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The Relevance of Fairness

Overview

@ The Relevance of Fairness
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Does This Multi-Threaded Program Terminate?

Inc ||| Reset
where
thread Inc = while (x>0do x:=x+1)od
thread Reset = x:=-1

x is a shared integer variable that initially has value 0
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Is It Possible To Starve?

(n1,ng, y=1)

(e1, ng, y=0) (w1, wa, y=1)

(n1, c2, y=0)

(c1, wa, y=0) (w1, c2, y=0)
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The Relevance of Fairness

Thread Two Starves

(n1,ng,y=1)

req

(wy, ng, y=1)

reqz
rel
reqa e

S

(w1, cg, y=0)

(nq, e, y=0)

)

(

c1, wo, y=0)

Is it fair that thread two never gets access to the critical section
despite infinitely often having the possibility to do so?

Joost-Pieter Katoen Lecture#14 6/62



Fairness

P Starvation freedom is often considered under thread fairness
= there is a fair scheduling of the execution of threads
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Fairness

P Starvation freedom is often considered under thread fairness
= there is a fair scheduling of the execution of threads

P Fairness is concerned with a fair resolution of non-determinism
P such that it is not biased to consistently ignore a possible option

P Fairness is typically needed to prove a liveness property

P to prove some form of progress, progress needs to be possible
P fairness does not affect safety properties

P Problem: liveness properties constrain infinite behaviours
» but some traces—that are unfair—refute the liveness property
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Fairness Constraints

» What is wrong with our examples? Nothing!

P interleaving: not realistic as no processor is 00 faster than another
» semaphore-based mutual exclusion: level of abstraction
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Fairness Constraints

» What is wrong with our examples? Nothing!
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P Rule out “unrealistic” exectuions by imposing fairness constraints
» what to rule out? = different kinds of fairness constraints
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Fairness Constraints

» What is wrong with our examples? Nothing!

P interleaving: not realistic as no processor is 00 faster than another
» semaphore-based mutual exclusion: level of abstraction

P Rule out “unrealistic” exectuions by imposing fairness constraints
» what to rule out? = different kinds of fairness constraints

P “A thread gets its turn infinitely often”

» always unconditional fairness
P if it is enabled infinitely often strong fairness
P if it is continuously enabled from some point on weak fairness
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The Relevance of Fairness

Fairness

This program terminates assuming unconditional (thread) fairness:

thread Inc = while (x >0do x:=x+1)od

thread Reset = x:=-1

as thread Reset eventually will set x to —1

x is a shared integer variable that initially has value 0
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The Relevance of Fairness

Avoiding Starvation by Fairness

(n1,n9,y=1)

(nq, we, y=1)

(wy, wo, y=1)

If the infinitely often enabled enter, action is not ignored infinitely often,
thread two does not starve.
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The Relevance of Fairness

Avoiding Starvation by Fairness

(n1,n9,y=1)

(nq, we, y=1)

(wy, wo, y=1)

Note that enter, is not enabled continuously
during the run. Weak fairness this does not suffice.
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Fairness Assumptions

Overview

© Fairness Assumptions
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LTL Fairness Constraints

Definition: LTL fairness constraints

Let ® and V¥ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:
ufair = OO WV
2. A strong LTL fairness condition is of the form:
sfair = OO & — OO ¥
3. A weak LTL fairness constraint is of the form:

whair = oO0¢ — OO vV

@ stands for “... is enabled”: W for “... is taken”

Joost-Pieter Katoen Lecture#14 12/62



Relating Fairness Constraints

unconditional fair = strong fair = weak fair.
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Fairness Assumptions

Fairness Assumptions

Definition: fairness assumption

An LTL fairness assumption is a conjunction of LTL fairness constraints.

