Model Checking

Lecture #14: Fairness [Baier & Katoen, Chapter 3.5, 5.1.6, 6.5]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Overview

- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

Overview

- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

The Relevance of Fairness

Does This Multi-Threaded Program Terminate?

Inc ||| Reset

where

thread lnc = while $\langle x \ge 0 \text{ do } x := x + 1 \rangle$ od thread Reset = x := -1

x is a shared integer variable that initially has value 0

Is It Possible To Starve?

Thread Two Starves

Is it fair that thread two never gets access to the critical section despite infinitely often having the possibility to do so?

Starvation freedom is often considered under thread fairness

 \Rightarrow there is a fair scheduling of the execution of threads

Starvation freedom is often considered under thread fairness
 ⇒ there is a fair scheduling of the execution of threads

Fairness is concerned with a fair resolution of non-determinism
 such that it is not biased to consistently ignore a possible option

Starvation freedom is often considered under thread fairness
 ⇒ there is a fair scheduling of the execution of threads

Fairness is concerned with a fair resolution of non-determinism
 such that it is not biased to consistently ignore a possible option

Fairness is typically needed to prove a liveness property

- to prove some form of progress, progress needs to be possible
- fairness does not affect safety properties

Starvation freedom is often considered under thread fairness
 ⇒ there is a fair scheduling of the execution of threads

Fairness is concerned with a fair resolution of non-determinism
 such that it is not biased to consistently ignore a possible option

Fairness is typically needed to prove a liveness property

to prove some form of progress, progress needs to be possible

fairness does not affect safety properties

Problem: liveness properties constrain infinite behaviours

but some traces—that are unfair—refute the liveness property

Fairness Constraints

What is wrong with our examples?

Nothing!

- ▶ interleaving: not realistic as no processor is ∞ faster than another
- semaphore-based mutual exclusion: level of abstraction

Fairness Constraints

What is wrong with our examples? Nothing!

- \blacktriangleright interleaving: not realistic as no processor is ∞ faster than another
- semaphore-based mutual exclusion: level of abstraction
- ▶ Rule out "unrealistic" exectuions by imposing fairness constraints
 ▶ what to rule out? ⇒ different kinds of fairness constraints

Fairness Constraints

What is wrong with our examples? Nothing!

- Interleaving: not realistic as no processor is ∞ faster than another
- semaphore-based mutual exclusion: level of abstraction
- Rule out "unrealistic" exectuions by imposing fairness constraints \blacktriangleright what to rule out? \Rightarrow different kinds of fairness constraints

"A thread gets its turn infinitely often"

- unconditional fairness always if it is enabled infinitely often
- if it is continuously enabled from some point on

strong fairness weak fairness

This program terminates assuming unconditional (thread) fairness:

thread lnc = while $\langle x \ge 0 \text{ do } x := x + 1 \rangle$ od

thread Reset = x := -1

as thread Reset eventually will set x to -1

x is a shared integer variable that initially has value 0

Avoiding Starvation by Fairness

If the infinitely often enabled $enter_2$ action is not ignored infinitely often, thread two does not starve.

Avoiding Starvation by Fairness

Note that *enter*₂ is not enabled continuously during the **run**. Weak fairness this does not suffice.

Overview

- 2 Fairness Assumptions
 - 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

LTL Fairness Constraints

Definition: LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over *AP*.

1. An unconditional LTL fairness constraint is of the form:

ufair = $\Box \diamondsuit \Psi$

2. A strong LTL fairness condition is of the form:

 $sfair = \Box \diamondsuit \Phi \longrightarrow \Box \diamondsuit \Psi$

3. A weak LTL fairness constraint is of the form:

wfair = $\Diamond \Box \Phi \longrightarrow \Box \Diamond \Psi$

 Φ stands for "... is enabled"; Ψ for "... is taken"

Fairness Assumptions

Relating Fairness Constraints

unconditional fair \Rightarrow strong fair \Rightarrow weak fair.

Fairness Assumptions

Definition: fairness assumption

An LTL fairness assumption is a conjunction of LTL fairness constraints.

