Model Checking 2019 Exercise Sheet 7

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Model Checking (Winter Term 2019/2020) — Exercise Sheet 7 (due 20th December) —

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions for the exercises just before the exercise class starts at 10:30 or by dropping them into the "Model Checking" box at our chair *before 10:25*. Do *not* hand in your solutions via Moodle or via e-mail.

Exercise 1^{\star}

(3+2+3 Points)

Consider the following CTL formula Φ and the fairness assumption sfair :

$$\begin{split} \Phi &= \forall \Box \, \forall \Diamond \, a \\ sfair &= \Box \, \Diamond \, \underbrace{(b \wedge \neg a)}_{\Phi_1} \rightarrow \Box \, \Diamond \, \underbrace{\exists \Big(b \, \, \mathsf{U} \, (a \wedge \neg b) \Big)}_{\Psi_1} \end{split}$$

and transition system TS over $AP = \{a, b\}$ which is given below.

Here, we abstract from the actions in TS as they are not relevant to the task.

(a) Determine $Sat(\Phi_1)$ and $Sat(\Psi_1)$ (without fairness). Justify your answer.

- (b) Determine $Sat_{sfair}(\exists \Box true)$. Justify your answer.
- (c) Determine $Sat_{sfair}(\Phi)$. Justify your answer.

Lehrstuhl für Informatik 2 Software Modeling and Verification

Exercise 2

(6 Points)

Consider the CTL-formula $\Phi = \forall \Box (a \rightarrow \forall \Diamond (b \land \neg a))$ together with the following CTL fairness assumption

$$fair = \Box \Diamond \forall \bigcirc (a \land \neg b) \to \Box \Diamond \forall \bigcirc (b \land \neg a)$$
$$\land \Diamond \Box \exists \Diamond b \to \Box \Diamond b.$$

Check whether $TS \models_{fair} \Phi$ for the transition system TS below.

Exercise 3^{\star}

(3 Points)

For each of the following, give pairs of transition systems such that:

- a) T_1, T_2 are simulation-equivalent, but not bisimular.
- b) T_3, T_4 are trace-equivalent, but not bisimilar.
- c) T_5, T_6 are finite-trace equivalent, but not simulation-equivalent.
- d) T_7, T_8 are finite-trace equivalent, but not trace-equivalent.
- e) T_9, T_10 are trace-equivalent and simulation-equivalent.

Exercise 4

(3 Points)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. The relations $\sim_n \subseteq S \times S$ are inductively defined by:

- $s_1 \sim_0 s_2$ iff $L(s_1) = L(s_2)$.
- $s_1 \sim_{n+1} s_2$ iff:

$$-L(s_1) = L(s_2),$$

- for all $s'_1 \in Post(s_1)$ there exists $s'_2 \in Post(s_2)$ with $s'_1 \sim_n s'_2$,
- for all $s'_2 \in Post(s_2)$ there exists $s'_1 \in Post(s_1)$ with $s'_1 \sim_n s'_2$.

Questions:

(a) Show that for finite TS it holds that $\sim_{TS} = \bigcap_{n \ge 0} \sim_n$, i.e.,

$$s_1 \sim_{TS} s_2$$
 iff $s_1 \sim_n s_2$ for all $n \ge 0$

(b) Does this also hold for infinite transition systems (provide a proof or a counterexample)?