The general format of fairness assumption fair is

fair = ufair A sfair A wfair
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Fairness Assumptions

Fair Traces and Fair Satisfaction

Definition: fair paths and fair traces

For state s in transition system TS (over AP) and LTL fairness assumption
fair, let

FairPathsg,;,(s)

{7 € Paths(s) | = F fair}
{trace(n) | 7 € FairPathss;.(s) }.

FairTracess,;.(s)
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Fair Traces and Fair Satisfaction
Definition: fair paths and fair traces

For state s in transition system TS (over AP) and LTL fairness assumption
fair, let

FairPathsg,;,(s)

{7 € Paths(s) | = F fair}
{trace(n) | 7 € FairPathss;.(s) }.

FairTracess,;.(s)

Definition: fair satisfaction relation

For LTL-formula ¢, and LTL fairness assumption fair:

s Eqir @ if and only if V7 € FairPathsg;(s). ™ E ¢
TSEgir ¢ ifand only if Vsy € 1.5y Fpir .

The relation Eg;, is the fair satisfaction relation for LTL.
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Fairness Assumptions

Example: Fair Runs and Fair Traces

_{({n1,n9,1) )

— reg;
7/ - X 2
_~reqy

[Cwi,ng, 1))

(wy, g, 1)

[
|
enter;
(Le,m2,00 ) s wg, ((n1.e2,00)
reay
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Fairness Assumptions

Example: Fair Runs and Fair Traces

_(np,ng, 1))

— o reqy
rg/l/ - f
/ req rel
[Clwy,ng, 1)) (ny,wo, 1)
[ 74 regy ente
(
\ [entery
({e1,m2,0) )
regy
(c1, wo, 0)

P Let ® = “action enter, is enabled” and W = “action enter, is taken”
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Fairness Assumptions

Example: Fair Runs and Fair Traces

_{({n1,n9,1) )
— reay
7/ - f
, _~reqy
[({wy,n9, 1))
[ 7
(

enter;
(Le,m2,00 ) s wg, ((n1.e2,00)
reay

P Let ® = “action enter, is enabled” and W = “action enter, is taken”

» Run (ny, ny, 1)%(%, ny, 1>%’<C1' Nz, 0)ﬂ<nlv ny, 1>ﬂ’ s
» ... is not unconditionally fair
» ... but strongly fair, as action enter, is never enabled along the run
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Fairness Assumptions

Example: Fair Runs and Fair Traces

_(np,ng, 1))

— rega
i _
, req
[((wy,ng, 1)) (nq,wy, 1)

rel

[
(
enter)

({e1,m2,0) )
regy

P Let ® = “action enter, is enabled” and W = “action enter, is taken’

» Run (ny, ny, 1)%(%, ny, 1>%’<C1' Nz, 0)ﬂ<nlv ny, 1>ﬂ’ s
» ... is not unconditionally fair
» ... but strongly fair, as action enter, is never enabled along the run

> Run <n]_, ny, 1)ﬂ2')(n1, Wo, 1) ﬂ;I‘—)<W]., Wo, 1) m(cl, Wo, 0>r_el) N
» ... is not strongly fair as enter, is 0o often enabled but never taken
» ... but weakly fair for as enter, is not always enabled along the run
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Example: An Arbiter for Mutual Exclusion

noncrity noncrity

rel

entery entery

TS, || Arbiter || TS, ¥ OO crity
But: TS, || Arbiter || TS, kg OO crit; A OO crity
with fair = O¢ head A O tail

Joost-Pieter Katoen Lecture#14 17/62



Fairness and Safety Properties

Overview

© Fairness and Safety Properties
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Fairness and Safety Properties

Realisable Fairness

Definition: realisable fairness

Fairness assumption fair is realisable for transition system TS if for any
reachable state s: FairPathsg;(s) + @.

A fairness assumption is realisable for TS if every initial finite path
fragment of TS can be completed to a fair run.
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Fairness and Safety Properties

The Fairness Suffix Property

For any (infinite) fair path , it holds
1. all suffixes of 7 are fair too.