The general format of fairness assumption fair is

 $fair = ufair \land sfair \land wfair$

Fair Traces and Fair Satisfaction

Definition: fair paths and fair traces

For state s in transition system TS (over AP) and LTL fairness assumption *fair*, let

$$\begin{aligned} & \text{FairPaths}_{\text{fair}}(s) &= \left\{ \pi \in \text{Paths}(s) \mid \pi \models \text{fair} \right\} \\ & \text{FairTraces}_{\text{fair}}(s) &= \left\{ \text{trace}(\pi) \mid \pi \in \text{FairPaths}_{\text{fair}}(s) \right\}. \end{aligned}$$

Fair Traces and Fair Satisfaction

Definition: fair paths and fair traces

For state s in transition system TS (over AP) and LTL fairness assumption *fair*, let

$$\begin{aligned} &FairPaths_{fair}(s) &= \left\{ \pi \in Paths(s) \mid \pi \vDash fair \right\} \\ &FairTraces_{fair}(s) &= \left\{ trace(\pi) \mid \pi \in FairPaths_{fair}(s) \right\}. \end{aligned}$$

Definition: fair satisfaction relation

For LTL-formula φ , and LTL fairness assumption *fair*:

$$s \models_{fair} \varphi$$
 if and only if $\forall \pi \in FairPaths_{fair}(s)$. $\pi \models \varphi$

 $TS \vDash_{fair} \varphi$ if and only if $\forall s_0 \in I. s_0 \vDash_{fair} \varphi$.

The relation \models_{fair} is the fair satisfaction relation for LTL.

Let Φ = "action *enter*₂ is enabled" and Ψ = "action *enter*₂ is taken"

Let Φ = "action *enter*₂ is enabled" and Ψ = "action *enter*₂ is taken"

- $\blacktriangleright \operatorname{\mathsf{Run}} \langle n_1, n_2, 1 \rangle \xrightarrow{\operatorname{req}_1} \langle w_1, n_2, 1 \rangle \xrightarrow{\operatorname{enter}_1} \langle c_1, n_2, 0 \rangle \xrightarrow{\operatorname{rel}} \langle n_1, n_2, 1 \rangle \xrightarrow{\operatorname{req}_1} \dots$
 - ... is not unconditionally fair
 - ... but strongly fair, as action enter₂ is never enabled along the run

Let Φ = "action *enter*₂ is enabled" and Ψ = "action *enter*₂ is taken"

Run (n₁, n₂, 1) <u>req₁</u> (w₁, n₂, 1) <u>enter₁</u> (c₁, n₂, 0) <u>rel</u> (n₁, n₂, 1) <u>req₁</u> ...
 ... is not unconditionally fair
 ... but strongly fair, as action <u>enter₂</u> is never enabled along the run

Run (n₁, n₂, 1) <u>req₂</u> (n₁, w₂, 1) <u>req₁</u> (w₁, w₂, 1) <u>enter₁</u> (c₁, w₂, 0) <u>rel</u> ...
 ... is not strongly fair as <u>enter₂</u> is ∞ often enabled but never taken
 ... but weakly fair for as <u>enter₂</u> is not always enabled along the run

Example: An Arbiter for Mutual Exclusion

 $TS_1 \parallel Arbiter \parallel TS_2 \notin \Box \diamondsuit crit_1$ But: $TS_1 \parallel Arbiter \parallel TS_2 \models_{fair} \Box \diamondsuit crit_1 \land \Box \diamondsuit crit_2$ with fair = $\Box \diamondsuit$ head $\land \Box \diamondsuit$ tail

Overview

- The Relevance of Fairness
- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

Realisable Fairness

Definition: realisable fairness

Fairness assumption *fair* is realisable for transition system *TS* if for any reachable state *s*: *FairPaths*_{fair}(*s*) $\neq \emptyset$.

A fairness assumption is realisable for TS if every initial finite path fragment of TS can be completed to a fair run.

The Fairness Suffix Property

For any (infinite) fair path π , it holds

- 1. all suffixes of π are fair too.
- 2. any finite path extended by π is fair.

Proof.

Rather straightforward.

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness

For transition system *TS* and safety property E_{safe} (both over *AP*) and *fair* a realisable fairness assumption for *TS*:

 $TS \models E_{safe}$ if and only if $TS \models_{fair} E_{safe}$.

Proof.

