
Model Checking
Lecture #14: Fairness

[Baier & Katoen, Chapter 3.5, 5.1.6, 6.5]

Joost-Pieter Katoen

Software Modeling and Verification Group

Model Checking Course, RWTH Aachen, WiSe 2019/2020

Joost-Pieter Katoen Lecture#14 1/62

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 2/62

The Relevance of Fairness

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 3/62

The Relevance of Fairness

Does This Multi-Threaded Program Terminate?

Inc ∣∣∣Reset

where
thread Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od

thread Reset = x ∶= −1

x is a shared integer variable that initially has value 0

Joost-Pieter Katoen Lecture#14 4/62

The Relevance of Fairness

Is It Possible To Starve?

Joost-Pieter Katoen Lecture#14 5/62

The Relevance of Fairness

Thread Two Starves

Is it fair that thread two never gets access to the critical section
despite infinitely often having the possibility to do so?

Joost-Pieter Katoen Lecture#14 6/62

The Relevance of Fairness

Fairness

▶ Starvation freedom is often considered under thread fairness
⇒ there is a fair scheduling of the execution of threads

▶ Fairness is concerned with a fair resolution of non-determinism
▶ such that it is not biased to consistently ignore a possible option

▶ Fairness is typically needed to prove a liveness property
▶ to prove some form of progress, progress needs to be possible
▶ fairness does not affect safety properties

▶ Problem: liveness properties constrain infinite behaviours
▶ but some traces—that are unfair—refute the liveness property

Joost-Pieter Katoen Lecture#14 7/62

The Relevance of Fairness

Fairness

▶ Starvation freedom is often considered under thread fairness
⇒ there is a fair scheduling of the execution of threads

▶ Fairness is concerned with a fair resolution of non-determinism
▶ such that it is not biased to consistently ignore a possible option

▶ Fairness is typically needed to prove a liveness property
▶ to prove some form of progress, progress needs to be possible
▶ fairness does not affect safety properties

▶ Problem: liveness properties constrain infinite behaviours
▶ but some traces—that are unfair—refute the liveness property

Joost-Pieter Katoen Lecture#14 7/62

The Relevance of Fairness

Fairness

▶ Starvation freedom is often considered under thread fairness
⇒ there is a fair scheduling of the execution of threads

▶ Fairness is concerned with a fair resolution of non-determinism
▶ such that it is not biased to consistently ignore a possible option

▶ Fairness is typically needed to prove a liveness property
▶ to prove some form of progress, progress needs to be possible
▶ fairness does not affect safety properties

▶ Problem: liveness properties constrain infinite behaviours
▶ but some traces—that are unfair—refute the liveness property

Joost-Pieter Katoen Lecture#14 7/62

The Relevance of Fairness

Fairness

▶ Starvation freedom is often considered under thread fairness
⇒ there is a fair scheduling of the execution of threads

▶ Fairness is concerned with a fair resolution of non-determinism
▶ such that it is not biased to consistently ignore a possible option

▶ Fairness is typically needed to prove a liveness property
▶ to prove some form of progress, progress needs to be possible
▶ fairness does not affect safety properties

▶ Problem: liveness properties constrain infinite behaviours
▶ but some traces—that are unfair—refute the liveness property

Joost-Pieter Katoen Lecture#14 7/62

The Relevance of Fairness

Fairness Constraints

▶ What is wrong with our examples? Nothing!
▶ interleaving: not realistic as no processor is ∞ faster than another
▶ semaphore-based mutual exclusion: level of abstraction

▶ Rule out “unrealistic” exectuions by imposing fairness constraints
▶ what to rule out? ⇒ different kinds of fairness constraints

▶ “A thread gets its turn infinitely often”
▶ always unconditional fairness
▶ if it is enabled infinitely often strong fairness
▶ if it is continuously enabled from some point on weak fairness

Joost-Pieter Katoen Lecture#14 8/62

The Relevance of Fairness

Fairness Constraints

▶ What is wrong with our examples? Nothing!
▶ interleaving: not realistic as no processor is ∞ faster than another
▶ semaphore-based mutual exclusion: level of abstraction

▶ Rule out “unrealistic” exectuions by imposing fairness constraints
▶ what to rule out? ⇒ different kinds of fairness constraints

▶ “A thread gets its turn infinitely often”
▶ always unconditional fairness
▶ if it is enabled infinitely often strong fairness
▶ if it is continuously enabled from some point on weak fairness

Joost-Pieter Katoen Lecture#14 8/62

The Relevance of Fairness

Fairness Constraints

▶ What is wrong with our examples? Nothing!
▶ interleaving: not realistic as no processor is ∞ faster than another
▶ semaphore-based mutual exclusion: level of abstraction

▶ Rule out “unrealistic” exectuions by imposing fairness constraints
▶ what to rule out? ⇒ different kinds of fairness constraints

▶ “A thread gets its turn infinitely often”
▶ always unconditional fairness
▶ if it is enabled infinitely often strong fairness
▶ if it is continuously enabled from some point on weak fairness

Joost-Pieter Katoen Lecture#14 8/62

The Relevance of Fairness

Fairness

This program terminates assuming unconditional (thread) fairness:

thread Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od
thread Reset = x ∶= −1

as thread Reset eventually will set x to −1

x is a shared integer variable that initially has value 0

Joost-Pieter Katoen Lecture#14 9/62

The Relevance of Fairness

Avoiding Starvation by Fairness

If the infinitely often enabled enter2 action is not ignored infinitely often,
thread two does not starve.

Note that enter2 is not enabled continuously
during the run. Weak fairness this does not suffice.