2. any finite path extended by = is fair.

Proof.
Rather straightforward.
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Fairness and Safety Properties

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness

For transition system TS and safety property Eg,z (both over AP) and fair
a realisable fairness assumption for TS:

TS E Ese ifandonlyif TS Fri Esife-

L]
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Fairness and Safety Properties

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness

For transition system TS and safety property Eg,z (both over AP) and fair
a realisable fairness assumption for TS:

TS E Ese ifandonlyif TS Fri Esife-

L]

Non-realisable fairness may harm safety properties. Shown by example.
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LTL Model Checking Under Fairness

Overview

@ LTL Model Checking Under Fairness
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The Fair LTL Model-Checking Problem

Given:
1. a finite transition system TS
2. an LTL formula ¢, and
3. an LTL fairness assumption fair

Question: does TS Fgj, 7
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Fair LTL Model Checking

|
For transition system TS, LTL formula ¢ and LTL fairness assumption fair:

TS Fair ¢ if and only if TS E (fair- )
\*I « ~ J
fair LTL model checking LTL model checking
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Fair LTL Model Checking

|
For transition system TS, LTL formula ¢ and LTL fairness assumption fair:

TS Fair ¢ if and only if TS E (fair- )
\*I « ~ J
fair LTL model checking LTL model checking

The fair LTL model-checking problem for ¢ under fairness assumption fair can be
reduced to the LTL model-checking problem for fair = ¢.
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Fair LTL Model Checking

|
For transition system TS, LTL formula ¢ and LTL fairness assumption fair:

TS Fair ¢ if and only if TS E (fair- )
\*I « ~ J
fair LTL model checking LTL model checking

The fair LTL model-checking problem for ¢ under fairness assumption fair can be
reduced to the LTL model-checking problem for fair = ¢.

This approach is not applicable to CTL (as we will discuss)
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Which Fairness Notion?

P Fairness constraints aim to rule out “unreasonable” runs
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Which Fairness Notion?

P Fairness constraints aim to rule out “unreasonable” runs

P Too strong? = reasonable runs ruled out. Verification result:

» “false”: error found
P “true”: don't know as some relevant execution may refute it
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LTL Model Checking Under Fairness

Which Fairness Notion?

P Fairness constraints aim to rule out “unreasonable” runs

P Too strong? = reasonable runs ruled out. Verification result:

» “false”: error found
P “true”: don't know as some relevant execution may refute it

» Too weak? = too many runs considered. Verification result:

» “true”: formula holds
P “false”: don't know, as refutation maybe due to an unreasonable run
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LTL Model Checking Under Fairness

Which Fairness Notion?

P Fairness constraints aim to rule out “unreasonable” runs

P Too strong? = reasonable runs ruled out. Verification result:

» “false”: error found
P “true”: don't know as some relevant execution may refute it

» Too weak? = too many runs considered. Verification result:

» “true”: formula holds
P “false”: don't know, as refutation maybe due to an unreasonable run

Rules of thumb:
» strong (or unconditional) fairness is useful for solving contentions

P weak fairness is useful to resolve unfair scheduling of threads
25/62
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CTL Fairness Assumptions

Overview

© CTL Fairness Assumptions
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Fairness Constraints in CTL

» For LTL it holds: TSFg;, ¢ if and only if TSE (fair - )
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Fairness Constraints in CTL

» For LTL it holds: TSFg;, ¢ if and only if TSE (fair - )
P An analogous approach for CTL is not possible
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Fairness Constraints in CTL

» For LTL it holds: TSFg;, ¢ if and only if TSE (fair - )

P An analogous approach for CTL is not possible

» Formulas form V(fair - ) and 3(fair A ¢) needed

P But: boolean combinations of path formulae are not allowed in CTL

P and: strong fairness constraint OO b —» 0O ¢, ie., OO-bVv & Oc
cannot be expressed in CTL as persistence properties are not in CTL
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Fairness Constraints in CTL

