Model Checking 2019 Exercise Sheet 5

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Model Checking (Winter Term 2019/2020) — Exercise Sheet 5 (due 29th November) —

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions for the exercises just before the exercise class starts at 10:30 or by dropping them into the "Introduction to Model Checking" box at our chair *before 10:15*. Do *not* hand in your solutions via Moodle or via e-mail.

Exercise 1

Let $\varphi = \Box (a \to ((\neg b) \cup (a \land b)))$ over the set $AP = \{a, b\}$ of atomic propositions. We are interested in checking whether $TS \models \varphi$ where TS is the following transition system:

(a) Convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

 $\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \lor \mathsf{U} \varphi.$

Derive $closure(\psi)$.

- (b) Give all elementary sets wrt. $closure(\psi)$.
- (c) Construct the GNBA \mathcal{G}_{ψ} using the algorithm given in the lecture. It suffices to provide its initial states, its acceptance set and its transition relation. *Hint*: Give the transition relation as a table where the rows and columns correspond to states of \mathcal{G}_{ψ} and the entries are either empty (representing "no transition") or contain an element from 2^{AP} (representing the character that can be used for the transition).
- (d) Now, construct a *non-blocking* NBA $\mathcal{A}_{\neg\varphi}$ directly from $\neg\varphi$, i.e. without relying on \mathcal{G}_{ψ} . Provide an *intuitive* explanation of why your automaton recognizes the right language. *Hint*: Four states suffice. Consider rewriting $\neg\varphi$ using the release operator and recall that $\varphi \mathrel{\mathsf{R}} \psi$ intuitively expresses that φ "releases" ψ . That is, ψ either holds all the time or at some point $\varphi \land \psi$ holds and at all previous positions ψ holds.

Exercise 2

4

Consider the following CTL formulae and the transition system TS outlined on the right:

TS:

$$\begin{split} \Phi_1 &= \forall (a \cup b) \lor \exists \bigcirc \forall \Box b \\ \Phi_2 &= \forall \Box \forall (a \cup b) \\ \Phi_3 &= (a \land b) \to \exists \Box \exists \bigcirc \forall (b \lor a) \\ \Phi_4 &= \forall \Box \exists \Diamond \neg (a \lor b) \end{split}$$

Give the satisfaction sets $Sat(\Phi_i)$ for each CTL formula Φ_i , $1 \le i \le 4$. Does TS $\models \Phi_i$ hold?

Exercise 3

- (a) Using an appropriate theorem from the lecture, prove that there does not exist an equivalent LTL-formula for the CTL-formula $\Phi_1 = \forall \Diamond (a \land \exists \bigcirc a)$.
- (b) Now prove directly (i.e. without the theorem from the lecture) that there does not exist an equivalent LTL-formula for the CTL-formula Φ₂ = ∀◊ ∃ ∀◊ ¬a. Hint: Argue by contraposition. In particular, think about trace inclusion versus CTL-equivalence.

Exercise 4

Prove that $Sat(\exists (\Phi W \Psi))$ is the largest set T such that

$$T \subseteq Sat(\Psi) \cup \{s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset\}.$$
(5.1)