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness

For transition system *TS* and safety property E_{safe} (both over *AP*) and *fair* a realisable fairness assumption for *TS*:

 $TS \models E_{safe}$ if and only if $TS \models_{fair} E_{safe}$.

Non-realisable fairness may harm safety properties. Shown by example.

Proof.

Overview

- The Relevance of Fairness
- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

The Fair LTL Model-Checking Problem

Given:

- 1. a finite transition system TS
- 2. an LTL formula φ , and
- 3. an LTL fairness assumption fair

Question: does $TS \models_{fair} \varphi$?

Fair LTL Model Checking

For transition system TS, LTL formula φ and LTL fairness assumption *fair*.

$$\underbrace{TS \models_{fair} \varphi}_{fair \ LTL \ model \ checking}$$

if and only if

$$TS \models \left(\begin{array}{c} fair \rightarrow \varphi \end{array} \right)$$

LTL model checking

Fair LTL Model Checking

For transition system TS, LTL formula φ and LTL fairness assumption fair.

 $\underbrace{TS \models_{fair} \varphi}_{fair \ LTL \ model \ checking} \quad \text{if and only if} \quad \underbrace{TS \models (fair \rightarrow \varphi)}_{LTL \ model \ checking}$

The fair LTL model-checking problem for φ under fairness assumption *fair* can be reduced to the LTL model-checking problem for *fair* $\rightarrow \varphi$.
Fair LTL Model Checking

For transition system TS, LTL formula φ and LTL fairness assumption fair.

 $\underbrace{TS \models_{fair} \varphi}_{\text{fair LTL model checking}} \quad \text{if and only if} \quad \underbrace{TS \models (fair \rightarrow \varphi)}_{\text{LTL model checking}}$

The fair LTL model-checking problem for φ under fairness assumption *fair* can be reduced to the LTL model-checking problem for *fair* $\rightarrow \varphi$.

This approach is not applicable to CTL (as we will discuss)

Fairness constraints aim to rule out "unreasonable" runs

Fairness constraints aim to rule out "unreasonable" runs

Too strong? \Rightarrow reasonable runs ruled out. Verification result:

- "false": error found
- "true": don't know as some relevant execution may refute it

Fairness constraints aim to rule out "unreasonable" runs

- **Too strong**? \Rightarrow reasonable runs ruled out. Verification result:
 - "false": error found
 - "true": don't know as some relevant execution may refute it

Too weak? \Rightarrow too many runs considered. Verification result:

- "true": formula holds
- "false": don't know, as refutation maybe due to an unreasonable run

Fairness constraints aim to rule out "unreasonable" runs

- **Too strong**? \Rightarrow reasonable runs ruled out. Verification result:
 - "false": error found
 - "true": don't know as some relevant execution may refute it
- **Too weak?** \Rightarrow too many runs considered. Verification result:
 - "true": formula holds
 - "false": don't know, as refutation maybe due to an unreasonable run

Rules of thumb:

- strong (or unconditional) fairness is useful for solving contentions
- weak fairness is useful to resolve unfair scheduling of threads

Overview

- The Relevance of Fairness
- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible
- Formulas form \forall (*fair* $\rightarrow \varphi$) and \exists (*fair* $\land \varphi$) needed

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible
- Formulas form \forall (*fair* $\rightarrow \varphi$) and \exists (*fair* $\land \varphi$) needed
- But: boolean combinations of path formulae are not allowed in CTL

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible
- Formulas form \forall (*fair* $\rightarrow \varphi$) and \exists (*fair* $\land \varphi$) needed
- **But**: boolean combinations of path formulae are not allowed in CTL
- ▶ and: strong fairness constraint $\Box \diamondsuit b \rightarrow \Box \diamondsuit c$, i.e., $\diamondsuit \Box \neg b \lor \diamondsuit \Box c$ cannot be expressed in CTL as persistence properties are not in CTL

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible
- Formulas form \forall (*fair* $\rightarrow \varphi$) and \exists (*fair* $\land \varphi$) needed
- But: boolean combinations of path formulae are not allowed in CTL
- ▶ and: strong fairness constraint $\Box \diamondsuit b \rightarrow \Box \diamondsuit c$, i.e., $\diamondsuit \Box \neg b \lor \diamondsuit \Box c$ cannot be expressed in CTL as persistence properties are not in CTL
- Solution: change the semantics of CTL by ignoring unfair paths

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair =
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$$

where Φ_i and Ψ_i (for $0 < i \le k$) are CTL state-formulas over AP.