Joost-Pieter Katoen Lecture#14 10/62

The Relevance of Fairness

Avoiding Starvation by Fairness

If the infinitely often enabled enter2 action is not ignored infinitely often,
thread two does not starve.

Note that enter2 is not enabled continuously
during the run. Weak fairness this does not suffice.

Joost-Pieter Katoen Lecture#14 10/62

Fairness Assumptions

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 11/62

Fairness Assumptions

LTL Fairness Constraints
Definition: LTL fairness constraints
Let Φ and Ψ be propositional logic formulas over AP.
1. An unconditional LTL fairness constraint is of the form:

ufair = □◇ Ψ

2. A strong LTL fairness condition is of the form:

sfair = □◇ Φ ⟶ □◇ Ψ

3. A weak LTL fairness constraint is of the form:

wfair = ◇□Φ ⟶ □◇ Ψ

Φ stands for “. . . is enabled”; Ψ for “. . . is taken”

Joost-Pieter Katoen Lecture#14 12/62

Fairness Assumptions

Relating Fairness Constraints

unconditional fair ⇒ strong fair ⇒ weak fair.

Joost-Pieter Katoen Lecture#14 13/62

Fairness Assumptions

Fairness Assumptions

Definition: fairness assumption
An LTL fairness assumption is a conjunction of LTL fairness constraints.
The general format of fairness assumption fair is

fair = ufair ∧ sfair ∧ wfair

.

Joost-Pieter Katoen Lecture#14 14/62

Fairness Assumptions

Fair Traces and Fair Satisfaction
Definition: fair paths and fair traces
For state s in transition system TS (over AP) and LTL fairness assumption
fair, let

FairPathsfair (s) = {π ∈ Paths(s) ∣ π ⊧ fair }
FairTracesfair (s) = { trace(π) ∣ π ∈ FairPathsfair (s) }.

Definition: fair satisfaction relation
For LTL-formula ϕ, and LTL fairness assumption fair :

s ⊧fair ϕ if and only if ∀π ∈ FairPathsfair (s). π ⊧ ϕ
TS ⊧fair ϕ if and only if ∀s0 ∈ I. s0 ⊧fair ϕ.

The relation ⊧fair is the fair satisfaction relation for LTL.

Joost-Pieter Katoen Lecture#14 15/62

Fairness Assumptions

Fair Traces and Fair Satisfaction
Definition: fair paths and fair traces
For state s in transition system TS (over AP) and LTL fairness assumption
fair, let

FairPathsfair (s) = {π ∈ Paths(s) ∣ π ⊧ fair }
FairTracesfair (s) = { trace(π) ∣ π ∈ FairPathsfair (s) }.

Definition: fair satisfaction relation
For LTL-formula ϕ, and LTL fairness assumption fair :

s ⊧fair ϕ if and only if ∀π ∈ FairPathsfair (s). π ⊧ ϕ
TS ⊧fair ϕ if and only if ∀s0 ∈ I. s0 ⊧fair ϕ.

The relation ⊧fair is the fair satisfaction relation for LTL.

Joost-Pieter Katoen Lecture#14 15/62

Fairness Assumptions

Example: Fair Runs and Fair Traces

▶ Let Φ = “action enter2 is enabled” and Ψ = “action enter2 is taken”

▶ Run ⟨n1, n2, 1⟩ req1−−−−−→ ⟨w1, n2, 1⟩ enter1−−−−−−−→ ⟨c1, n2, 0⟩ rel−−−−→ ⟨n1, n2, 1⟩ req1−−−−−→ . . .

▶ . . . is not unconditionally fair
▶ . . . but strongly fair, as action enter2 is never enabled along the run

▶ Run ⟨n1, n2, 1⟩ req2−−−−−→ ⟨n1, w2, 1⟩ req1−−−−−→ ⟨w1, w2, 1⟩ enter1−−−−−−−→ ⟨c1, w2, 0⟩ rel−−−−→ . . .

▶ . . . is not strongly fair as enter2 is ∞ often enabled but never taken
▶ . . . but weakly fair for as enter2 is not always enabled along the run

Joost-Pieter Katoen Lecture#14 16/62

Fairness Assumptions

Example: Fair Runs and Fair Traces

▶ Let Φ = “action enter2 is enabled” and Ψ = “action enter2 is taken”

▶ Run ⟨n1, n2, 1⟩ req1−−−−−→ ⟨w1, n2, 1⟩ enter1−−−−−−−→ ⟨c1, n2, 0⟩ rel−−−−→ ⟨n1, n2, 1⟩ req1−−−−−→ . . .

▶ . . . is not unconditionally fair
▶ . . . but strongly fair, as action enter2 is never enabled along the run

▶ Run ⟨n1, n2, 1⟩ req2−−−−−→ ⟨n1, w2, 1⟩ req1−−−−−→ ⟨w1, w2, 1⟩ enter1−−−−−−−→ ⟨c1, w2, 0⟩ rel−−−−→ . . .

▶ . . . is not strongly fair as enter2 is ∞ often enabled but never taken
▶ . . . but weakly fair for as enter2 is not always enabled along the run

Joost-Pieter Katoen Lecture#14 16/62

Fairness Assumptions

Example: Fair Runs and Fair Traces

▶ Let Φ = “action enter2 is enabled” and Ψ = “action enter2 is taken”

▶ Run ⟨n1, n2, 1⟩ req1−−−−−→ ⟨w1, n2, 1⟩ enter1−−−−−−−→ ⟨c1, n2, 0⟩ rel−−−−→ ⟨n1, n2, 1⟩ req1−−−−−→ . . .

