Model Checking 2019 Exercise Sheet 3

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Model Checking (Winter Term 2019/2020) — Exercise Sheet 3 (due 15th November) —

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions before the exercise class starts at 10:30 or by dropping them into the "Model Checking" box at our chair *before 10:20.* Do *not* hand in your solutions electronically.

Exercise 1

(5 Points)

Let the ω -regular LT properties P_1 and P_2 over the set of atomic propositions AP = $\{a, b\}$ be given by

 $P_1 :=$ "if a holds infinitely often, then b holds finitely often"

 $P_2 := a$ holds infinitely often and b holds infinitely often"

The model is given by the transition system TS as follows:

Algorithmically check whether $TS \models P_1$ and $TS \models P_2$. For this, proceed as follows.

- a) Derive suitable NBA \mathcal{A}_{P_1} , \mathcal{A}_{P_2} , where suitable means "appropriate for part b)-d)".
- *Hint:* For P_1 you can find an automaton with 3 states and for P_2 4 states suffice. Derive the automata directly.
- b) Outline the reachable fragments of the product transition systems $TS \otimes A_{P_1}$ and $TS \otimes A_{P_2}$.
- c) Decide whether $TS \models P_1$ by checking an appropriate persistence property via nested depth-first search on $TS \otimes \mathcal{A}_{P_1}$. Document *all* changes to the contents of U, V, π and ξ (the state sets and stacks of the nested depth-first search, see lecture). If the property is violated, provide a counterexample *based on the execution of the algorithm*.
- d) Decide whether $TS \models P_2$ by checking an appropriate persistence property via SCC analysis on $TS \otimes \mathcal{A}_{P_2}$. If the property is violated, provide a counterexample based on your analysis.

Exercise 2

(3 Points)

Provide an example for a liveness property P_{live} that is not ω -regular. Show that P_{live} is indeed a liveness property and prove that P_{live} is not ω -regular.

Hint: Think about words of the form $\{a\} \{b\} \{a\} \{a\} \{a\} \{a\} \{a\} \{b\} \dots$

RNTHAACHEN Lehrstuhl für Informatik 2 UNVERSITY Software Modeling and Verification

Exercise 3

(2+2+2+1 Points)

- (a) Provide NBA A_1 and A_2 for the languages given by the ω -regular expressions $\alpha_1 = (AC + B)^* B^{\omega}$ and $\alpha_2 = (B^*AC)^{\omega}$.
- (b) Apply the product construction to obtain a GNBA \mathcal{G} with $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$.
- (c) Transform the GNBA \mathcal{G} into an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{G})$.
- (d) Justify, why $\mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$ on the level of the GNBA \mathcal{G} .

Hint: For a GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with at least one element in $\mathcal{F} = \{F_1, \ldots, F_k\}$. Let $\mathcal{A} = (Q', \Sigma, \delta', Q'_0, F')$ be an NBA with

- $Q' = Q \times \{1, \ldots, k\},$
- $Q'_0 = Q_0 \times \{1\},\$
- $F' = F_1 \times \{1\}$, and

for all $A \in \Sigma$ it is

$$\delta'(\langle q,i\rangle,A) = \begin{cases} \{\langle q',i\rangle \mid q' \in \delta(q,A)\} & \text{if } q \notin F_i \\ \{\langle q',(i \mod k)+1\rangle \mid q' \in \delta(q,A)\} & \text{if } q \in F_i. \end{cases}$$

Then $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}).$

Exercise 4^{\star}

(4 Points)

Recall the following LT properties from exercise sheet 1.

- (i) "Winter is coming." $P_1 = \emptyset^* \{ winter \} (2^{AP})^{\omega}$
- (ii) "Everything is a wesome." $P_2 = \{awesome\}^{\omega}$
- (iii) "I'll be back." $P_3 = \{here\}^+ \emptyset^+ \{here\}^+ (2^{AP})^{\omega}$
- (iv) "You either die a hero, or you live long enough to see yourself become the villain." $P_4 = \{live, hero\}^+ \{hero\} (2^{AP})^{\omega} + \{live, hero\}^+ \{live\} (2^{AP})^{\omega}$
- (v) "By night one way, by day another Thus shall be the normTill you receive true love's kiss then, take love's true form."

 $P_{5} = ((\{form_{1}\} \{day, form_{2}\})^{+} + \{form_{1}\} (\{day, form_{2}\} \{form_{1}\})^{*}) \{kiss, true_form\} (\{true_form, day\})^{\omega}$

- (vi) "A Lannister always pays his debts." $P_6 = \emptyset^* (\{in_debt\}^+ \emptyset^+)^* \emptyset^{\omega}$
- (vii) "Anything is possible [if you just believe]" $P_7 = (2^{AP})^{\omega}$
- (viii) "It's gonna be legen... wait for it... dary!" $P_8 = \{legen\} \{wait_for_it\}^+ \{dary\} (2^{AP})^{\omega}$

Express each property P_i as an LTL formula φ_i .