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair =
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$$

where Φ_i and Ψ_i (for $0 < i \le k$) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

$$ufair = \bigwedge_{0 < i \le k} \Box \diamondsuit \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \le k} (\diamondsuit \Box \Phi_i \to \Box \diamondsuit \Psi_i).$$

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair =
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$$

where Φ_i and Ψ_i (for $0 < i \le k$) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

$$ufair = \bigwedge_{0 < i \le k} \Box \diamondsuit \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \le k} (\diamondsuit \Box \Phi_i \to \Box \diamondsuit \Psi_i).$$

Definition: CTL fairness assumption

A CTL fairness assumption is a conjunction of *ufair*, *sfair* and *wfair*.

Definition: CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

sfair =
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$$

where Φ_i and Ψ_i (for $0 < i \le k$) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

$$ufair = \bigwedge_{0 < i \le k} \Box \diamondsuit \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \le k} (\diamondsuit \Box \Phi_i \to \Box \diamondsuit \Psi_i).$$

Definition: CTL fairness assumption

A CTL fairness assumption is a conjunction of ufair, sfair and wfair.

A CTL fairness constraint is an LTL formula over CTL state formulas.

 Φ_i and Ψ_i are interpreted by the standard (unfair) CTL semantics Joost-Pieter Katoen

Semantics of Fair CTL

For CTL fairness assumption *fair*, relation \models_{fair} is defined by:

- $$\begin{split} s \vDash_{fair} a & \text{iff} \quad a \in L(s) \\ s \vDash_{fair} \neg \Phi & \text{iff} \quad \neg (s \vDash_{fair} \Phi) \\ s \vDash_{fair} \Phi \lor \Psi & \text{iff} \quad (s \vDash_{fair} \Phi) \lor (s \vDash_{fair} \Psi) \\ s \vDash_{fair} \exists \varphi & \text{iff} \quad \pi \vDash_{fair} \varphi \text{ for some fair path } \pi \text{ that starts in } s \\ s \vDash_{fair} \forall \varphi & \text{iff} \quad \pi \vDash_{fair} \varphi \text{ for all fair paths } \pi \text{ that start in } s \end{split}$$
- $\begin{aligned} \pi \vDash_{fair} \bigcirc \Phi & \text{iff } \pi[1] \vDash_{fair} \Phi \\ \pi \vDash_{fair} \Phi \cup \Psi & \text{iff } \left(\exists j \ge 0, \pi[j] \vDash_{fair} \Psi \text{ and } (\forall 0 \le i < j, \pi[i] \vDash_{fair} \Phi) \right) \end{aligned}$

 π is a fair path iff $\pi \models_{LTL}$ fair for CTL fairness assumption fair

Transition System Semantics

For CTL-state-formula Φ, and fairness assumption *fair*, the satisfaction set Sat_{fair}(Φ) is defined by:

$$Sat_{fair}(\Phi) = \{ s \in S \mid s \vDash_{fair} \Phi \}$$

► *TS* satisfies CTL-formula Φ iff Φ holds in all its initial states: $TS \vDash_{fair} \Phi$ if and only if $\forall s_0 \in I. s_0 \vDash_{fair} \Phi$

This is equivalent to
$$I \subseteq Sat_{fair}(\Phi)$$

Example: An Arbiter for Mutual Exclusion

 $TS_1 \parallel Arbiter \parallel TS_2 \notin (\forall \Box \forall \diamondsuit crit_1) \land (\forall \Box \forall \diamondsuit crit_2)$ But: $TS_1 \parallel Arbiter \parallel TS_2 \models_{fair} \forall \Box \forall \diamondsuit crit_1 \land \forall \Box \forall \diamondsuit crit_2$ with fair = $\Box \diamondsuit head \land \Box \diamondsuit tail$

Example

$$\Phi = \forall \Box \forall \Diamond start$$

$$T \models_{ufair} \Phi \sqrt{}$$

unconditional fairness: $ufair = \Box \Diamond \exists \bigcirc start$ \uparrow $Sat(\exists \bigcirc start) = \{delivered\}$ $ufair \cong \Box \Diamond delivered$