» For LTL it holds: TSFg;, ¢ if and only if TSE (fair - )
P An analogous approach for CTL is not possible
» Formulas form V(fair - ) and 3(fair A ¢) needed

P But: boolean combinations of path formulae are not allowed in CTL

P and: strong fairness constraint OO b —» 0O ¢, ie., OO-bVv & Oc
cannot be expressed in CTL as persistence properties are not in CTL

» Solution: change the semantics of CTL by ignoring unfair paths
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CTL Fairness Constraints

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair = /\ (00 ¢, - 00 V)
0<i<k

where ®; and W; (for 0 < i < k) are CTL state-formulas over AP.
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CTL Fairness Constraints

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair = /\ (O¢ ¢; - 00 V)
O<i<k

where ®; and W; (for 0 < i < k) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = /\ OO V; and wfair = /\ (oO¢; » O V).
0<i<k 0<i<k
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CTL Fairness Constraints

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair = /\ (00 ¢, - 00 V)
0<i<k

where ®; and W; (for 0 < i < k) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = /\ OO VW, and whair = /\ (oOd; » OO V).
O<i<k O<i<k

Definition: CTL fairness assumption

A CTL fairness assumption is a conjunction of ufair, sfair and wfair.
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CTL Fairness Constraints

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:
sfair = /\ (O¢ ¢; - 00 V)
O<i<k
where ®; and W; (for 0 < i < k) are CTL state-formulas over AP.
Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = /\ OO V; and wfair = /\ (oO¢; » O V).
0<i<k 0<i<k

Definition: CTL fairness assumption

A CTL fairness assumption is a conjunction of ufair, sfair and wfair.

A CTL fairness constraint is an LTL formula over CTL state formulas.

®; and V; are interpreted by the standard (unfair) CTL semantics
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Semantics of Fair CTL
For CTL fairness assumption fair, relation Eg;, is defined by:
sEpnir a iff a€L(s)
S '=fa,'r - iff = (5 |=fa,'r q))
s 'zfair CAAY iff (5 'zfair d)) \4 (5 'zfair \U)
s Fgir o iff 7 Egj o for some fair path 7 that starts in s

sFpir Vo iff 7w Egj @ for all fair paths « that start in s

7T |=fair O ¢ iff 77[1] ':fair ¢
T Erir ®UW iff (32 0. 7[j] Frar W and (Y0 < i < j. 7[i] Frr @)

m is a fair path iff @ E;; fair for CTL fairness assumption fair
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Transition System Semantics

» For CTL-state-formula ®, and fairness assumption fair, the
satisfaction set Sats,,(®) is defined by:

Satfair(cb) = {5 €S | S |=fair (D}

P TS satisfies CTL-formula ® iff ® holds in all its initial states:

TSEqi @ ifandonly if Vsy €/.s9Epjr @

P This is equivalent to / € Sats,;(P)
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Example: An Arbiter for Mutual Exclusion

noncrity noncrity

rel

entery entery

TS, || Arbiter || TS, ¥ (VYOVO crity) A (VOVO crity)
But: TS || Arbiter || TS, kg YOVO crity A VOVO crity
with fair = OO head A OO tail
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CTL Fairness Assumptions

Example

& = VOV start
T Izufair ¢ \/

try_to_send

unconditional fairness: wfair = OO A)start

1
Sat(IOstart) = {delivered}
ufair = [O{delivered
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Example

& = VOV start

v 3 |=ufair ¢ \/
T waair ® wrong

try_to_send

unconditional fairness: wfair = O I start
weak fairness: wfair = QO I delivered — (I delivered

Sat(IOdelivered) = {try_to_send}
wiair = QOtry_to_send — () delivered
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CTL Model Checking Under Fairness

Overview

@ CTL Model Checking Under Fairness
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The Fair CTL Model-Checking Problem