▶ . . . is not unconditionally fair
▶ . . . but strongly fair, as action enter2 is never enabled along the run

▶ Run ⟨n1, n2, 1⟩ req2−−−−−→ ⟨n1, w2, 1⟩ req1−−−−−→ ⟨w1, w2, 1⟩ enter1−−−−−−−→ ⟨c1, w2, 0⟩ rel−−−−→ . . .

▶ . . . is not strongly fair as enter2 is ∞ often enabled but never taken
▶ . . . but weakly fair for as enter2 is not always enabled along the run

Joost-Pieter Katoen Lecture#14 16/62

Fairness Assumptions

Example: Fair Runs and Fair Traces

▶ Let Φ = “action enter2 is enabled” and Ψ = “action enter2 is taken”

▶ Run ⟨n1, n2, 1⟩ req1−−−−−→ ⟨w1, n2, 1⟩ enter1−−−−−−−→ ⟨c1, n2, 0⟩ rel−−−−→ ⟨n1, n2, 1⟩ req1−−−−−→ . . .

▶ . . . is not unconditionally fair
▶ . . . but strongly fair, as action enter2 is never enabled along the run

▶ Run ⟨n1, n2, 1⟩ req2−−−−−→ ⟨n1, w2, 1⟩ req1−−−−−→ ⟨w1, w2, 1⟩ enter1−−−−−−−→ ⟨c1, w2, 0⟩ rel−−−−→ . . .

▶ . . . is not strongly fair as enter2 is ∞ often enabled but never taken
▶ . . . but weakly fair for as enter2 is not always enabled along the run

Joost-Pieter Katoen Lecture#14 16/62

Fairness Assumptions

Example: An Arbiter for Mutual Exclusion

TS1 ∥ Arbiter ∥ TS2 /⊧ □◇ crit1
But: TS1 ∥ Arbiter ∥ TS2 ⊧fair □◇ crit1 ∧ □◇ crit2

with fair = □◇ head ∧ □◇ tail

Joost-Pieter Katoen Lecture#14 17/62

Fairness and Safety Properties

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 18/62

Fairness and Safety Properties

Realisable Fairness

Definition: realisable fairness
Fairness assumption fair is realisable for transition system TS if for any
reachable state s: FairPathsfair (s) ≠ ∅.

A fairness assumption is realisable for TS if every initial finite path
fragment of TS can be completed to a fair run.

Joost-Pieter Katoen Lecture#14 19/62

Fairness and Safety Properties

The Fairness Suffix Property

For any (infinite) fair path π, it holds
1. all suffixes of π are fair too.
2. any finite path extended by π is fair.

Proof.
Rather straightforward.

Joost-Pieter Katoen Lecture#14 20/62

Fairness and Safety Properties

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness
For transition system TS and safety property Esafe (both over AP) and fair
a realisable fairness assumption for TS:

TS ⊧ Esafe if and only if TS ⊧fair Esafe .

Proof.

Non-realisable fairness may harm safety properties. Shown by example.

Joost-Pieter Katoen Lecture#14 21/62

Fairness and Safety Properties

Realisable Fairness and Safety

Safety properties are preserved under realisable fairness
For transition system TS and safety property Esafe (both over AP) and fair
a realisable fairness assumption for TS:

TS ⊧ Esafe if and only if TS ⊧fair Esafe .

Proof.

Non-realisable fairness may harm safety properties. Shown by example.

Joost-Pieter Katoen Lecture#14 21/62

LTL Model Checking Under Fairness

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 22/62

LTL Model Checking Under Fairness

The Fair LTL Model-Checking Problem

Given:

1. a finite transition system TS

2. an LTL formula ϕ, and

3. an LTL fairness assumption fair

Question: does TS ⊧fair ϕ?

Joost-Pieter Katoen Lecture#14 23/62

LTL Model Checking Under Fairness

Fair LTL Model Checking

For transition system TS, LTL formula ϕ and LTL fairness assumption fair:

TS ⊧fair ϕÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
fair LTL model checking

if and only if TS ⊧ (fair → ϕ)
ÍÒÒÑÒÒÏ
LTL model checking

The fair LTL model-checking problem for ϕ under fairness assumption fair can be
reduced to the LTL model-checking problem for fair → ϕ.

This approach is not applicable to CTL (as we will discuss)

Joost-Pieter Katoen Lecture#14 24/62

LTL Model Checking Under Fairness

Fair LTL Model Checking

For transition system TS, LTL formula ϕ and LTL fairness assumption fair:

TS ⊧fair ϕÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
fair LTL model checking

if and only if TS ⊧ (fair → ϕ)
ÍÒÒÑÒÒÏ
LTL model checking

The fair LTL model-checking problem for ϕ under fairness assumption fair can be
reduced to the LTL model-checking problem for fair → ϕ.

This approach is not applicable to CTL (as we will discuss)

Joost-Pieter Katoen Lecture#14 24/62

LTL Model Checking Under Fairness

Fair LTL Model Checking

For transition system TS, LTL formula ϕ and LTL fairness assumption fair:

TS ⊧fair ϕÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
fair LTL model checking

if and only if TS ⊧ (fair → ϕ)
ÍÒÒÑÒÒÏ
LTL model checking

The fair LTL model-checking problem for ϕ under fairness assumption fair can be
reduced to the LTL model-checking problem for fair → ϕ.

This approach is not applicable to CTL (as we will discuss)

Joost-Pieter Katoen Lecture#14 24/62

LTL Model Checking Under Fairness

Which Fairness Notion?