Example

unconditional fairness: **ufair** = $\Box \Diamond \exists \bigcirc start$

weak fairness: wfair = $D \exists delivered \rightarrow delivered$

$$Sat(\exists \bigcirc delivered) = \{try_to_send\}$$

wfair $\widehat{=} \Diamond \Box try_to_send \rightarrow \Box \Diamond delivered$

Overview

- The Relevance of Fairness
- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

7 Summary

The Fair CTL Model-Checking Problem

Given:

- 1. a finite transition system TS
- 2. an CTL state-formula¹ Φ , and
- 3. a CTL fairness assumption fair

Question: does $TS \models_{fair} \Phi$?

¹Assumed to be in existential normal form.

The Fair CTL Model-Checking Problem

Given:

- 1. a finite transition system TS
- 2. an CTL state-formula¹ Φ , and
- 3. a CTL fairness assumption fair
- Question: does $TS \models_{fair} \Phi$?

use recursive descent à la CTL to determine $Sat_{fair}(\Phi)$ using as much as possible standard CTL model-checking algorithms

¹Assumed to be in existential normal form.

• Let strong CTL fairness constraint: sfair = $\bigwedge_{0 \le i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$

where Φ_i and Ψ_i (for $0 < i \le k$) are CTLstate-formulas over AP

► Let strong CTL fairness constraint: $sfair = \bigwedge_{0 \le i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$ where Φ_i and Ψ_i (for $0 \le i \le k$) are CTLstate-formulas over AP

Replace the CTL state-formulas in *sfair* by fresh atomic propositions:

sfair :=
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit \ a_i \to \Box \diamondsuit \ b_i)$$

▶ where
$$a_i \in L(s)$$
 if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)$)
▶ ... $b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)$)

► Let strong CTL fairness constraint: $sfair = \bigwedge_{0 \le i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$ where Φ_i and Ψ_i (for $0 \le i \le k$) are CTLstate-formulas over AP

Replace the CTL state-formulas in *sfair* by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \le k} (\Box \diamondsuit \ a_i \to \Box \diamondsuit \ b_i)$$

where
$$a_i \in L(s)$$
 if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)$)
 $\dots b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)$)

For unconditional and weak fairness this goes similarly

► Let strong CTL fairness constraint: $sfair = \bigwedge_{0 \le i \le k} (\Box \diamondsuit \Phi_i \to \Box \diamondsuit \Psi_i)$ where Φ_i and Ψ_i (for $0 \le i \le k$) are CTLstate-formulas over AP

Replace the CTL state-formulas in *sfair* by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \le k} (\Box \diamondsuit \ a_i \to \Box \diamondsuit \ b_i)$$

▶ where
$$a_i \in L(s)$$
 if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)$)
> ... $b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)$)

For unconditional and weak fairness this goes similarly

Note: $\pi \models fair$ iff $\pi[j..] \models fair$ for some $j \ge 0$ iff $\pi[j..] \models fair$ for all $j \ge 0$

Some Useful Results

For CTL fairness assumption *fair* and *a*, $a' \in AP$ it holds:

- 1. $s \models_{fair} \exists \bigcirc a \text{ iff } \exists s' \in Post(s) \text{ with } s' \models a \text{ and } FairPaths_{fair}(s') \neq \emptyset$
- 2. $s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment

 $s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths^*(s)$ with $n \ge 0$

such that $s_i \models a$ for $0 \le i < n$, $s_n \models a'$, and $FairPaths_{fair}(s_n) \ne \emptyset$.

Proof.

On the black board.

Example

strong fairness assumption: $fair = \Box \Diamond b \rightarrow \Box \Diamond c$

$$\mathcal{T} \models \exists (\neg b \cup c), \text{ but } \mathcal{T} \not\models_{fair} \exists (\neg b \cup c)$$

Fair Path Existence

$FairPaths_{fair(s)} \neq \emptyset$ if and only if $s \models_{fair} \exists \Box$ true.

Fair Path Existence

$FairPaths_{fair(s)} \neq \emptyset$ if and only if $s \models_{fair} \exists \Box$ true.