Given:
1. a finite transition system TS
2. an CTL state-formula® ®, and
3. a CTL fairness assumption fair

Question: does TS Egj, 7?7

1 . . .
Assumed to be in existential normal form.
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The Fair CTL Model-Checking Problem

Given:
1. a finite transition system TS
2. an CTL state-formula® ®, and
3. a CTL fairness assumption fair

Question: does TS Egj, 7?7

use recursive descent a la CTL to determine Satg, (®)

using as much as possible standard CTL model-checking algorithms

1 . . .
Assumed to be in existential normal form.
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Treating Strong CTL Fairness Constraints
» Let strong CTL fairness constraint: sfair = J\ (OO ¢, » OO V))

O<izk
where ®; and V; (for 0 </ < k) are CTLstate-formulas over AP
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Treating Strong CTL Fairness Constraints
» Let strong CTL fairness constraint: sfair = J\ (OO ¢, » OO V))

O<izk
where ®; and V; (for 0 </ < k) are CTLstate-formulas over AP

P Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair := /\ (OO a; » 00 b))

O<i<k
» where a; € L(s) if and only if s € Sat(®;) (not Satzi ()
» ... b; €L(s)if and only if s € Sat(V;) (not Satg; (V)
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Treating Strong CTL Fairness Constraints
» Let strong CTL fairness constraint: sfair = J\ (OO ¢, » OO V))

O<izk
where ®; and V; (for 0 </ < k) are CTLstate-formulas over AP

P Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair := /\ (OO a; » 00 b))

0<i<k
» where a; € L(s) if and only if s € Sat(®;) (not Satzi ()
» ... b; €L(s)if and only if s € Sat(V;) (not Satg; (V)

P For unconditional and weak fairness this goes similarly
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Treating Strong CTL Fairness Constraints
» Let strong CTL fairness constraint: sfair = J\ (OO ¢, » OO V))

O<izk
where ®; and V; (for 0 </ < k) are CTLstate-formulas over AP

P Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair := /\ (OO a; » 00 b))

0<i<k
» where a; € L(s) if and only if s € Sat(®;) (not Satzi ()
» ... b; €L(s)if and only if s € Sat(V;) (not Satg; (V)

P For unconditional and weak fairness this goes similarly

» Note: 7 E fair iff w[j..] k fair for some j > 0 iff «[j..] F fair for all j =0
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Some Useful Results

|
For CTL fairness assumption fair and a, a' € AP it holds:

1. s kg A0 a iff 3s’ € Post(s) with s’ E a and FairPathsg,.(s') # @
2. s kg 3(aU Q) if and only if there exists a finite path fragment

S0S15 . ..5,1 5y € Paths'(s) with n20

such that s; E afor 0< i< n, s, E a', and FairPathsg;.(s,) # @.

Proof.
On the black board.
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CTL Model Checking Under Fairness

Example
T .
& s Fgir A(—bUc)
T
{C} bé 3Afair s bé H(ﬂb U( c A afa,-,))

l

Sat(c A apir) = @

{b} bé afair

strong fairness assumption: fair = OQb — Oc¢

T |= El(—lbU C), but T béfa,-, El(—lb U C)
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Fair Path Existence

FairPathsg,.(s) # @ if and only if s Fg;, 30true.
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CTL Model Checking Under Fairness

Fair Path Existence

FairPathsg,.(s) # @ if and only if s Fg;, 30true.