▶ Fairness constraints aim to rule out “unreasonable” runs

▶ Too strong? ⇒ reasonable runs ruled out. Verification result:
▶ “false”: error found
▶ “true”: don’t know as some relevant execution may refute it

▶ Too weak? ⇒ too many runs considered. Verification result:
▶ “true”: formula holds
▶ “false”: don’t know, as refutation maybe due to an unreasonable run

Rules of thumb:
▶ strong (or unconditional) fairness is useful for solving contentions
▶ weak fairness is useful to resolve unfair scheduling of threads

Joost-Pieter Katoen Lecture#14 25/62

LTL Model Checking Under Fairness

Which Fairness Notion?

▶ Fairness constraints aim to rule out “unreasonable” runs

▶ Too strong? ⇒ reasonable runs ruled out. Verification result:
▶ “false”: error found
▶ “true”: don’t know as some relevant execution may refute it

▶ Too weak? ⇒ too many runs considered. Verification result:
▶ “true”: formula holds
▶ “false”: don’t know, as refutation maybe due to an unreasonable run

Rules of thumb:
▶ strong (or unconditional) fairness is useful for solving contentions
▶ weak fairness is useful to resolve unfair scheduling of threads

Joost-Pieter Katoen Lecture#14 25/62

LTL Model Checking Under Fairness

Which Fairness Notion?

▶ Fairness constraints aim to rule out “unreasonable” runs

▶ Too strong? ⇒ reasonable runs ruled out. Verification result:
▶ “false”: error found
▶ “true”: don’t know as some relevant execution may refute it

▶ Too weak? ⇒ too many runs considered. Verification result:
▶ “true”: formula holds
▶ “false”: don’t know, as refutation maybe due to an unreasonable run

Rules of thumb:
▶ strong (or unconditional) fairness is useful for solving contentions
▶ weak fairness is useful to resolve unfair scheduling of threads

Joost-Pieter Katoen Lecture#14 25/62

LTL Model Checking Under Fairness

Which Fairness Notion?

▶ Fairness constraints aim to rule out “unreasonable” runs

▶ Too strong? ⇒ reasonable runs ruled out. Verification result:
▶ “false”: error found
▶ “true”: don’t know as some relevant execution may refute it

▶ Too weak? ⇒ too many runs considered. Verification result:
▶ “true”: formula holds
▶ “false”: don’t know, as refutation maybe due to an unreasonable run

Rules of thumb:
▶ strong (or unconditional) fairness is useful for solving contentions
▶ weak fairness is useful to resolve unfair scheduling of threads

Joost-Pieter Katoen Lecture#14 25/62

CTL Fairness Assumptions

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 26/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

Fairness Constraints in CTL

▶ For LTL it holds: TS ⊧fair ϕ if and only if TS ⊧ (fair → ϕ)

▶ An analogous approach for CTL is not possible

▶ Formulas form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

▶ But: boolean combinations of path formulae are not allowed in CTL

▶ and: strong fairness constraint □◇ b → □◇ c, i.e., ◇□¬b ∨ ◇□ c
cannot be expressed in CTL as persistence properties are not in CTL

▶ Solution: change the semantics of CTL by ignoring unfair paths

Joost-Pieter Katoen Lecture#14 27/62

CTL Fairness Assumptions

CTL Fairness Constraints
Definition: CTL fairness constraints
A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTL state-formulas over AP.

Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = ⋀
0<i≤k

□◇ Ψi and wfair = ⋀
0<i≤k

(◇□Φi → □◇ Ψi).

Definition: CTL fairness assumption
A CTL fairness assumption is a conjunction of ufair , sfair and wfair .

A CTL fairness constraint is an LTL formula over CTL state formulas.
Φi and Ψi are interpreted by the standard (unfair) CTL semantics

Joost-Pieter Katoen Lecture#14 28/62

CTL Fairness Assumptions

CTL Fairness Constraints
Definition: CTL fairness constraints
A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTL state-formulas over AP.
Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = ⋀
0<i≤k

□◇ Ψi and wfair = ⋀
0<i≤k

(◇□Φi → □◇ Ψi).

Definition: CTL fairness assumption
A CTL fairness assumption is a conjunction of ufair , sfair and wfair .

A CTL fairness constraint is an LTL formula over CTL state formulas.
Φi and Ψi are interpreted by the standard (unfair) CTL semantics

Joost-Pieter Katoen Lecture#14 28/62

CTL Fairness Assumptions

CTL Fairness Constraints
Definition: CTL fairness constraints
A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTL state-formulas over AP.
Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = ⋀
0<i≤k

□◇ Ψi and wfair = ⋀
0<i≤k

(◇□Φi → □◇ Ψi).

Definition: CTL fairness assumption
A CTL fairness assumption is a conjunction of ufair , sfair and wfair .

A CTL fairness constraint is an LTL formula over CTL state formulas.
Φi and Ψi are interpreted by the standard (unfair) CTL semantics

Joost-Pieter Katoen Lecture#14 28/62

CTL Fairness Assumptions

CTL Fairness Constraints
Definition: CTL fairness constraints
A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTL state-formulas over AP.
Weak and unconditional CTL fairness constraints are defined similarly, e.g.:

ufair = ⋀
0<i≤k

□◇ Ψi and wfair = ⋀
0<i≤k

(◇□Φi → □◇ Ψi).

Definition: CTL fairness assumption
A CTL fairness assumption is a conjunction of ufair , sfair and wfair .