Example

▶ Determine $Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPath_{fair}(s) \neq \emptyset \}$

- ▶ Determine $Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPath_{fair}(s) \neq \emptyset \}$
- Introduce an atomic proposition a_{fair} and adjust labeling where:
 a_{fair} ∈ L(s) if and only if s ∈ Sat_{fair}(∃□true)

▶ Determine $Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPath_{fair}(s) \neq \emptyset \}$

Introduce an atomic proposition a_{fair} and adjust labeling where:
 a_{fair} ∈ L(s) if and only if s ∈ Sat_{fair}(∃□true)

• Compute the sets $Sat_{fair}(\Psi)$ for all sub-formulas Ψ of Φ (in ENF) by:

$$\begin{array}{rcl} Sat_{fair}(a) &=& \{s \in S \mid a \in L(s)\}\\ Sat_{fair}(\neg a) &=& S \setminus Sat_{fair}(a)\\ Sat_{fair}(a \wedge a') &=& Sat_{fair}(a) \cap Sat_{fair}(a')\\ Sat_{fair}(\exists \bigcirc a) &=& Sat(\exists \bigcirc (a \wedge a_{fair}))\\ Sat_{fair}(\exists \square a) &=& \ldots \end{array}$$

▶ Determine $Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPath_{fair}(s) \neq \emptyset \}$

Introduce an atomic proposition a_{fair} and adjust labeling where:
 a_{fair} ∈ L(s) if and only if s ∈ Sat_{fair}(∃□true)

• Compute the sets $Sat_{fair}(\Psi)$ for all sub-formulas Ψ of Φ (in ENF) by:

$$\begin{array}{rcl} Sat_{fair}(a) &=& \{s \in S \mid a \in L(s)\}\\ Sat_{fair}(\neg a) &=& S \setminus Sat_{fair}(a)\\ Sat_{fair}(a \wedge a') &=& Sat_{fair}(a) \cap Sat_{fair}(a')\\ Sat_{fair}(\exists \bigcirc a) &=& Sat(\exists \bigcirc (a \wedge a_{fair}))\\ Sat_{fair}(\exists \square a) &=& Sat(\exists (a \cup (a' \wedge a_{fair})))\\ Sat_{fair}(\exists \square a) &=& \dots \end{array}$$

Thus: model checking CTL under fairness constraints is
 CTL model checking + algorithm for computing Sat_{fair}(∃□a)
Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining

the model-checking algorithm for CTL (without fairness), and

▶ an algorithm for computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$.

Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining

the model-checking algorithm for CTL (without fairness), and

▶ an algorithm for computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$.

As $\exists \Box$ true is a special case of $\exists \Box a$, an algorithm for $Sat_{fair}(\exists \Box a)$ can be used for $Sat_{fair}(\exists \Box$ true)

Basic Fair CTL Algorithm

```
(* states are assumed to be labeled with a_i and b_i *)
compute Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}
forall s \in Sat_{fair}(\exists \Box true) do L(s) := L(s) \cup \{a_{fair}\} od
                                                                                   (* compute Sat_{fair}(\Phi) *)
for all 0 < i \leq |\Phi| do
  for all \Psi \in Sub(\Phi) with |\Psi| = i do
     switch(\Psi):
                        \exists \Box a : compute Sat_{fair}(\exists \Box a)
     end switch
     replace all occurrences of \Psi (in \Phi) by the fresh atomic proposition a_{\Psi}
     forall s \in Sat_{fair}(\Psi) do L(s) := L(s) \cup \{a_{\Psi}\} od
  od
od
return I \subset Sat_{fair}(\Phi)
```

Characterising $Sat_{fair}(\exists \Box a)$

$$s \models_{sfair} \exists \Box a$$
 where $sfair = \bigwedge_{0 \le i \le k} (\Box \diamondsuit a_i \to \Box \diamondsuit b_i)$

iff there exists a finite path fragment $s_0 \dots s_n$ and a cycle $s'_0 \dots s'_r$ with:

1.
$$s_0 = s$$
 and $s_n = s'_0 = s'_r$

2.
$$s_i \models a$$
, for any $0 \le i \le n$, and $s'_j \models a$, for any $0 \le j \le r$, and

3.
$$Sat(a_i) \cap \{s'_1, \dots, s'_r\} = \emptyset$$
 or $Sat(b_i) \cap \{s'_1, \dots, s'_r\} \neq \emptyset$ for $0 < i \le k$

Proof.