@ = {a}
S0 Pp
s L) fair = 0O0a

Satg,;(A0true) = {s0, 5}
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Basic Model-Checking Algorithm for Fair CTL
» Determine Saty,;(30true) = {s € S| FairPathsg,;,(s) # @ }
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Basic Model-Checking Algorithm for Fair CTL
» Determine Saty,;(30true) = {s € S| FairPathsg,;,(s) # @ }

P Introduce an atomic proposition ag; and adjust labeling where:
» a.;, € L(s) ifandonlyif s € Satg;,(I0true)
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Basic Model-Checking Algorithm for Fair CTL
» Determine Saty,;(30true) = {s € S| FairPathsg,;,(s) # @ }

P Introduce an atomic proposition ag; and adjust labeling where:
» a.;, € L(s) ifandonlyif s € Satg;,(I0true)

» Compute the sets Sats,;, (V) for all sub-formulas W of ® (in ENF) by:

Satfalr(a) = {S €S | ae L(S)}
Satfalr( a) = S \ Satfair(a)
Satfalr(a/\ ) o= Satfair(a) n Satfair(a')

Satfalr( (a U a) = Sat(a(a U (a’ A afaif)))

)
)
Satg (30 a) = Sat(3O(a A agir))
)
Satg,;,(30a) = ......
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Basic Model-Checking Algorithm for Fair CTL
» Determine Saty,;(30true) = {s € S| FairPathsg,;,(s) # @ }

P Introduce an atomic proposition ag; and adjust labeling where:
» a.;, € L(s) ifandonlyif s € Satg;,(I0true)

» Compute the sets Sats,;, (V) for all sub-formulas W of ® (in ENF) by:
Satg,,(a) {seS|ael(s)}

Satfalr( a) S \ Satfair(a)

Satfalr(a A a') Satfair(a) n Satfair(a')

Satfalr(aO a) = Sat(ao (a A afair))
)
)

Satfalr( (a U a) = Sat(a(a U (a’ A afair)))
Satg,;,(30a) =

» Thus: model checking CTL under fairness constraints is
» CTL model checking + algorithm for computing Satg,;(30a)
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Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining
» the model-checking algorithm for CTL (without fairness), and

P an algorithm for computing Satg,;(30a) for a € AP.
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Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining
» the model-checking algorithm for CTL (without fairness), and

P an algorithm for computing Satg,;(30a) for a € AP.

As d0true is a special case of 304,
an algorithm for Sat,;,(30a) can be used for Satg,; (I0true)
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CTL Model Checking Under Fairness

Basic Fair CTL Algorithm

(* states are assumed to be labeled with a; and b; *)
compute Saly,;.(30true) = {s € S| Faeraths( )# @}
forall s € Saty,;(30true) do L(s ) L(s)U{af, }od
(* compute Saty,-(P) *)
forall0 < i< |®|do
forall U € Sub(®) with | ¥ | = i do

switch(7):
true 1 Satpy; (V) = S;
a I Satp;(V):={scS|ac L(s )
a A d 1 Saty, (V) :={secS|a, adelL(s)}
—a T Saty;(V):={scS|ag L(s)};
d0a : Satfa!r(\ll) Sat(30(a A afa'zr))
I(aUa’) Saty,; (V) := Sat(I(a U (a' A Afair)));
J0a :  compute Saty,;,(30a)

end switch

replace all occurrences of U (in ®) by the fresh atomic proposition ay
forall s € Saty,;,(¥)do L(s) := L(s) U {ay } od
od
od
return I C Saiy,;.(®)
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Characterising Satg,,(30a)

s Fsrir d0a  where  sfair = /\ (I:|<> a;»> 00 b,-)
O<i<k

iff there exists a finite path fragment sy...s, and a cycle ;... s, with:
1.sp=s and s,=sy=5s
2. siFa, forany0<i<n and s Fa, forany 0<j<r, and
3. Sat{a;)) n {s;,...,s,} =@ or Sat(b;) N {sy,...,s, } #@for 0< i<k

Next slide.
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Proof
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Computing Satg,;(30a)

P Consider only state s if s F a, otherwise eliminate s
» consider TS a] = (S', Act, ', I', AP, L) with S' = Sat{a),
> 5' =5 n(S'xActxS), I'=sInS', and L'(s)=L(s) forse S
= each infinite path fragment in T9[a] satisfies O a

