduction Striking Model-Checking Examples

The NASA Curiosity Rover

Software in Space:

▶ Extremely high reliability requirements are imposed
▶ Any small mistake can lead to the loss of a mission

▶ Extraordinary measures taken in both hardware and software design
▶ system debugging and repair from millions of miles away

▶ Model checking verified intricate software subsystems for absence of
races and deadlocks

Joost-Pieter Katoen Model Checking 47/59

Introduction Striking Model-Checking Examples

Mars Rover Landing

Joost-Pieter Katoen Model Checking 48/59

Introduction Striking Model-Checking Examples

Model Checking of Mars Rover

Despite 145 code reviews, model checking of critical parts (e.g., file
system) with SPIN revealed several subtle concurrency flaws.

Model checking was used in the design loop: performed routinely after
every change in the code of the file system.

[Holzmann, Mars Code,2014]

Joost-Pieter Katoen Model Checking 49/59

Introduction Striking Model-Checking Examples

Model Checking@FaceBookg

Joost-Pieter Katoen Model Checking 50/59

Introduction Striking Model-Checking Examples

Facebook

[Calcagno et al., Moving fast wirh software verification, 2014]

Joost-Pieter Katoen Model Checking 51/59

Introduction Course Organisation

Overview

1 The Relevance of Software Reliability

2 Formal Verification

3 Model Checking in a Nutshell

4 Striking Model-Checking Examples

5 Course Organisation

Joost-Pieter Katoen Model Checking 52/59

Introduction Course Organisation

Course Content

▶ What are transition systems and properties?

▶ Model checking linear temporal logic
automata on infinite words, regular properties, complexity

▶ Model checking branching-time logic
CTL, expressiveness CTL versus LTL, recursive descent

▶ How to make models smaller?
▶ bisimulation minimisation, simulation, partial-order reduction, CEGAR

▶ Symbolic model checking
▶ binary decision diagrams, bounded model checking, PDR

Joost-Pieter Katoen Model Checking 53/59

Introduction Course Organisation

Course Material

Principles of Model Checking:
Christel Baier
TU Dresden, Germany

Joost-Pieter Katoen
RWTH Aachen University, Germany

Gerard J. Holzmann, NASA JPL:
“This book offers one of the most comprehensive introductions to logic model checking
techniques available today. The authors have found a way to explain both basic
concepts and foundational theory thoroughly and in crystal clear prose.”

Joost-Pieter Katoen Model Checking 54/59

Introduction Course Organisation

Lectures

Lecture:
▶ Thu 10:30 - 12:00 (AH 2), Fri 14:30-16:00 (AH 3)
▶ Check regularly RWTH Moodle for possible “no shows”

Material:
▶ Lecture slides are made available on RWTH Moodle
▶ Many copies of the book are available in the CS library

Website:

moves.rwth-aachen.de/teaching/ws-19-20/introduction-to-model-checking/

Joost-Pieter Katoen Model Checking 55/59

Introduction Course Organisation

Exercises and Examination
Exercise classes:
▶ Fri 10:30 - 12:00 in 5056 (start: Oct 25)
▶ Instructors: Sebastian Junges and Lutz Klinkenberg

Weekly exercise series:
▶ Intended for groups of three students
▶ New series: every Friday on course web page (start: Oct 18)
▶ Solutions: Friday (before 10:00) one week later
▶ Participation to exercises strongly encouraged
▶ Starred exercises are example exam questions

Examination:
▶ February 20, 2020 and March 13, 2020 (written exam)
▶ No particular pre-requisites for exam participation

Joost-Pieter Katoen Model Checking 56/59

Introduction Course Organisation

Course Prerequisites

Aim of the course:
It’s about the theoretical foundations of model checking.
Not its usage.

Prerequisites:
▶ Automata and language theory
▶ Algorithms and data structures
▶ Computability and complexity theory
▶ Mathematical logic

Joost-Pieter Katoen Model Checking 57/59

Introduction Course Organisation

Related Courses

▶ Modelling and verification of probabilistic systems (Katoen)
▶ Probabilistic programming (Katoen)
▶ Automata on infinite words (Löding)
▶ Satisfiability checking (Abráhám)
▶ Modelling and analysis of hybrid systems (Abráhám)
▶ Theoretical Foundations of the UML (Katoen)
▶ Semantics and Verification of Software (Noll)

As well as various master and bachelor theses

Joost-Pieter Katoen Model Checking 58/59

Introduction Course Organisation

Questions?

Next Lecture: Friday October 11, 14:30

Joost-Pieter Katoen Model Checking 59/59

	The Relevance of Software Reliability
	Formal Verification
	Model Checking in a Nutshell
	Striking Model-Checking Examples
	Course Organisation