A CTL fairness constraint is an LTL formula over CTL state formulas.
Φi and Ψi are interpreted by the standard (unfair) CTL semantics

Joost-Pieter Katoen Lecture#14 28/62

CTL Fairness Assumptions

Semantics of Fair CTL
For CTL fairness assumption fair , relation ⊧fair is defined by:

s ⊧fair a iff a ∈ L(s)
s ⊧fair ¬Φ iff ¬ (s ⊧fair Φ)
s ⊧fair Φ ∨ Ψ iff (s ⊧fair Φ) ∨ (s ⊧fair Ψ)
s ⊧fair ∃ϕ iff π ⊧fair ϕ for some fair path π that starts in s
s ⊧fair ∀ϕ iff π ⊧fair ϕ for all fair paths π that start in s

π ⊧fair ◯Φ iff π[1] ⊧fair Φ
π ⊧fair ΦUΨ iff (∃ j ≥ 0. π[j] ⊧fair Ψ and (∀ 0 ≤ i < j . π[i] ⊧fair Φ))

π is a fair path iff π ⊧LTL fair for CTL fairness assumption fair

Joost-Pieter Katoen Lecture#14 29/62

CTL Fairness Assumptions

Transition System Semantics

▶ For CTL-state-formula Φ, and fairness assumption fair, the
satisfaction set Satfair (Φ) is defined by:

Satfair (Φ) = { s ∈ S ∣ s ⊧fair Φ }

▶ TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS ⊧fair Φ if and only if ∀s0 ∈ I. s0 ⊧fair Φ

▶ This is equivalent to I ⊆ Satfair (Φ)

Joost-Pieter Katoen Lecture#14 30/62

CTL Fairness Assumptions

Example: An Arbiter for Mutual Exclusion

TS1 ∥ Arbiter ∥ TS2 /⊧ (∀□∀◇ crit1) ∧ (∀□∀◇ crit2)
But: TS1 ∥ Arbiter ∥ TS2 ⊧fair ∀□∀◇ crit1 ∧ ∀□∀◇ crit2

with fair = □◇ head ∧□◇ tail

Joost-Pieter Katoen Lecture#14 31/62

CTL Fairness Assumptions

Example

Joost-Pieter Katoen Lecture#14 32/62

CTL Fairness Assumptions

Example

Joost-Pieter Katoen Lecture#14 33/62

CTL Model Checking Under Fairness

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 34/62

CTL Model Checking Under Fairness

The Fair CTL Model-Checking Problem
Given:

1. a finite transition system TS

2. an CTL state-formula1 Φ, and

3. a CTL fairness assumption fair

Question: does TS ⊧fair Φ?

use recursive descent à la CTL to determine Satfair (Φ)
using as much as possible standard CTL model-checking algorithms

1Assumed to be in existential normal form.
Joost-Pieter Katoen Lecture#14 35/62

CTL Model Checking Under Fairness

The Fair CTL Model-Checking Problem
Given:

1. a finite transition system TS

2. an CTL state-formula1 Φ, and

3. a CTL fairness assumption fair

Question: does TS ⊧fair Φ?

use recursive descent à la CTL to determine Satfair (Φ)
using as much as possible standard CTL model-checking algorithms

1Assumed to be in existential normal form.
Joost-Pieter Katoen Lecture#14 35/62

CTL Model Checking Under Fairness

Treating Strong CTL Fairness Constraints
▶ Let strong CTL fairness constraint: sfair = ⋀

0<i≤k
(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTLstate-formulas over AP

▶ Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair ∶= ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair (Φi))
▶ . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair (Ψi))

▶ For unconditional and weak fairness this goes similarly

▶ Note: π ⊧ fair iff π[j ..] ⊧ fair for some j ≥ 0 iff π[j ..] ⊧ fair for all j ≥ 0

Joost-Pieter Katoen Lecture#14 36/62

CTL Model Checking Under Fairness

Treating Strong CTL Fairness Constraints
▶ Let strong CTL fairness constraint: sfair = ⋀

0<i≤k
(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTLstate-formulas over AP

▶ Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair ∶= ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair (Φi))
▶ . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair (Ψi))

▶ For unconditional and weak fairness this goes similarly

▶ Note: π ⊧ fair iff π[j ..] ⊧ fair for some j ≥ 0 iff π[j ..] ⊧ fair for all j ≥ 0

Joost-Pieter Katoen Lecture#14 36/62

CTL Model Checking Under Fairness

Treating Strong CTL Fairness Constraints
▶ Let strong CTL fairness constraint: sfair = ⋀

0<i≤k
(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTLstate-formulas over AP

▶ Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair ∶= ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair (Φi))
▶ . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair (Ψi))

▶ For unconditional and weak fairness this goes similarly

▶ Note: π ⊧ fair iff π[j ..] ⊧ fair for some j ≥ 0 iff π[j ..] ⊧ fair for all j ≥ 0

Joost-Pieter Katoen Lecture#14 36/62

CTL Model Checking Under Fairness

Treating Strong CTL Fairness Constraints
▶ Let strong CTL fairness constraint: sfair = ⋀

0<i≤k
(□◇ Φi → □◇ Ψi)

where Φi and Ψi (for 0 < i ≤ k) are CTLstate-formulas over AP

▶ Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair ∶= ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair (Φi))
▶ . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair (Ψi))

▶ For unconditional and weak fairness this goes similarly

▶ Note: π ⊧ fair iff π[j ..] ⊧ fair for some j ≥ 0 iff π[j ..] ⊧ fair for all j ≥ 0

Joost-Pieter Katoen Lecture#14 36/62

CTL Model Checking Under Fairness

Some Useful Results

For CTL fairness assumption fair and a, a′ ∈ AP it holds:
1. s ⊧fair ∃◯ a iff ∃s ′ ∈ Post(s) with s ′ ⊧ a and FairPathsfair (s ′) /= ∅
2. s ⊧fair ∃(aU a′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1 sn ∈ Paths∗(s) with n ≥ 0

such that si ⊧ a for 0 ≤ i < n, sn ⊧ a′, and FairPathsfair (sn) /= ∅.

Proof.
On the black board.