2y . .
This is not necessarily an SCC (a maximal strongly-connected set).
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Computing Satg,;(30a)

P Consider only state s if s F a, otherwise eliminate s
» consider TS a] = (S', Act, ', I', AP, L) with S' = Sat{a),
> 5' =5 n(S'xActxS), I'=sInS', and L'(s)=L(s) forse S
= each infinite path fragment in T9[a] satisfies O a

» Let fair= A\ (OO a; » OO b))
0<i<k

2y . .
This is not necessarily an SCC (a maximal strongly-connected set).
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CTL Model Checking Under Fairness

Computing Satg,;(30a)

P Consider only state s if s F a, otherwise eliminate s
» consider TS a] = (S', Act, ', I', AP, L) with S' = Sat{a),
> 5' =5 n(S'xActxS), I'=sInS', and L'(s)=L(s) forse S
= each infinite path fragment in T9[a] satisfies O a

P Let fair= A\ (OO a; > OO by)
0<i<k
P s kp, 302 iff s can reach a strongly connected node-set® D in TS a]
with:
D n Sat(a;)) =@ or D n Sat(b;))#@ for 0<i<k (*)

» Satgi(30a) = {s€ S| Reachq.i(s) N T # @}
» T is the union of all SCCs C that contain D satisfying (*)

*This is not necessarily an SCC (a maximal strongly-connected set).
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CTL Model Checking Under Fairness

Example

T digraph G,

8

Computing Satg,;-(30a) by analysing the digraph G, of T9 a]

@2 Ol
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CTL Model Checking Under Fairness

Example

51
S3
2
fair = (O0bH, — OOc1)) A (O0k: — O0c)
so Frir A0a as 5519 519 ... =171 fair

Satfair(ama) — {501 51, 52, 53}




doa under Unconditional Fairness

Let ufair = /\ 0O b;
O<i<k

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

Cn Satb;)) + @ forall0<i<k
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doa under Unconditional Fairness

Let ufair = /\ 0O b;
O<i<k

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying
Cn Satb;)) + @ forall0<i<k
It now follows:

s Furir 30a if and only if Reach.q,)(s) N T # @

= T can be determined by a depth-first search procedure
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Example

digraph G,

fairness assumption:
fair = 00 A0

s Fpir 30a
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CTL Model Checking Under Fairness

Joa Under One Strong Fairness Constraint
> sfair = OO a3 » OO by, e, k=1
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CTL Model Checking Under Fairness

Joa Under One Strong Fairness Constraint
> sfair = OO a3 » OO by, e, k=1

P s ki 30aiff Cis a non-trivial SCC in TS[a] reachable from s with:

1. C n Sat(by) # @, or
2. D n Sat(a;) = @, for some non-trivial SCC D in C
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CTL Model Checking Under Fairness

Joa Under One Strong Fairness Constraint
> sfair = OO a3 » OO by, e, k=1

P s ki 30aiff Cis a non-trivial SCC in TS[a] reachable from s with:

1. C n Sat(by) # @, or
2. D n Sat(a;) = @, for some non-trivial SCC D in C

» D is a non-trivial SCC in the graph that is obtained from C[-a]
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CTL Model Checking Under Fairness

Joa Under One Strong Fairness Constraint
> sfair = OO a3 » OO by, e, k=1

P s ki 30aiff Cis a non-trivial SCC in TS[a] reachable from s with:

1. C n Sat(by) # @, or
2. D n Sat(a;) = @, for some non-trivial SCC D in C

» D is a non-trivial SCC in the graph that is obtained from C[-a]

» For T the union of non-trivial SCCs in satisfying (1) and (2):

s Espiy 30a if and only if  Reachq,)(s) N T # @
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Joa Under One Strong Fairness Constraint

> sfair = OO a3 » OO by, e, k=1
P s ki 30aiff Cis a non-trivial SCC in TS[a] reachable from s with:

1. C n Sat(by) # @, or
2. D n Sat(a;) = @, for some non-trivial SCC D in C

» D is a non-trivial SCC in the graph that is obtained from C[-a]

» For T the union of non-trivial SCCs in satisfying (1) and (2):
s Espiy 30a if and only if  Reachq,)(s) N T # @

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)
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CTL Model Checking Under Fairness

Example: One Strong Fairness Constraint

fair =00b — O0c
digraph G,

s «—| S |=fa,', d0a

I

O zo2
@® ={c}
@ = ()

1

|

nontrivial SCC C of G, with C N Sat(c) # @
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Example: One Strong Fairness Constraint
fair =00b — Oc
digraph G,

s «— S '=fair d0a
{c} D
{b}

{5}

T

strongly connected node-set D of G, with
DN Sat(b) = @
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CTL Model Checking Under Fairness

Example: One Strong Fairness Constraint
fair =000b — O0c
digraph G,

— S |=fair d0a

nontrivial SCC C of G, that contains a
nontrivial SCC D of G;|c¢ \ Sat(b)
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CTL Model Checking Under Fairness

Example: Two Strong Fairness Constraints
fair = (DOi} — DOC]) A (DObg — DOCg)
digraph G,

first SCC: G N Sat(cy) =2
analyze G \ Sat(by) w.r.t. Qb — O0q




CTL Model Checking Under Fairness

Example: Two Strong Fairness Constraints

fair = (O0b; — O0c) A (O0b, — OOc)

digraph G, ;
¢ s N
——
—

G

second SCC: G N Sat(cq) =2
analyze G \ Sat(by) w.r.t. O0b, — OO




Algorithm

compute the SCCs of the digraph G;;
i
FOR ALL nontrivial SCCs C of G, DO

IF CheckFair(C,...) THENT :=TUCFI
0D

Satgi(30a) :={s € S : Re?ch(;a(s) NT#o}

backward search from T

CheckFair is a recursive procedure over the k strong fairness constraints

Basically an SCC analysis per fairness constraint. Time complexity:
O(| TS|-|fair|).
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CTL Model Checking Under Fairness

CheckFair Algorithm (for completeness)
pseudo code for CheckFair(C,k, A (O0b; — O0c;))
1<i<k
IF Vi e {1,...,k}. CN Sat(c;) # @ THEN return “true” FI
choose j € {1, ..., k} with C N Sat(g) = @;
remove all states in Sat(b;);
IF the resulting graph G is acyclic THEN return “false” FI
FOR ALL nontrivial SCCs D of G DO
IF CheckFair(D, k—1, A (O0b—00c;))
THEN return “true” i#

time complexity:

o O(size(C) - k)

return “false”
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Time complexity

|
The CTL model-checking problem under fairness assumption fair can be
solved in O(|®| - | TS| - |fair]).

Follows from the complexity O(|®|| TS|) of CTL model checking O
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Overview

e Summary
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Model Checking Complexity

\ CTL \ LTL \ CTL” \
model PTIME PSPACE PSPACE
checking
algorithmic | TS| - |®| | TS| - exp(|el) | TS| - exp(|®])
complexity
with | TS| - |®| - |fair| | |TS|-exp(le|+|fair]) | | TS| - exp(|®|+|fair|)
fairness

All theoretical complexity indications are complete.
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Summary

P Fairness constraints rule out “unreasonable” computations
P Fairness assumptions are conjunctions of fairness constraints
P Fair LTL model checking is reduced to standard LTL model checking

P CTL fairness constraints are fair “LTL"-formulas over CTL
state-formulas

» Fair CTL model checking is standard CTL model checking ...
P ... plus a dedicated procedure for 30a

» Complexity of fair CTL model checking is O(| TS|:|®||fair|)
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Next Lecture

Thursday December 12, 10:30

No Lecture on Friday December 6
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