Next slide.

CTL Model Checking Under Fairness

Proof

Computing *Sat*_{fair}(∃□a)

Consider only state s if $s \models a$, otherwise eliminate s

- ▶ consider $TS[a] = (S', Act, \rightarrow', I', AP, L')$ with S' = Sat(a),
- ► $\rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S', \text{ and } L'(s) = L(s) \text{ for } s \in S'$

 \Rightarrow each infinite path fragment in TS[a] satisfies $\Box a$

²This is not necessarily an SCC (a maximal strongly-connected set).

Computing *Sat*_{*fair*}(∃□*a*)

Consider only state s if s ⊨ a, otherwise eliminate s
consider TS[a] = (S', Act, →', I', AP, L') with S' = Sat(a),
→' = → ∩ (S' × Act × S'), I' = I ∩ S', and L'(s) = L(s) for s ∈ S'
⇒ each infinite path fragment in TS[a] satisfies □ a

• Let fair =
$$\bigwedge_{0 < i \le k} (\Box \diamondsuit a_i \to \Box \diamondsuit b_i)$$

²This is not necessarily an SCC (a maximal strongly-connected set).

Computing *Sat*_{*fair*}(∃□*a*)

Consider only state s if s ⊨ a, otherwise eliminate s
consider TS[a] = (S', Act, →', I', AP, L') with S' = Sat(a),
→' = → ∩ (S' × Act × S'), I' = I ∩ S', and L'(s) = L(s) for s ∈ S'
⇒ each infinite path fragment in TS[a] satisfies □ a

• Let fair =
$$\bigwedge_{0 \le i \le k} (\Box \diamondsuit a_i \to \Box \diamondsuit b_i)$$

s ⊨_{fair} ∃□a iff s can reach a strongly connected node-set² D in TS[a] with:

 $D \cap Sat(a_i) = \emptyset$ or $D \cap Sat(b_i) \neq \emptyset$ for $0 < i \le k$ (*)

Sat_{fair}(∃□a) = { s ∈ S | Reach_{TS[a]}(s) ∩ T ≠ Ø }
 T is the union of all SCCs C that contain D satisfying (*)

²This is not necessarily an SCC (a maximal strongly-connected set).

Example

Computing $Sat_{fair}(\exists \Box a)$ by analysing the digraph G_a of TS[a]

Example

$fair = (\Box \Diamond b_1 \to \Box \Diamond c_1) \land (\Box \Diamond b_2 \to \Box \Diamond c_2)$

$$s_0 \models_{fair} \exists \Box a \qquad \text{as } s_0 s_1 s_2 s_1 s_2 \dots \models_{LTL} fair$$
$$Sat_{fair}(\exists \Box a) = \{s_0, s_1, s_2, s_3\}$$

∃□*a* under Unconditional Fairness

Let
$$ufair = \bigwedge_{0 < i \le k} \Box \diamondsuit b_i$$

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

 $C \cap Sat(b_i) \neq \emptyset$ for all $0 < i \le k$

∃□*a* under Unconditional Fairness

Let
$$ufair = \bigwedge_{0 < i \le k} \Box \diamondsuit b_i$$

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

 $C \cap Sat(b_i) \neq \emptyset$ for all $0 < i \le k$

It now follows:

$$s \models_{ufair} \exists \Box a$$
 if and only if $Reach_{TS[a]}(s) \cap T \neq \emptyset$

 \Rightarrow T can be determined by a depth-first search procedure

Example

fairness assumption: fair = $\Box \Diamond c_1 \land \Box \Diamond c_2$ s $\not\models_{fair} \exists \Box a$

▶ sfair = $\Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1

▶ sfair = $\Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1

▶ $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in TS[a] reachable from s with:

1. $C \cap Sat(b_1) \neq \emptyset$, or 2. $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C

▶ sfair = $\Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1

▶ $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in TS[a] reachable from s with:

1. $C \cap Sat(b_1) \neq \emptyset$, or 2. $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from $C[\neg a_1]$

▶ sfair = $\Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1

▶ $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in TS[a] reachable from s with:

1. $C \cap Sat(b_1) \neq \emptyset$, or 2. $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from $C[\neg a_1]$