Joost-Pieter Katoen Lecture#14 37/62

CTL Model Checking Under Fairness

Example

Joost-Pieter Katoen Lecture#14 38/62

CTL Model Checking Under Fairness

Fair Path Existence

FairPathsfair (s) /= ∅ if and only if s ⊧fair ∃□true.

Example

Joost-Pieter Katoen Lecture#14 39/62

CTL Model Checking Under Fairness

Fair Path Existence

FairPathsfair (s) /= ∅ if and only if s ⊧fair ∃□true.

Example

Joost-Pieter Katoen Lecture#14 39/62

CTL Model Checking Under Fairness

Basic Model-Checking Algorithm for Fair CTL
▶ Determine Satfair (∃□true) = { s ∈ S ∣ FairPathsfair (s) /= ∅ }

▶ Introduce an atomic proposition afair and adjust labeling where:
▶ afair ∈ L(s) if and only if s ∈ Satfair (∃□true)

▶ Compute the sets Satfair (Ψ) for all sub-formulas Ψ of Φ (in ENF) by:

Satfair (a) = { s ∈ S ∣ a ∈ L(s) }
Satfair (¬a) = S \ Satfair (a)

Satfair (a ∧ a′) = Satfair (a) ∩ Satfair (a′)
Satfair (∃◯ a) = Sat (∃◯ (a ∧ afair))

Satfair (∃(aU a′)) = Sat (∃(aU (a′ ∧ afair)))
Satfair (∃□a) =

▶ Thus: model checking CTL under fairness constraints is
▶ CTL model checking + algorithm for computing Satfair (∃□a)

Joost-Pieter Katoen Lecture#14 40/62

CTL Model Checking Under Fairness

Basic Model-Checking Algorithm for Fair CTL
▶ Determine Satfair (∃□true) = { s ∈ S ∣ FairPathsfair (s) /= ∅ }

▶ Introduce an atomic proposition afair and adjust labeling where:
▶ afair ∈ L(s) if and only if s ∈ Satfair (∃□true)

▶ Compute the sets Satfair (Ψ) for all sub-formulas Ψ of Φ (in ENF) by:

Satfair (a) = { s ∈ S ∣ a ∈ L(s) }
Satfair (¬a) = S \ Satfair (a)

Satfair (a ∧ a′) = Satfair (a) ∩ Satfair (a′)
Satfair (∃◯ a) = Sat (∃◯ (a ∧ afair))

Satfair (∃(aU a′)) = Sat (∃(aU (a′ ∧ afair)))
Satfair (∃□a) =

▶ Thus: model checking CTL under fairness constraints is
▶ CTL model checking + algorithm for computing Satfair (∃□a)

Joost-Pieter Katoen Lecture#14 40/62

CTL Model Checking Under Fairness

Basic Model-Checking Algorithm for Fair CTL
▶ Determine Satfair (∃□true) = { s ∈ S ∣ FairPathsfair (s) /= ∅ }

▶ Introduce an atomic proposition afair and adjust labeling where:
▶ afair ∈ L(s) if and only if s ∈ Satfair (∃□true)

▶ Compute the sets Satfair (Ψ) for all sub-formulas Ψ of Φ (in ENF) by:

Satfair (a) = { s ∈ S ∣ a ∈ L(s) }
Satfair (¬a) = S \ Satfair (a)

Satfair (a ∧ a′) = Satfair (a) ∩ Satfair (a′)
Satfair (∃◯ a) = Sat (∃◯ (a ∧ afair))

Satfair (∃(aU a′)) = Sat (∃(aU (a′ ∧ afair)))
Satfair (∃□a) =

▶ Thus: model checking CTL under fairness constraints is
▶ CTL model checking + algorithm for computing Satfair (∃□a)

Joost-Pieter Katoen Lecture#14 40/62

CTL Model Checking Under Fairness

Basic Model-Checking Algorithm for Fair CTL
▶ Determine Satfair (∃□true) = { s ∈ S ∣ FairPathsfair (s) /= ∅ }

▶ Introduce an atomic proposition afair and adjust labeling where:
▶ afair ∈ L(s) if and only if s ∈ Satfair (∃□true)

▶ Compute the sets Satfair (Ψ) for all sub-formulas Ψ of Φ (in ENF) by:

Satfair (a) = { s ∈ S ∣ a ∈ L(s) }
Satfair (¬a) = S \ Satfair (a)

Satfair (a ∧ a′) = Satfair (a) ∩ Satfair (a′)
Satfair (∃◯ a) = Sat (∃◯ (a ∧ afair))

Satfair (∃(aU a′)) = Sat (∃(aU (a′ ∧ afair)))
Satfair (∃□a) =

▶ Thus: model checking CTL under fairness constraints is
▶ CTL model checking + algorithm for computing Satfair (∃□a)

Joost-Pieter Katoen Lecture#14 40/62

CTL Model Checking Under Fairness

Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining

▶ the model-checking algorithm for CTL (without fairness), and

▶ an algorithm for computing Satfair (∃□a) for a ∈ AP.

As ∃□true is a special case of ∃□a,
an algorithm for Satfair (∃□a) can be used for Satfair (∃□true)

Joost-Pieter Katoen Lecture#14 41/62

CTL Model Checking Under Fairness

Model Checking CTL with Fairness

Model checking CTL with fairness can be done by combining

▶ the model-checking algorithm for CTL (without fairness), and

▶ an algorithm for computing Satfair (∃□a) for a ∈ AP.

As ∃□true is a special case of ∃□a,
an algorithm for Satfair (∃□a) can be used for Satfair (∃□true)

Joost-Pieter Katoen Lecture#14 41/62

CTL Model Checking Under Fairness

Basic Fair CTL Algorithm

Joost-Pieter Katoen Lecture#14 42/62

CTL Model Checking Under Fairness

Characterising Satfair (∃□a)

s ⊧sfair ∃□a where sfair = ⋀
0<i≤k

(□◇ ai → □◇ bi)

iff there exists a finite path fragment s0 . . . sn and a cycle s ′0 . . . s
′
r with:

1. s0 = s and sn = s ′0 = s ′r
2. si ⊧ a, for any 0 ≤ i ≤ n, and s ′j ⊧ a, for any 0 ≤ j ≤ r , and
3. Sat(ai) ∩ { s ′1, . . . , s

′
r } = ∅ or Sat(bi) ∩ { s ′1, . . . , s

′
r } /= ∅ for 0 < i ≤ k

Proof.
Next slide.

Joost-Pieter Katoen Lecture#14 43/62

CTL Model Checking Under Fairness

Proof

Joost-Pieter Katoen Lecture#14 44/62

CTL Model Checking Under Fairness

Computing Satfair (∃□a)
▶ Consider only state s if s ⊧ a, otherwise eliminate s

▶ consider TS[a] = (S ′,Act,→′, I ′,AP, L′) with S ′
= Sat(a),

▶ →
′
= → ∩ (S ′ × Act × S ′), I ′ = I ∩ S ′, and L′(s) = L(s) for s ∈ S ′

⇒ each infinite path fragment in TS[a] satisfies □ a

▶ Let fair = ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ s ⊧fair ∃□a iff s can reach a strongly connected node-set2 D in TS[a]
with:

D ∩ Sat(ai) = ∅ or D ∩ Sat(bi) /= ∅ for 0 < i ≤ k (*)

▶ Satfair (∃□a) = { s ∈ S ∣ ReachTS[a](s) ∩ T /= ∅ }
▶ T is the union of all SCCs C that contain D satisfying (*)

2This is not necessarily an SCC (a maximal strongly-connected set).
Joost-Pieter Katoen Lecture#14 45/62

CTL Model Checking Under Fairness

Computing Satfair (∃□a)
▶ Consider only state s if s ⊧ a, otherwise eliminate s

▶ consider TS[a] = (S ′,Act,→′, I ′,AP, L′) with S ′
= Sat(a),

▶ →
′
= → ∩ (S ′ × Act × S ′), I ′ = I ∩ S ′, and L′(s) = L(s) for s ∈ S ′

⇒ each infinite path fragment in TS[a] satisfies □ a

▶ Let fair = ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ s ⊧fair ∃□a iff s can reach a strongly connected node-set2 D in TS[a]
with:

D ∩ Sat(ai) = ∅ or D ∩ Sat(bi) /= ∅ for 0 < i ≤ k (*)

▶ Satfair (∃□a) = { s ∈ S ∣ ReachTS[a](s) ∩ T /= ∅ }
▶ T is the union of all SCCs C that contain D satisfying (*)

2This is not necessarily an SCC (a maximal strongly-connected set).
Joost-Pieter Katoen Lecture#14 45/62

CTL Model Checking Under Fairness

Computing Satfair (∃□a)
▶ Consider only state s if s ⊧ a, otherwise eliminate s

▶ consider TS[a] = (S ′,Act,→′, I ′,AP, L′) with S ′
= Sat(a),

▶ →
′
= → ∩ (S ′ × Act × S ′), I ′ = I ∩ S ′, and L′(s) = L(s) for s ∈ S ′

⇒ each infinite path fragment in TS[a] satisfies □ a

▶ Let fair = ⋀
0<i≤k

(□◇ ai → □◇ bi)

▶ s ⊧fair ∃□a iff s can reach a strongly connected node-set2 D in TS[a]
with:

D ∩ Sat(ai) = ∅ or D ∩ Sat(bi) /= ∅ for 0 < i ≤ k (*)

▶ Satfair (∃□a) = { s ∈ S ∣ ReachTS[a](s) ∩ T /= ∅ }
▶ T is the union of all SCCs C that contain D satisfying (*)

2This is not necessarily an SCC (a maximal strongly-connected set).
Joost-Pieter Katoen Lecture#14 45/62

CTL Model Checking Under Fairness

Example

Computing Satfair (∃□a) by analysing the digraph Ga of TS[a]

Joost-Pieter Katoen Lecture#14 46/62

CTL Model Checking Under Fairness

Example

Joost-Pieter Katoen Lecture#14 47/62

CTL Model Checking Under Fairness

∃□a under Unconditional Fairness

Let ufair = ⋀
0<i≤k

□◇ bi

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

C ∩ Sat(bi) /= ∅ for all 0 < i ≤ k

It now follows:

s ⊧ufair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

⇒ T can be determined by a depth-first search procedure

Joost-Pieter Katoen Lecture#14 48/62

CTL Model Checking Under Fairness

∃□a under Unconditional Fairness

Let ufair = ⋀
0<i≤k

□◇ bi

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

C ∩ Sat(bi) /= ∅ for all 0 < i ≤ k

It now follows:

s ⊧ufair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

⇒ T can be determined by a depth-first search procedure

Joost-Pieter Katoen Lecture#14 48/62

CTL Model Checking Under Fairness

Example

Joost-Pieter Katoen Lecture#14 49/62

CTL Model Checking Under Fairness

∃□a Under One Strong Fairness Constraint
▶ sfair = □◇ a1 → □◇ b1, i.e., k=1

▶ s ⊧sfair ∃ □ a iff C is a non-trivial SCC in TS[a] reachable from s with:

1. C ∩ Sat(b1) /= ∅, or
2. D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from C [¬a1]

▶ For T the union of non-trivial SCCs in satisfying (1) and (2):

s ⊧sfair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Joost-Pieter Katoen Lecture#14 50/62