▶ For *T* the union of non-trivial SCCs in satisfying (1) and (2):

 $s \models_{sfair} \exists \Box a$ if and only if $Reach_{TS[a]}(s) \cap T \neq \emptyset$

▶ sfair = $\Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1

▶ $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in TS[a] reachable from s with:

1. $C \cap Sat(b_1) \neq \emptyset$, or 2. $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from $C[\neg a_1]$

▶ For *T* the union of non-trivial SCCs in satisfying (1) and (2):

 $s \models_{sfair} \exists \Box a$ if and only if $Reach_{TS[a]}(s) \cap T \neq \emptyset$

For several strong fairness constraints (k > 1), this is applied recursively T is determined by standard graph analysis (DFS)

Example: One Strong Fairness Constraint

Example: One Strong Fairness Constraint

fair = $\Box \Diamond b \rightarrow \Box \Diamond c$

digraph G_a

Example: One Strong Fairness Constraint

 $\begin{array}{l} fair = \Box \Diamond b \rightarrow \Box \Diamond c \\ digraph \ G_a \end{array}$

Example: Two Strong Fairness Constraints

analyze $C_1 \setminus Sat(b_2)$ w.r.t. $\Box \Diamond b_1 \to \Box \Diamond c_1$

Example: Two Strong Fairness Constraints

Algorithm

```
compute the SCCs of the digraph G_a;
T := \emptyset:
FOR ALL nontrivial SCCs C of G_2 DO
      CheckFair(C, \ldots) THEN T := T \cup C FI
  IF
OD
Sat_{fair}(\exists \Box a) := \{ s \in S : Reach_{G_a}(s) \cap T \neq \emptyset \}
                   backward search from T
```

CheckFair is a recursive procedure over the k strong fairness constraints Basically an SCC analysis per fairness constraint. Time complexity: $O(|TS| \cdot |fair|).$

CheckFair Algorithm (for completeness)

pseudo code for *CheckFair*($C, k, \bigwedge_{1 \le i \le k} (\Box \Diamond b_i \to \Box \Diamond c_i)$)

IF $\forall i \in \{1, ..., k\}$. $C \cap Sat(c_i) \neq \emptyset$ THEN return "true" FI choose $j \in \{1, ..., k\}$ with $C \cap Sat(c_i) = \emptyset$; remove all states in **Sat(b_i)**; IF the resulting graph G is acyclic THEN return "false" FI FOR ALL nontrivial SCCs D of G DO IF CheckFair($D, k-1, \Lambda(\Box \Diamond b_i \rightarrow \Box \Diamond c_i)$) i≠j THEN return "true" time complexity: OD $\mathcal{O}(size(C) \cdot k)$ return "false"

......

Time complexity

The CTL model-checking problem under fairness assumption *fair* can be solved in $O(|\Phi| \cdot |TS| \cdot |fair|)$.

Proof.

Follows from the complexity $O(|\Phi| \cdot |TS|)$ of CTL model checking

Overview

- The Relevance of Fairness
- 2 Fairness Assumptions
- 3 Fairness and Safety Properties
- 4 LTL Model Checking Under Fairness
- 5 CTL Fairness Assumptions
- 6 CTL Model Checking Under Fairness

🕖 Summary

Model Checking Complexity

	CTL	LTL	CTL*
model checking	PTIME	PSPACE	PSPACE
algorithmic complexity	<i>TS</i> · Φ	$ \mathit{TS} \cdot \exp(arphi)$	$ TS \cdot \exp(\Phi)$
with fairness	$ TS \cdot \Phi \cdot fair $	$ TS \cdot \exp(\varphi + fair)$	$ TS \cdot \exp(\Phi + fair)$

All theoretical complexity indications are complete.

Summary

- Fairness constraints rule out "unreasonable" computations
- Fairness assumptions are conjunctions of fairness constraints
- Fair LTL model checking is reduced to standard LTL model checking
- CTL fairness constraints are fair "LTL"-formulas over CTL state-formulas
- Fair CTL model checking is standard CTL model checking
- ▶ ... plus a dedicated procedure for ∃□a

• Complexity of fair CTL model checking is $O(|TS| \cdot |\Phi| \cdot |fair|)$

Next Lecture

Thursday December 12, 10:30

No Lecture on Friday December 6