CTL Model Checking Under Fairness

∃□a Under One Strong Fairness Constraint
▶ sfair = □◇ a1 → □◇ b1, i.e., k=1

▶ s ⊧sfair ∃ □ a iff C is a non-trivial SCC in TS[a] reachable from s with:

1. C ∩ Sat(b1) /= ∅, or
2. D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from C [¬a1]

▶ For T the union of non-trivial SCCs in satisfying (1) and (2):

s ⊧sfair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Joost-Pieter Katoen Lecture#14 50/62

CTL Model Checking Under Fairness

∃□a Under One Strong Fairness Constraint
▶ sfair = □◇ a1 → □◇ b1, i.e., k=1

▶ s ⊧sfair ∃ □ a iff C is a non-trivial SCC in TS[a] reachable from s with:

1. C ∩ Sat(b1) /= ∅, or
2. D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from C [¬a1]

▶ For T the union of non-trivial SCCs in satisfying (1) and (2):

s ⊧sfair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Joost-Pieter Katoen Lecture#14 50/62

CTL Model Checking Under Fairness

∃□a Under One Strong Fairness Constraint
▶ sfair = □◇ a1 → □◇ b1, i.e., k=1

▶ s ⊧sfair ∃ □ a iff C is a non-trivial SCC in TS[a] reachable from s with:

1. C ∩ Sat(b1) /= ∅, or
2. D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from C [¬a1]

▶ For T the union of non-trivial SCCs in satisfying (1) and (2):

s ⊧sfair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Joost-Pieter Katoen Lecture#14 50/62

CTL Model Checking Under Fairness

∃□a Under One Strong Fairness Constraint
▶ sfair = □◇ a1 → □◇ b1, i.e., k=1

▶ s ⊧sfair ∃ □ a iff C is a non-trivial SCC in TS[a] reachable from s with:

1. C ∩ Sat(b1) /= ∅, or
2. D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

▶ D is a non-trivial SCC in the graph that is obtained from C [¬a1]

▶ For T the union of non-trivial SCCs in satisfying (1) and (2):

s ⊧sfair ∃□a if and only if ReachTS[a](s) ∩ T /= ∅

For several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Joost-Pieter Katoen Lecture#14 50/62

CTL Model Checking Under Fairness

Example: One Strong Fairness Constraint

Joost-Pieter Katoen Lecture#14 51/62

CTL Model Checking Under Fairness

Example: One Strong Fairness Constraint

Joost-Pieter Katoen Lecture#14 52/62

CTL Model Checking Under Fairness

Example: One Strong Fairness Constraint

Joost-Pieter Katoen Lecture#14 53/62

CTL Model Checking Under Fairness

Example: Two Strong Fairness Constraints

Joost-Pieter Katoen Lecture#14 54/62

CTL Model Checking Under Fairness

Example: Two Strong Fairness Constraints

Joost-Pieter Katoen Lecture#14 55/62

CTL Model Checking Under Fairness

Algorithm

CheckFair is a recursive procedure over the k strong fairness constraints
Basically an SCC analysis per fairness constraint. Time complexity:

O(∣TS∣⋅∣fair ∣).
Joost-Pieter Katoen Lecture#14 56/62

CTL Model Checking Under Fairness

CheckFair Algorithm (for completeness)

Joost-Pieter Katoen Lecture#14 57/62

CTL Model Checking Under Fairness

Time complexity

The CTL model-checking problem under fairness assumption fair can be
solved in O(∣Φ∣ ⋅ ∣TS∣ ⋅ ∣fair ∣).

Proof.
Follows from the complexity O(∣Φ∣⋅∣TS∣) of CTL model checking

Joost-Pieter Katoen Lecture#14 58/62

Summary

Overview

1 The Relevance of Fairness

2 Fairness Assumptions

3 Fairness and Safety Properties

4 LTL Model Checking Under Fairness

5 CTL Fairness Assumptions

6 CTL Model Checking Under Fairness

7 Summary

Joost-Pieter Katoen Lecture#14 59/62

Summary

Model Checking Complexity

CTL LTL CTL∗

model PTIME PSPACE PSPACE
checking

algorithmic ∣TS∣ ⋅ ∣Φ∣ ∣TS∣ ⋅ exp(∣ϕ∣) ∣TS∣ ⋅ exp(∣Φ∣)
complexity

with ∣TS∣ ⋅ ∣Φ∣ ⋅ ∣fair ∣ ∣TS∣ ⋅ exp(∣ϕ∣+∣fair ∣) ∣TS∣ ⋅ exp(∣Φ∣+∣fair ∣)
fairness

All theoretical complexity indications are complete.

Joost-Pieter Katoen Lecture#14 60/62

Summary

Summary
▶ Fairness constraints rule out “unreasonable” computations

▶ Fairness assumptions are conjunctions of fairness constraints

▶ Fair LTL model checking is reduced to standard LTL model checking

▶ CTL fairness constraints are fair “LTL”-formulas over CTL
state-formulas

▶ Fair CTL model checking is standard CTL model checking . . .

▶ . . . plus a dedicated procedure for ∃□a

▶ Complexity of fair CTL model checking is O(∣TS∣⋅∣Φ∣⋅∣fair ∣)
Joost-Pieter Katoen Lecture#14 61/62

Summary

Next Lecture

Thursday December 12, 10:30

No Lecture on Friday December 6

Joost-Pieter Katoen Lecture#14 62/62

	The Relevance of Fairness
	Fairness Assumptions
	Fairness and Safety Properties
	LTL Model Checking Under Fairness
	CTL Fairness Assumptions
	CTL Model Checking Under Fairness
	Summary

